Transfer RNA genes experience exceptionally elevated mutation rates

Bryan Thornlow^a, Josh Hough^a, Jackie Roger^a, Henry Gong^a, Todd Lowe^{a,b,1}, and Russell Corbett-Detig^{a,b,1}

- ^aDepartment of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz CA 95064; ^bGenomics Institute,
- 6 University of California Santa Cruz, Santa Cruz CA 95064
- 7 ¹To whom correspondence should be addressed. E-mail: lowe@soe.ucsc.edu or russcd@gmail.com
- 8 This manuscript was compiled on December 6, 2017
- H.G. performed initial analyses. B.T. performed research and analyzed data, with assistance from J.R.. J.H. performed the DFE analyses. B.T.,
 T.L. and R.C.-D. conceived and designed research. B.T., T.L. and R.C.-D. wrote the paper. J.H., J.R., H.G., T.L. and R.C.-D. edited the paper.
- **11** The authors declare no conflict of interest.
- 12 Transfer RNAs (tRNAs) are a central and necessary component for the biological synthesis of new
- 13 proteins, and they are among the most highly conserved and most frequently transcribed sequences
- 14 across all of life. Despite their clear significance for fundamental cellular processes, however, the forces
- 15 governing tRNA evolution are poorly understood. Here, we present evidence that transcription-
- 16 associated mutagenesis and strong purifying selection are key determinants of patterns of sequence
- 17 polymorphism and divergence within and surrounding tRNA genes across several diverse model
- 18 organisms. Remarkably, our results indicate that the mutation rate at broadly expressed tRNA loci is
- 19 between 8.7 and 13.8 times greater than the genome-wide average. Furthermore, evolutionary analyses
- 20 provide strong evidence that tRNA loci, but not their flanking sequences, experience strong purifying
- 21 selection, acting in direct response to this elevated mutation rate. Finally, we also find a highly
- 22 significant correlation between tRNA expression levels and the mutation rates in their immediate
- 23 flanking regions, suggesting the possibility of predicting gene expression levels based on relative
- 24 mutation rates and sequence variation data among tRNA gene loci. Our results provide novel insight
- 25 into individual tRNA gene evolution, and imply that tRNA loci contribute disproportionately to
- 26 mutational load in human populations.

27 Significance Statement

- 28 tRNAs are essential for the production of all proteins in all tissues across life and are therefore
- among the most highly transcribed loci in the genome. Our study shows that the frequent
- 30 transcription of tRNAs results in a highly elevated mutation rate at tRNA loci that is between 8-
- 31 and 14-fold higher for tRNAs than for the rest of the genome. We also show that the strength of
- 32 natural selection, which acts to remove sequence-altering mutations, is extremely strong in
- tRNAs, but is relaxed in introns and regions flanking tRNAs. Finally, our results indicate that
- 34 mutation rates in non-functional tRNA flanking regions are similarly elevated, and levels of
- 35 genetic variation correlate strongly with expression. These observations suggest that a predictive
- 36 model could facilitate future studies of tRNA function.
- 37 Transfer RNAs (tRNAs) play an essential role in protein synthesis across all of life. Their

- 38 primary function is in the translation of the genetic code into the corresponding amino acid
- 39 sequences that make up proteins. Thus, tRNA molecules are critical for virtually all cellular
- 40 processes, and the genes encoding tRNA molecules have been highly conserved over
- 41 evolutionary time (1). The necessity of tRNAs in large quantities also makes them among the
- 42 most highly transcribed loci in the genome. Indeed, many tRNA genes may experience greater
- 43 levels of transcription than even the most highly transcribed protein-coding genes (2, 3). Such
- 44 high levels of transcription suggest that tRNA genes may experience high levels of transcription-
- 45 associated mutagenesis (TAM) compared to the rest of the genome, making the tRNA gene
- 46 family an excellent model system for studying the interplay between natural selection and
- 47 elevated mutation rates.
- $48 \qquad tRNA \ | \ transcription \ | \ mutagenesis \ | \ TAM$
- 49 Transcription affects the mutation rates of transcribed genes (4) through the unwinding and
- 50 separation of complementary DNA strands (5). In particular, during transcription, a nascent RNA
- 51 strand forms a hybrid DNA-RNA complex with a template DNA strand. While the
- 52 complementary tract of non-template DNA is temporarily isolated, it is chemically reactive and
- thus accessible by potential mutagens (5). In addition, if transcription and DNA replication occur
- 54 concomitantly at a particular locus, collisions between RNA Polymerase and the DNA
- replication fork are possible, which may also result in damage to DNA (6). Several cellular
- agents have also been shown to cause damage in highly expressed genes (7). Among the most
- 57 notable sources of mutation associated with high transcription is activation-induced cytidine
- deaminase (AID) (8). AID accompanies RNA Polymerase II and converts cytosine to uracil,
 causing a relative excess of cytosine to thymine substitutions in the non-template strand and
- causing a relative excess of cytosine to thymine substitutions in the non-template strand andguanine to adenine substitutions on the template strand (9). More highly transcribed genes are
- 61 especially vulnerable to mutation by AID, making it a clear diagnostic signature of TAM (4).
- 62 Because tRNA loci are so often unwound for transcription, these regions are therefore expected
- 63 to experience elevated mutation rates due to TAM, with deamination via AID being one of the
- 64 primary mutational mechanisms.
- In order to conserve mature tRNA sequence identity in the presence of an elevated mutation rate,
- 66 it is expected that tRNA genes should experience strong selective pressures. At the gene level,
- 67 tRNA transcription requires sequence-specific binding of transcription factors to the internal A
- and B box promoter elements (10). Once transcribed, precursor tRNAs must fold properly to
- 69 undergo a complex process of maturation, which can be disrupted at any step by sequence-
- 70 altering mutations. The unique structure of tRNAs dictates processing by RNases, addition of an
- 71 assortment of modifications, accurate recognition by highly specific aminoacyl tRNA
- 72 synthetases, incorporation into the translating ribosome, and accurate positioning of the
- 73 anticodon relative to mRNA codons (11, 12). As a consequence of the need to maintain high
- requence-specificity, DNA encoding the mature portions of tRNAs are exceptionally well
- 75 conserved segments of the genome (11). Therefore, we expect that a large proportion of
- 76 mutations arising in tRNA genes will be deleterious, and therefore experience strong purifying
- 77 selection.
- 78 While most human tRNA genes do not have external promoters (10, 11), tRNA transcripts
- 79 generally include leader and trailer sequences, extending roughly 2-5 nucleotides upstream of the
- 80 annotated mature tRNA gene, and 5-15 nucleotides downstream of the mature tRNA sequence,

- 81 based on the position of the genomically encoded poly-T transcription termination sequence.
- 82 However, these sequences have limited functionality in most cases (13–16). For example, very
- 83 early in the tRNA maturation process, all tRNAs undergo removal of their 5' leader sequences
- by RNase P (13, 14) and removal of their 3' trailers by RNase Z (17). Because these flanking
- 85 sequences are frequently unwound and therefore vulnerable to TAM, we expect that tRNA
- 86 flanking regions will experience similar mutation rates to tRNA genes. Whereas tRNAs should
- 87 experience purifying selection, we expect that flanking regions should be nearly neutral or under
- 88 very weak selection.
- 89 Despite these clear predictions for an elevated mutation rate of tRNA loci and strong purifying
- 90 selective pressure on tRNA genes compared to their flanks, there has been no attempt to quantify
- 91 the overall impact of mutation and selection on patterns of sequence variability in tRNAs or their
- 92 flanking regions. Here we investigate the patterns of conservation, divergence and within-species
- 93 variation of tRNAs in humans and several other model organisms (*Mus musculus*, *Arabidopsis*
- 94 thaliana, and Drosophila melanogaster).

95 Results & Discussion

96 Flanking regions of tRNA genes are highly variable despite strong conservation of mature

97 **tRNA sequences.** To estimate evolutionary conservation, we averaged phyloP data, a measure of

- the conservation of each human genomic position across 100 vertebrate species (18), by position
- 99 within each tRNA locus (see Methods). To study the effects of evolution on a shorter time-scale,
- we also aligned the human and *Macacca mulatta* (Rhesus macaque) genomes and counted thenon-gap nucleotide mismatches in the alignments as divergent positions for each tRNA locus.
- 102 Our analyses indicate that mature tRNA sequences are highly conserved at all positions, based
- 103 on both average phyloP score (18) (Figure 1A, Supplementary Table 1) and *M. mulatta*
- alignment (Figure 1B). However, the "inner" flanking regions, defined based on inflection points
- in the data (see Methods), show significant divergence by the same measures. The inner 5'
- 106 flanking region, defined as the 20 bases upstream of the tRNA, is the most divergent segment of
- these regions on average, with roughly four times the rate of divergence between human and M.
- *mulatta* as the untranscribed reference regions (Figure 1B). We found similarly increased rates of
- 109 divergence in the inner 3' flanking region, which was roughly three times as divergent between 110 house and $M_{\rm eff}$ between the action of the sector 5'
- human and *M. mulatta* as the untranscribed reference regions (Figure 1B). Both the outer 5'
 flank (21-40 bases upstream of the tRNA) and outer 3' flank (11-40 bases downstream of the
- 111 flank (21-40 bases upstream of the tRNA) and outer 5 flank (11-40 bases downstream of the 112 tRNA) are also roughly 1.5 times as divergent as are the untranscribed reference regions.
- Furthermore, we find that intergenic regions within clusters of active tRNAs (Figures S1A, S1B)
- show similar patterns in their phyloP scores, with increased divergence extending hundreds to
- 115 thousands of bases up and downstream of each tRNA gene. Conversely, we find that the
- 116 intergenic regions in clusters of inactive tRNA genes do not show this pattern nearly as strongly
- 117 (Figure S1C).
- 118 To focus our evolutionary timescale further and eliminate any bias due to multi-species sequence
- alignment errors, we also studied relative levels of tRNA variation within a human population by
- 120 observing the occurrence of low-frequency single nucleotide polymorphisms (SNPs) (minor
- allele frequency < 0.05%) for each tRNA gene locus. Consistent with our phyloP and *M. mulatta*
- 122 divergence analyses, we find that low-frequency SNPs are more common across the entire tRNA

123 locus, including the mature sequence and flanking regions, relative to untranscribed reference

- regions (Figure 1C). Although the inner 5' and inner 3' flanking regions are the most
- polymorphic, the mature tRNA sequences have about twice as many low-frequency SNPs per
- site as untranscribed reference regions. Overall, our results are remarkably consistent on multiple
- 127 timescales (across vertebrates, between primates, within human populations), indicating that
- 128 functional tRNA sequences are highly conserved across species but prone to mutations at the
- individual level, and tRNA flanking regions are both more divergent and more polymorphic than
- 130 untranscribed, non-genic sequences.

131 **Transcription contributes to variation in tRNA and flanking regions.** We observed that

- 132 conservation and divergence patterns varied between tRNA loci, and hypothesized that highly
- active tRNA genes would show the greatest mutation rates if transcription-associated
- mutagenesis is a primary driver of variation among tRNA loci. Because tRNA transcript
- abundance measures are often not attributable to individual loci for multiple reasons, including
- redundant gene copies, variation in pre-tRNA processing and tRNA degradation rates, and
- difficulty sequencing full-length tRNAs, we estimated relative transcriptional activity based on
- chromatin state data from the Epigenomic Roadmap Project ((21); Cozen et al., in preparation).
 We classified human tRNA genes as "active" if they were in regions of active chromatin and
- 140 near transcription start sites in at least 3% of the 127 tissues for which genome-wide epigenomic
- 141 data was available (Figure 2A, see Methods). We considered the remaining tRNAs "inactive".
- 142 No isotypes are over-represented in any of the epigenomic groups (Cozen, et al., in preparation).
- 143 We found that active tRNAs were significantly more conserved than inactive tRNAs (Mann-
- 144 Whitney U, p < 8.40e-53), and the flanking regions of active tRNAs were significantly more
- divergent than the flanking regions of inactive tRNAs (p < 7.98e-61). Indeed, the peak measure
- 146 of divergence in the inner 5' flanking regions is roughly five times greater in active tRNAs than
- 147 in inactive tRNAs (Figure S2A). Active tRNAs also had significantly more low-frequency
- polymorphisms per site than inactive tRNAs across the entire locus, including the tRNA and
- flanking regions (p < 3.72e-36). Inactive tRNAs were still significantly more conserved (p <
- 150 2.02e-12) and polymorphic (p < 0.007) than the untranscribed reference regions, and their flanks
- 151 were significantly more divergent than the reference regions (p < 1.36e-16).
- 152 That the peak by all three measures is consistently about 12 to 13 nucleotides upstream of the
- 153 mature tRNA sequence is a curious result. At the most divergent position, roughly 55% of all
- tRNA loci showed a difference between human and *M. mulatta* (Figure 1B) and roughly 15% of
- 155 tRNA loci have a low-frequency SNP at this site (Figure 1C). Furthermore, among tRNA loci
- 156 believed to be active, virtually all loci showed a change at this nucleotide between human and *M*.
- 157 *mulatta*, and roughly 25% have a low-frequency SNP at this site (Figure S2A, S2B). This implies
- that this region either does not face uniform selective pressures or is not uniformly vulnerable to
- 159 TAM. While it has been suggested that distant flanking sequences may affect tRNA expression
- 160 levels in yeast (22), few studies to our knowledge have shown that the immediate flanking
- 161 regions have an effect on expression in humans or other higher eukaryotes (23). Importantly, the
- duration of transcription initiation is long relative to the process of transcription itself (24, 25),
- 163 which would presumably lead to prolonged isolation of the non-template DNA strand at the
- 164 initiation site and increased vulnerability to TAM. A poised initiation complex might also
- increase the likelihood of collisions between Pol3 and the replication fork (6). Thus, frequent
- 166 initiation at highly transcribed tRNA loci could contribute to the pattern of variation we observe.

167 This may also explain the increased variation in the outer 3' flank relative to the outer 5' flank,

- 168 as positioning of downstream transcription termination sites is highly variable among tRNA
- genes (19, 26), whereas transcription start site positions are more consistent. Indeed, we find that 169
- 170 the TATA boxes for tRNA-SeC-TCA-1-1, RNase P and U6 RNA are all approximately 25
- 171 nucleotides upstream of the start of the gene (27). While most tRNAs do not have clear TATA
- boxes, the TATA-Binding Protein (TBP) still binds non-specifically to the DNA duplex at this 172
- 173 position (28), which seems to coincide with the sudden decrease in variability. Furthermore, we 174 find that, while both flanking regions for many other Pol3-transcribed genes are divergent, the 5'
- 175 flanking regions are generally more divergent than the 3' flanking regions, suggesting that the
- 176 underlying mechanism is not tRNA-specific (Supplementary Table 1). However, additional
- 177
- studies will be necessary to conclusively support the assertion that this strong mutation pattern is 178 due entirely or in large part to the process of transcription rather than due to a correlated process.
- 179 Two additional and orthogonal analyses strengthen the observed correlations between gene
- 180 expression and variation at tRNA loci. First, we found a significant correlation between the
- TATA-Binding Protein (TBP) intensity peaks (29–31) (see Methods) and the average level of 181
- divergence in the flanking regions (Spearman's rho = -0.64, p < 2.2e-16) (Figure 2D), as well as 182
- 183 a correlation between the peaks and the average level of conservation of the mature tRNA
- 184 sequence (Spearman's rho = 0.64, p < 2.2e-16) across all human tRNAs (Figure 2C). The TBP
- 185 peak data for these transcription factors provide an estimate of the level of transcription for each
- 186 tRNA, and are consistent with the idea that more highly transcribed tRNAs show higher levels of
- variability in their transcribed regions. 187
- 188 Second, we found significant correlations between the mature tRNA sequence read counts and
- 189 tRNA conservation (Spearman's rho = 0.18, p < 0.001) and flanking region divergence
- (Spearman's rho = -0.61, p < 2.2e-16) when we exclude mature tRNA sequences encoded for by 190
- 191 more than one gene (Figure 2E,F), as well as when we sum the average levels of tRNA
- 192 conservation (Spearman's rho = 0.12, p < 0.027) and flanking region divergence (Spearman's
- 193 rho = -0.68, p < 2.2e-16) for genes encoding identical tRNAs to account for correlations between
- 194 read count and gene copy-number (22, 32) (Figure S3). These read counts were collected from a
- single human embryonic kidney cell line by Zheng et al (32) using DM-tRNA-seq, a specialized 195
- sequencing method developed for tRNAs which overcomes modifications that impede standard 196 197 small RNA sequencing methods.

198 Patterns of divergence and conservation can be leveraged to develop a predictive model for

199 **tRNA gene expression.** Regardless of whether tRNA expression is estimated based on

200 epigenetic chromatin marks across many cell types, TBP transcription factor occupancy across

- 201 multiple cell lines, or by relative transcript abundance within one cell line, we find highly
- 202 significant correlations between gene expression and tRNA conservation, flanking region
- 203 divergence, and tRNA locus polymorphism. The consistency of these correlations indicates that 204 it may be possible to predict tRNA expression based solely on DNA sequence conservation
- 205 patterns. Genome-wide chromatin-IP and ChIP-seq data are resource-intensive to collect. As
- 206 sequencing technology is rapidly becoming more affordable and accessible, the prospect of
- 207 making predictions of tRNA gene expression levels through analysis of multiple alignments and
- 208 variant sites within populations is enticing. Creating and refining such a model would make
- 209 future tRNA gene annotation significantly easier and cost-effective.

210 Applicability of this proposed tool is likely best suited for tRNAs, other Pol3 genes, and unique 211 classes of highly expressed protein coding genes such as histones. For example, we find that 212 among the shortest histone protein coding genes (cutoff less than 1,000 nucleotides in length), 213 the average phyloP score per nucleotide is 3.4485, indicating a comparable level of conservation 214 to tRNA genes. Consistent with tRNA genes, their immediate 5' flanking regions are also more 215 divergent than are their immediate 3' flanking regions, on average. However, most genes 216 transcribed by RNA Pol2, including protein coding genes, lincRNAs, miRNAs, snoRNAs, and 217 others, generally do not appear to be good targets based on analysis of representatives of each. 218 For example, glyceraldehyde-3-phosphate dehydrogenase and ribosomal proteins are very highly 219 and very broadly transcribed (33). These genes have extremely well conserved exons, but their 220 introns and flanking regions are not nearly as divergent as tRNA flanking regions, based on 221 phyloP data (18, 27). It is possible that high intron and flanking region divergence in protein-222 coding genes is still indicative of a high transcription rate, but the degree of variation in these 223 genes occupies a much smaller range, and would therefore be more difficult to incorporate into a 224 model. Additionally, microRNAs such as miR-21 and miR-25 are highly conserved and highly 225 abundant (27, 33), but they are processed out of longer pri-miRNA transcripts, and do not show 226 highly divergent flanking regions at fixed upstream positions, based on phyloP data 227 (Supplementary Table 1) (18, 27). That tRNAs are the best examples for studying signatures of 228 TAM can be attributed to the combination of several unique characteristics, including 229 consistently predictable transcript start and end sites, internal promoters, and extremely high 230 transcription rates. Other highly transcribed genes have conserved functional elements in their 231 flanking regions that may obscure the effects of TAM at these loci.

232 tRNA flanking regions are among the least conserved sites in the human genome. Upon 233 scanning the human genome for the least conserved base pairs, we found 247 sites in the genome 234 that had scores of -20, the lowest possible score on the phyloP scale (18, 34). Fifteen of these 235 sites were within 20 base pairs of an active tRNA, based on chromatin-IP data. Of these, 14 sites 236 were found in the inner 5' flanking region of the tRNA, between 10 and 15 base pairs upstream 237 of the first base of the mature tRNA sequence. We found that this set of minimum-phyloP-score 238 sites was enriched for sites within tRNA flanking regions (Hypergeometric test, p < 1.65e-48), 239 indicating that the least conserved sites in the genome are disproportionately found in tRNA 240 flanking regions. This indicates that the flanking regions of some active tRNA genes are among 241 the least conserved regions, and perhaps have among the highest mutation rates, of any in the 242 genome.

243 Patterns of low-frequency SNPs indicate transcription-associated mutagenesis (TAM). Prior

studies of TAM in protein coding genes indicate that transcription is a mutagenic process, in that

the untranscribed strand becomes more vulnerable to damage, either through collisions betweenthe DNA replication fork and RNA Polymerase, or by other molecules such as deaminases (4, 7,

246 the DIVA replication fork and RIVA Polymerase, or by other molecules such as deaminases (4, 7247 9). It has been shown that repair pathways activated in response to deaminations lead to excess

- conversions between guanine and adenine and between thymine and cytosine nucleotides on the
- coding strand (4, 9). To test this prediction, we analyzed the relative frequencies of all low-
- frequency SNPs for each region of tRNA loci. Across all tRNA loci, we found that the most
- 251 common low-frequency SNPs are $C \rightarrow T$, $G \rightarrow A$, $T \rightarrow C$ and $A \rightarrow G$ (transitions), and that these
- mutations are significantly more common in both tRNA flanking regions and the tRNA gene,
- relative to untranscribed reference regions (Fisher's exact test, p < 0.05 for all comparisons)

- 254 (Figure 3). Furthermore, the relative excesses of these SNPs are most pronounced in active tRNA
- loci (Figure S4A). In contrast, and consistent with observed levels of divergence, these relative
- changes are barely discernible when considering only inactive tRNA loci (Figure S4B).

It is important to note that, due to the necessity of preserving tRNA secondary structure, we would expect transition mutations (e.g., A-U to G-U base pairs, C-G to U-G base pairs) to be more common than transversions, regardless of the underlying mechanism, as they should impair function less often. However, the strong mutational skew expected of regions affected by TAM is even more pronounced in regions flanking tRNAs. While some pre-tRNAs may have extended secondary structure that could influence the relative SNP frequencies, such pre-tRNA 5' leader

- sequences tend to be a maximum of five nucleotides long in mammals (unpublished
- 264 observations).
- 265 Prior studies have implicated that CpG sites are significantly more prone to mutations than other
- nucleotides (35). Therefore, to determine whether TAM was the primary cause of these relative
- excesses, we repeated our analysis after excluding all CpG sites. We found that CpG sites had no
- effect on the substitution patterns that we observed in the polymorphism data (Figure S5).

269 tRNA flanking region variation in other model organisms is consistent with variation

- **observed in humans.** To test whether the patterns of polymorphism and divergence that we
- observed in tRNAs and flanking regions also occurred in other species, we repeated our analyses
- for tRNAs in *Mus musculus*, *Drosophila melanogaster* and *Arabidopsis thaliana*. Consistent
 with our results from human data, we found similar patterns of sequence conservation of tRNA
- 273 with our results from human data, we found similar patients of sequence conservation of tKNA
 274 loci across all species investigated (Figure S6). In particular, mature tRNA sequences were
- highly conserved and the flanking regions were highly divergent (Figures S6A, S6D).
- 276 Particularly striking are the similarities in the outgroup comparisons in the inner 5' flank
- 277 (Figures S6B, S6E, S6G). The 5' flanks were more divergent than the 3' flanks and the most
- divergent sites were roughly 10-15 bases upstream of the tRNA in all species. These results are
- consistent with our human data (Figure 1) and suggest the possibility that an underlying
- 280 molecular mechanism drives these convergent patterns of polymorphism and divergence across
- 281 species.
- 282 We also tested whether the correlation between gene expression and variation was conserved
- across species (Figure S7). To do this, we utilized chromatin-IP data across nine mouse tissues
- and classified mouse tRNAs based on their breadth of expression. By this measure, active mouse
- tRNAs were more strongly conserved than their inactive counterparts (Mann-Whitney U test, p <
- 1.81e-19), and their flanks were more divergent (p < 7.04e-22) (Figure S7A, S7D), consistent
- with our results from the human data (Figure 2A,B). Active mouse tRNAs also had more low-
- 288 frequency SNPs in their flanking regions than did inactive mouse tRNAs (p < 2.23e-4) (Figures
- 289 S7C, S7F). Consistent with the human data, inactive mouse tRNAs were also more conserved (p < 1.76e-8) and their flanking regions more divergent (p < 2.37e-4) than the untranscribed
- reference regions (Figure S7D). Such consistency indicates that the mechanism underlying these
- 292 patterns works similarly in human and mouse.
- The patterns of low-frequency SNPs are also consistent across all species. The greatest levels of polymorphism are found in the inner 5' flanking regions for all species studied. The frequency

- spectra of the low-frequency SNPs also show excess $A \rightarrow G$, $G \rightarrow A$, $C \rightarrow T$ and $T \rightarrow C$ SNPs on the
- coding strand in all species analyzed (Figure S8) Additionally, as was observed in humans,
- active mouse tRNAs show a greater excess of these SNPs (Figure S9A) than do inactive mouse
- tRNAs (Figure S9B). Consistent with our analysis of human tRNAs, these patterns suggest that
- deamination of the non-coding strand due to TAM and the DNA repair mechanisms acting in
- response to deamination are especially common at these loci (4, 9, 36).

301 In humans, we do not have chromatin-IP data for germline tissues and cannot correct for the fact 302 that only mutations in these tissues are heritable, but we have no evidence that active tRNAs are 303 suppressed in the germline. However, the nine mouse tissues for which we had chromatin-IP data 304 included testes and mouse embryonic stem cells. Virtually all of the tRNAs that are inactive in 305 both stem cells and testes are also inactive in the other tissues. Because only germline mutations 306 are heritable, we expect that only germline expression causes elevated mutation rates at these 307 loci. That virtually all active tRNAs are expressed in the germline and that those not expressed in 308 the germline are inactive is consistent with our findings and suggests that estimates of tRNA

- 309 expression derived from somatic tissues are sufficient for studying the genetic consequences of
- 310 exceptional transcription rates.

311 Functional tRNA sequences experience strong purifying selection in all species studied. Our

- analysis of the distribution of fitness effects (DFE) of deleterious mutations demonstrates that
- tRNAs evolve under strong purifying selection in all of the species we analyzed. In contrast,
- regions flanking tRNAs were inferred to be either neutral or subject to weak selection ($N_eS < 10$)
- 315 (Figure 4). These results are consistent with our estimates of evolutionary conservation in tRNA
- regions, as well as elevated levels of polymorphism observed in the flanks (Figure 1). Our
 estimates of the proportions of new mutations falling into each N_eS range of the DFE for tRNAs
- indicated that there were far fewer nearly neutral mutations ($N_eS < 1$) and substantially more
- strongly deleterious mutations ($N_e S > 100$) in *D. melanogaster* and *A. thaliana* than in human or
- 320 mouse populations (Figure 4). Given that estimates of N_e in human (7, 000; 37) and mouse (25,
- $321 \quad 000 120, 000; 38$) are substantially lower than in *A. thaliana* (300,000; 39) and especially *D*.
- 322 melanogaster (> 1,000,000; 40), this difference in the inferred strength of selection may be due
- to differences in long term N_e. That the *A. thaliana* life cycle involves selfing may also
 contribute to these differences. In addition, the human and mouse genomes contain far more
- tRNAs (610 and 471, respectively) than *D. melanogaster* (295) (19), and this increased
- redundancy could also affect the inferred fitness effects across these species, as mutations in high
- 327 copy-number tRNAs are potentially less deleterious than those affecting unique tRNAs.
- However, given that there are 700 tRNA genes in the *A. thaliana* genome (19, 41), redundancy
- alone is unlikely to fully account for the between-species differences in the DFE.
- 330 Several tRNAs are known to contain introns (19). We analyzed the introns separately and found
- that intronic variation correlates with flanking variation in tRNAs; that is, tRNAs with the most
- variable flanks also had the most variable introns (Figure S10). We considered using introns as
- selectively neutral regions for estimating DFE, but found that these regions comprised only 619
- nucleotides in total, fewer than the total number of human tRNAs (19). As such, this sample size
- 335 was too small to reliably use in our DFE analysis.

336 **tRNA loci contribute disproportionately to mutational load.** Our discovery of a highly

elevated mutation rate at tRNA loci suggests that tRNA genes may contribute disproportionately
to segregating mutational load in humans. To obtain an estimate of the contribution of tRNA loci
to this load, we used the ratio of the rate of low-frequency SNPs in tRNA flanking regions to that

- in untranscribed reference regions (between 8.7 and 13.8) to estimate the tRNA mutation rate
- relative to the neutral mutation rate in humans (1.45e-8, (42)). Given that there are 25,852 base
- pairs of tRNA sequence for active tRNAs in the human genome, we estimate that the per
- generation rate of deleterious mutation arising from tRNAs per diploid genome (U_{tRNA}) is 0.01.
- 344 Using previous estimates of the rate of deleterious amino acid mutation per diploid genome (0.35,
- 345 (43)), this implies that tRNAs may contribute 2.3% of deleterious mutations as protein coding
- sequences. Given that tRNAs make up only 0.0009% of the human genome (19), this further
- 347 implies that mutations in tRNAs contribute to mutational load, the reduction in individual fitness
- 348 due to segregating deleterious mutations (44, 45), with an effect disproportionate to their total
- 349 lengths. Although such calculations are clearly approximate, they nevertheless highlight that
- 350 mutations at tRNA loci are likely an important source of fitness and disease variation in human
- 351 populations.

352 Conclusions

353 Our findings demonstrate the fundamental importance of tRNA sequences, which are highly

- 354 conserved despite the continual influx of mutations by TAM at a higher rate than anywhere else
- in the genome. Our results are consistent across a broad range of taxonomically diverse species,
- indicating that elevated mutation rates due to TAM and strong purifying selection are widespread
- across life, and may be a good predictor of relative tRNA gene transcription levels. The conflict
- between extreme TAM and strong purifying selection at tRNA loci is potentially an
- unappreciated source of genetic disease, and may have a profound impact on the fitness of
- 360 human populations.

361 Materials and Methods

362 **Defining tRNA loci and flanking regions.** We used tRNA coordinates from GtRNAdb (19) for the human, M. 363 musculus, D. melanogaster, and A. thaliana genomes. For each species, we defined untranscribed reference 364 regions to use as negative controls. To find these regions in the human genome, we searched 10 kilobases 365 upstream of each tRNA and selected a 200-nucleotide tract. If this tract was within a highly transcribed region 366 of the genome (as determined by genome-wide chromatin-IP data (21)), overlapped a conserved element 367 (defined as a region with a phastCons log odds score greater than 0 (18)), was within 1,000 nucleotides of a 368 known gene (27), or overlapped an untranscribed reference region assigned to another tRNA, we selected a 369 new tract 1,000 bases further upstream, and repeated until we found an acceptable region. For the mouse 370 genome, we checked only known genes, previously assigned untranscribed reference regions, and conserved 371 elements, as analogous genome-wide chromatin-IP data of the caliber used for humans was not readily 372 available for other species. For the *D. melanogaster* and *A. thaliana* genomes, we began our searches only 373 1,000 bases upstream of each tRNA, and searched for 200-nucleotide tracts that were at least 100 nucleotides

- away from any annotated genetic element (46, 47). This adjustment was made due to the relatively high
- 375 functional densities of the genomes of these species.
- For each tRNA in all species, we defined the inner 5' flank as the 20 bases immediately upstream of the 5' end
- of the tRNA on the coding strand, and the outer 5' flank as the 20 bases directly upstream of the inner 5' flank.
- **378** Likewise, the inner 3' flank refers to the 10 bases directly downstream of the tRNA on the coding strand, and
- the outer 3' flank refers to the 30 bases downstream of these 10 bases. We made these decisions based on

380 inflection points in our data, as the flanking regions up to 20 bases upstream and 10 bases downstream of

- 381 tRNA genes seemed to have less variation. Further, while no studies to our knowledge report the length of
- 382 tRNA leader sequences in eukaryotes in general, we found that transcription usually ends about 10 bases
- 383 downstream of mature tRNA sequences (26, 48).

384 Classifying tRNAs based on breadth of expression. The Roadmap Epigenomics Consortium compiled 385 genome-wide epigenomic data across 127 human tissues and cell lines in order to characterize the state of 386 chromatin across the genome (21). Cozen, et al. (in preparation) analyzed the regions surrounding each tRNA 387 in each epigenome sample, and performed a clustering analysis to classify each genomic region according to 388 its most common epigenomic state. They then classified all human tRNAs based on the epigenomic state 389 annotation in the genome. In the corresponding model, regions in state 1 are near transcription start sites, and 390 regions in states 4 and 5 are not near transcription start sites but are nonetheless likely to be transcribed. tRNAs 391 in state 1 in at least 3% of tissues are referred to here as "active tRNAs", and we consider the remaining 392 tRNAs to be "inactive".

- 393 We followed a similar approach to classify mouse tRNAs. We used data from a 15-state Hidden Markov
- 394 Model based on chromatin-IP data in which states 5 and 7 corresponded to regions proximal to active 395
- promoters (49). tRNAs in genomic regions annotated as state 5 or 7 in at least 3% of tissues were considered to 396
- be "active", and all other tRNAs were considered "inactive". These classifications were not conducted in other
- 397 species due to lack of available data.
- 398 Aligning tRNAs. We aligned all tRNAs across all species using covariance models (41) and assigned
- 399 coordinates to each position in each tRNA and flank based on the Sprinzl numbering system (20). Using these
- 400 alignments, we created files assigning a Sprinzl coordinate to each genomic coordinate within tRNA sequences
- 401 or flanking regions for each species studied. For example, the first nucleotide at the 5' end of each tRNA was
- 402 assigned Sprinzl coordinate 1. To create Figures 1 and 2A and B, we averaged the phyloP, divergence and low-
- 403 frequency SNP data for all sites assigned to the same Sprinzl coordinate for their respective tRNA loci.
- 404 Because some tRNAs have insertions, deletions and variations in structure (e.g. Leucine tRNAs often have an
- 405 extended V-loop (19)), this alignment was necessary for position-wise comparisons between tRNAs. 406
- Additionally, some low-scoring tRNAs did not align well using these methods, and Sprinzl coordinates could 407
- not be properly assigned. We set a filter such that tRNAs with fewer than 50 aligned bases were excluded.
- 408 Some tRNAs are known to have extended leading or trailing sequences that are well conserved across species
- 409 and potentially contribute to the secondary structure of the tRNAs (16). We determined whether any conserved
- 410 elements (regions with a phastCons log odds score greater than 0 (18)) were present by using the Vertebrate
- 411 Multiz Alignment & Conservation track in the UCSC Genome Browser (27) for the regions 4-10 bases up or
- 412 downstream of each human tRNA. If a conserved element was present within this region, the tRNA was
- 413 excluded from our analyses, as these flanking regions might contribute to the secondary structure of mature
- 414 tRNAs, and would therefore be subject to higher levels of selection than the vast majority of tRNA flanking
- 415 regions.
- 416 We also excluded nuclear-encoded mitochondrial tRNAs from our analyses. These tRNAs are transferred from
- 417 mitochondrial genomes and therefore are not subject to the same evolutionary pressures as the vast majority of
- 418 tRNAs. Additionally, alignments of these tRNAs across species is dubious, as these transfers likely occurred
- 419 following speciation, and many of these genes are without true orthologs in other species. Therefore, excluding
- 420 these genes would better explain the patterns of mutation and selection affecting most tRNA genes.
- 421 **Parsing variation data.** We analyzed human variation data from the African superpopulation of humans, 422 consisting of 661 individuals from Kenya, Nigeria, Sierra Leone, The Gambia and Barbados, from Phase 3 of 423 the 1000 Genomes Project (50). For D. melanogaster, we acquired variation data for the Siavonga, Zambia

424 populations from the *Drosophila* Genome Nexus Database (46, 47). *Mus musculus castaneus* raw data were

- 425 obtained from Waterston, et al (51) and the *A. thaliana* data were obtained from the Arabidopsis Genome
- 426 Initiative (52). All non-human data were aligned and genotypes curated as described in Corbett-Detig et al (53).

427 Within each tRNA, flank, or untranscribed reference region, we considered positions with minor allele

- 428 frequencies greater than 0 but less than 0.05 to be low-frequency single nucleotide polymorphisms (SNPs).
- 429 This is based on the idea that SNPs with low minor allele frequencies are generally due to new mutations, on
- 430 which selection is less of a factor (54). Therefore, these are expected to more closely reflect the neutral
- 431 mutation rate and spectrum. We also determined the frequency of the 12 possible classes of mutations (e.g.
- 432 $A \rightarrow G, T \rightarrow A$) within each region of each tRNA where the identity of each base is defined according to the
- 433 coding strand sequence. Using the alignments, we found the frequency of divergences and low-frequency
- 434 SNPs by position across all tRNAs and flanking regions, and we obtained 95% confidence intervals for each
- point estimate by non-parametric bootstrapping across tRNA loci.
- 436 For conservation studies across multiple species, we used the phyloP track (18) (across 100 vertebrate species
- for the human data, across 60 vertebrate species for mouse), and across 27 insect species for the *D*.
- 438 *melanogaster* data) from the UCSC Genome Browser (27, 34) and calculated the average score for each
- position within the tRNAs and flanking regions. The phyloP track assigns scores to each nucleotide in the
- genome based on alignments to other species, where the score represents the -log p-values under a null model
- 441 of neutral evolution. Positive scores indicate strong conservation, negative scores indicate accelerated
- evolution, and sites with scores of zero are undergoing change at a rate consistent with neutral genetic drift
- 443 (18). When plotting this data, we multiplied the average phyloP scores by negative one, such that sites
- undergoing accelerated change would have high positive scores, and sites that were strongly conserved would
- have negative scores (Figures 1A and D, 2A and B). We also performed non-parametric bootstrapping across
- 446 tRNA loci to determine 95% confidence intervals for all positions. No analogous genome-wide phyloP data
- 447 was available for *A. thaliana* (18).
- 448 For direct comparisons between the species of interest and an outgroup, we used the Multiz Alignment &
- 449 Conservation track from the UCSC Table Browser (34) and the Stitch MAFs tool from Galaxy (55) to create
- 450 sequence alignments of the regions of interest in the human and mouse genomes. For the human genome, we
- 451 downloaded the hg19 human reference genome from the UCSC Genome Browser and aligned to the *Macacca*
- 452 *mulatta* reference genome (rheMac2) (56), also from the UCSC Genome Browser (27). We also compared the 453 mouse (*Mus musculus*, mm10) and rat (*Rattus norvegicus*, rn6) genomes (34), and the *A. thaliana* (TAIR10)
- 454 and *A. lyrata* (v.1.0) genomes (57, 58) using the same methods. For *D. melanogaster*, we used an alignment of
- 455 the dm6 genome to the droYak2 (*D. yakuba*) genome (59). Non-gap nucleotide mismatches in the alignments
- 455 the diffo genome to the drof ak2 (*D. yakuba*) genome (59). Non-gap nucleotide mismatches in the arguments 456 were classified as divergent sites. To account for the possibility that multiple substitutions occurred at a single
- 450 were classified as divergent sites. To account for the possibility that multiple substitutions occurred at a 457 site, we applied a Jukes-Cantor correction to the average rate of divergence at each position (60).
- 458 Transcription factor binding. The ENCODE Project Consortium used ChIP-Seq data to identify binding 459 regions for regulatory factors (29–31), including the TATA-binding protein (TBP) and several Pol3 460 transcription factors in the human genome (10). These data were taken from the UCSC Genome Browser (27) 461 in the form of peak calls, in which the intensity of a given peak correlates with a greater frequency of 462 transcription factor binding to that region. For each human tRNA, we found the strongest TBP peak in the 50 463 base pairs immediately upstream of the tRNA, across the GM12878, H1-hESC, HeLa-S3, HepG2 and K562 464 cell lines. We chose to use TBP instead of Pol3 peaks because, although TBP is not specific to Pol3 genes, we 465 found that this data was a stronger and more reliable indicator of transcriptional activity. We also calculated 466 the average phyloP score across the flanking regions for each tRNA (18), and performed a Spearman's rank 467 correlation test to quantify the relationship between these data. We repeated this test for the maximum peaks 468 for BDP1 and RPC155 as well, but searched for peaks within the mature tRNA sequence instead, as this is 469 where these transcription factors bind (10). Further, we used only HeLa-S3 and K562 cell data for the BDP1

470 and RPC155 tests, as this was the only data available for these peaks (31). This ChIP-Seq data was available 471 only for the human genome, so other species were excluded from this part of our analysis.

472 Correlating variation to cell-line read counts. Zheng, et al (32) developed a high-throughput demethylation 473 sequencing pipeline in order to efficiently detect tRNAs within human embryonic kidney (HEK293T) cells (32, 474 61). We performed Spearman's rank correlation tests to determine the relationship between their mature tRNA 475 read counts and tRNA gene and flanking region conservation. Because Zheng, et al (32) sequenced mature 476 tRNA sequences, which are sometimes encoded by multiple genes, and because we had variation data by gene, 477 we needed to account for this discrepancy. For example, tRNA-Val-CAC-1-1 and tRNA-Val-CAC-1-2 are two 478 distinct genes with different degrees of variation, but they encode the same mature tRNA. For tRNAs encoded 479 at only one locus, we evaluated the correlation between the read counts and the levels of variation at that locus. 480 However, for tRNAs encoded at multiple loci, we took two approaches. First, we excluded these genes entirely, 481 to eliminate the need to control for the correlation between gene copy-number and overall expression (Figure 482 2E, F) (22, 32). In a separate analysis, we summed the average phyloP scores at these loci, and evaluated the

- 483 correlation between these totals to the tRNA read counts (Figure S3).
- 484 Finding genome-wide minimum phyloP scores. We used the UCSC Table Browser (34) to determine which

485 sites in the human genome had phyloP scores of -20, the lowest possible phyloP score. These are the least

486 conserved sites in the human genome across the 100 vertebrate species compared in this track (18). Using

- 487 genomic coordinates of tRNAs from GtRNAdb (19), we determined what proportion of these sites overlapped 488 tRNA genes or flanking regions and performed hypergeometric tests to quantify associations between these 489 data.
- 490 Estimating the distribution of fitness effects. We estimated the distribution of fitness effects (DFE) for each
- 491 species by maximum likelihood using the method of Keightley et al (62), implemented in the DFE- α software.
- 492 The method is based on site frequency spectra (SFS) obtained from within-species SNP data, and assumes a
- 493 simple model of recent demographic change to correct the SFS at functional sites for possible skews caused by
- 494 demography. We used a two-epoch model of demographic change and estimated the DFEs for tRNAs, inner 3'
- 495 and inner 5' flanking regions for each species. Each of these classes of sites was assumed to be subject to 496 mutation, selection and drift, with gamma-distributed DFEs and an initial shape parameter (β) of 0.5. We also
- 497 estimated the DFE for sites that are likely to be evolving neutrally (outer 5' flanking regions), which were used
- 498 as the presumably untranscribed reference regions for generating the expected allele frequency distributions.
- 499 For each class of putatively selected sites, we analyzed folded site frequency spectra, and the fitness effects of
- 500 new deleterious mutations were estimated on a scale of NeS, where Ne is a measure of the recent effective
- 501 population size and S is the strength of selection on a new mutation.
- ACKNOWLEDGMENTS. We would like to thank Craig Mello for helpful discussions and input on this 502 503 project, Brian Lin for supplying the legend for Figure 1, as well as Andrew Holmes for sending the mouse 504 chromatin-IP data and for suggestions on this project. We also thank the rest of the Corbett and Lowe Labs for 505 their suggestions, which made our manuscript clearer and made our research more efficient. B.T. was funded 506 by a T-32 training grant (T32 HG008345) during this study.
- 507

509 Fig. 1. Strong pattern of variation in regions flanking human tRNA genes relative to vertebrates, upon comparison to 510 Rhesus macaque, and within the human population. A: The negative of the average phyloP score (comparing humans to 100 511 vertebrate species) is plotted for each position within the tRNA and flank, across all human tRNAs. For consistency in plotting, 512 we multiplied the average score at each position by -1, so that more highly divergent regions would have higher, positive 513 scores. B: Divergence at non-gap alignments between the hg19 and rheMac2 genomes at each position within tRNAs and their 514 flanking regions. C: The frequency at which each position within tRNAs and flanks have a low-frequency SNP (minor allele 515 frequency less than or equal to 0.05) across all human tRNAs. The black dotted line in each plot represents the average value 516 across the untranscribed reference regions used in this study. The acceptor stem (gray), D-stem (red), C-stem (green) and V-stem 517 (blue) are highlighted within the tRNA, both in the plots and in the legend to the right, which shows the secondary structure of 518 the tRNA (19). The black vertical lines separate the inner and outer flanking regions. The 20 bases upstream and 10 bases 519 downstream of each tRNA are considered the inner 5' and inner 3' flanking regions, respectively, as these regions tended to show 520 a marked increase in variation relative to the outer flanking regions (see Methods). The dotted lines surrounding the plots depict 521 95% confidence intervals, calculated by bootstrapping by tRNA loci. 522

523 524

525 526 527 528 Fig. 2. Three measures of tRNA expression are significantly correlated to both tRNA conservation and flanking region divergence. A: The negative of the average phyloP score (comparing humans to 100 vertebrate species) is plotted for each position within the tRNA and flank, across all active human tRNA loci. For consistency with Figure 1A, we used the negative of the phyloP score. B: The negative of the average phyloP score is plotted for each position within the tRNA and flank, across all 529 inactive human tRNA loci, following the same format as A. C: Each tRNA's average phyloP score across its mature sequence is 530 plotted against the value of the TBP peak corresponding to that tRNA. D: Each tRNA's average phyloP score across its inner 5' 531 flanking region (20 nucleotides upstream of each tRNA gene) is plotted against the value of the TBP peak corresponding to that 532 tRNA. E: The average phyloP score for each tRNA gene encoding a unique mature tRNA sequence is plotted against the log of 533 the HEK293T cell read count for that tRNA (28). F: The average phyloP score across the inner 5' flanking region for each tRNA 534 gene encoding a unique mature tRNA sequence is plotted against the log of the HEK293T cell read count for that tRNA 535 (28). Several tRNAs are encoded by multiple sequentially identical genes. Because these would be expected to produce more 536 tRNAs, and therefore have inflated read counts, we excluded these tRNAs from plots E and F. These tRNAs are included in 537 Figure S3.

538

539 540

Fig. 3. SNP classes most common in regions affected by TAM are also most common at tRNA loci. The distribution of each class of low-frequency polymorphisms, here defined as a SNP with a minor allele frequency less than or equal to 0.05, is shown by region across all human tRNAs. At the top, the significance levels of Fisher's exact tests comparing the SNP distribution within each region of the tRNA and flank (outer 5' flank is yellow, inner 5' flank is orange, tRNA is purple, inner 3' flank is cyan, outer 3' flank is blue) to that of the untranscribed reference region (black) are represented by stars. One star represents a p value ≤ 0.05 , two stars represents a p value ≤ 0.005 , and three stars represents a p value ≤ 0.0005 .

- 548
- 549

Fig. 4. Estimated Distribution of Fitness Effects (DFE) indicates that tRNAs show high proportion of deleterious
mutations are under strong selection. Estimated DFE of new deleterious mutations for tRNA genes and inner 3' flanking
regions are shown in human, mouse, A. *thaliana* and D. *melanogaster*. The proportions of deleterious mutations are shown for
each bin of purifying selection strength, estimated on a scale of NeS, where Ne is a measure of the recent effective population size

- and S is the strength of selection. The species are arranged by increasing Ne.
- 555
- 556

557 **References**

- 1. Higgs PG, Jameson D, Jow H, Rattray M (2003) The evolution of trna-leu genes in animal mitochondrial genomes. *Journal of Molecular Evolution* 57(4):435–445.
- 560 2. Kirchner S, Ignatova Z (2015) Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. *Nat. Rev. Genet.* 16(2):98–112.
- 3. Molla-Herman A, Valles AM, Ganem-Elbaz C, Antoniewski C, Huynh JR (2015) tRNA processing defects induce replication stress and Chk2dependent disruption of piRNA transcription. *EMBO J.* 34(24):3009–3027.
- 4. Jinks-Robertson S, Bhagwat AS (2014) Transcription-associated mutagenesis. *Annu. Rev. Genet.* 48:341–359.
- 565 5. Gnatt AL, Cramer P, Fu J, Bushnell DA, Kornberg RD (2001) Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. *Science* 292(5523):1876–1882.
- 567
 6. Helmrich A, Ballarino M, Tora L (2011) Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. *Mol. Cell* 44(6):966–977.
- 7. Timakov B, Liu X, Turgut I, Zhang P (2002) Timing and targeting of P-element local transposition in the male germline cells of Drosophila melanogaster. *Genetics* 160(3):1011–1022.
- 571 8. Gomez-Gonzalez B, Aguilera A (2007) Activation-induced cytidine deaminase action is strongly stimulated by mutations of the THO complex.
 572 *Proc. Natl. Acad. Sci. U.S.A.* 104(20):8409–8414.

- 573 9. Green P, Ewing B, Miller W, Thomas PJ, Green ED (2003) Transcription-associated mutational asymmetry in mammalian evolution. *Nat. Genet.* 33(4):514–517.
- 575 10. White RJ (2011) Transcription by RNA polymerase III: more complex than we thought. *Nat. Rev. Genet.* 12(7):459–463.
- 576 11. Zhang J, Ferre-D'Amare AR (2016) The tRNA Elbow in Structure, Recognition and Evolution. *Life (Basel)* 6(1).
- 577 12. Sun C, et al. (2017) Roles of tRNA-derived fragments in human cancers. *Cancer Lett.* 414:16–25.
- 578 13. Ziehler WA, Day JJ, Fierke CA, Engelke DR (2000) Effects of 5' leader and 3' trailer structures on pre-tRNA processing by nuclear RNase P. *Biochemistry* 39(32):9909–9916.
- 580 14. Hopper AK (2013) Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae.
 581 *Genetics* 194(1):43–67.
- 582
 15. Hasler D, et al. (2016) The Lupus Autoantigen La Prevents Mis-channeling of tRNA Fragments into the Human MicroRNA Pathway. *Mol. Cell* 63(1):110–124.
- 16. Lee YS, et al. (2009) A novel class of small rnas: trna-derived rna fragments (trfs). *Cell* 23(23):2639–2649.
- 585 17. Maraia RJ, Lamichhane TN (2011) 3' processing of eukaryotic precursor tRNAs. Wiley Interdiscip Rev RNA 2(3):362–375.
- 586
 18. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A (2010) Detection of nonneutral substitution rates on mammalian phylogenies. *Genome Res.* 20(1):110–121.
- 58819.Chan PP, Lowe TM (2009) GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res. 37(Database
issue):D93–97.
- 590 20. Sprinzl M, Horn C, Brown M, Ioudovitch A, Steinberg S (1998) Compilation of tRNA sequences and sequences of tRNA genes. *Nucleic Acids Res.* 26(1):148–153.
- 592 21.Kundaje A, et al. (2015) Integrative analysis of 111 reference human epigenomes. *Nature* 518(7539):317–330.
- 593 22. Bloom-Ackermann Z, et al. (2014) A comprehensive tRNA deletion library unravels the genetic architecture of the tRNA pool. *PLoS Genet*. 10(1):e1004084.
- 595 23.Doran JL, Bingle WH, Roy KL (1988) Two human genes encoding tRNA(GCCGly). Gene 65(2):329–336.
- 596 24. Dieci G, Sentenac A (1996) Facilitated recycling pathway for RNA polymerase III. Cell 84(2):245–252.
- 597 25. Ciesla M, Boguta M (2008) Regulation of RNA polymerase III transcription by Maf1 protein. Acta Biochim. Pol. 55(2):215–225.
- 598 26. Orioli A, et al. (2011) Widespread occurrence of non-canonical transcription termination by human RNA polymerase III. *Nucleic Acids Res.* 39(13):5499–5512.
- 600 27.Kent WJ, et al. (2002) The human genome browser at UCSC. Genome Res. 12(6):996–1006.
- 601 28. Juo ZS, et al. (1996) How proteins recognize the TATA box. J. Mol. Biol. 261(2):239–254.
- 602 29. Dunham I, et al. (2012) An integrated encyclopedia of DNA elements in the human genome. *Nature* 489(7414):57–74.
- 30. Myers RM, et al. (2011) A user's guide to the encyclopedia of DNA elements (ENCODE). *PLoS Biol.* 9(4):e1001046.
- 604 31. Kharchenko PV, Tolstorukov MY, Park PJ (2008) Design and analysis of ChIP-seq experiments for DNA-binding proteins. *Nat. Biotechnol.* 26(12):1351–1359.
- 506 32. Zheng G, et al. (2015) Efficient and quantitative high-throughput tRNA sequencing. *Nat. Methods* 12(9):835–837.
- 607 33.Thul PJ, et al. (2017) A subcellular map of the human proteome. *Science* 356(6340).
- 4. Karolchik D, et al. (2004) The UCSC Table Browser data retrieval tool. *Nucleic Acids Res.* 32(Database issue):D493–496.

- 509 35. Schmidt S, et al. (2008) Hypermutable non-synonymous sites are under stronger negative selection. *PLoS Genet.* 4(11):e1000281.
- 610 36. Saini N, et al. (2017) APOBEC3B cytidine deaminase targets the non-transcribed strand of tRNA genes in yeast. DNA Repair (Amst.) 53:4– 14.
- 612 37. Tenesa A, et al. (2007) Recent human effective population size estimated from linkage disequilibrium. *Genome research* 17(4):520–526.
- 613 38. Phifer-Rixey M, et al. (2012) Adaptive evolution and effective population size in wild house mice. *Molecular biology and evolution* 29(10):2949–2955.
- 615 39. Cao J, et al. (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. *Nat. Genet.* 43(10):956–963.
- 616
 40. Shapiro JA, et al. (2007) Adaptive genic evolution in the *Drosophila* genomes. *Proceedings of the National Academy of Sciences* 104(7):2271–2276.
- 41. Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. *Nucleic Acids Res.* 44(W1):W54–57.
- 42. Narasimhan VM, et al. (2017) Estimating the human mutation rate from autozygous segments reveals population differences in human mutational processes. *Nat Commun* 8(1):303.
- 622 43. Keightley PD (2012) Rates and fitness consequences of new mutations in humans. *Genetics* 190(2):295–304.
- 44. Haldane JBS (1937) The effect of variation of fitness. *The American Naturalist* 71(735):337–349.
- 624 45. Agrawal AF, Whitlock MC (2012) Mutation load: The fitness of individuals in populations where deleterious alleles are abundant. *Annual Review of Ecology, Evolution, and Systematics* 43(1):115–135.
- 46. Lack JB, et al. (2015) The Drosophila genome nexus: a population genomic resource of 623 Drosophila melanogaster genomes, including 197 from a single ancestral range population. *Genetics* 199(4):1229–1241.
- 47. Lack JB, Lange JD, Tang AD, Corbett-Detig RB, Pool JE (2016) A Thousand Fly Genomes: An Expanded Drosophila Genome Nexus. *Mol. Biol. Evol.* 33(12):3308–3313.
- 48. Fredrik Pettersson BM, Ardell DH, Kirsebom LA (2005) The length of the 5' leader of Escherichia coli tRNA precursors influences bacterial growth. J. Mol. Biol. 351(1):9–15.
- 49. Bogu GK, et al. (2015) Chromatin and RNA Maps Reveal Regulatory Long Noncoding RNAs in Mouse. *Mol. Cell. Biol.* 36(5):809–819.
- 50. Consortium TGP (2015) A global reference for human genetic variation. *Nature* 526(7571):68–74.
- 51. Waterston RH, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. *Nature* 420(6915):520–562.
- 635 52. authors listed N (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. *Nature* 408(6814):796–815.
- 636 637 53. Corbett-Detig RB, Hartl DL, Sackton TB (2015) Natural selection constraints neutral diversity across a wide range of species. *PLoS Biol.* 13(4):e1002112.
- 638 54. Goddard KA, Hopkins PJ, Hall JM, Witte JS (2000) Linkage disequilibrium and allele-frequency distributions for 114 single-nucleotide polymorphisms in five populations. *Am. J. Hum. Genet.* 66(1):216–234.
- 640 55. Afgan E, et al. (2016) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. *Nucleic Acids Res.* 44(W1):W3–W10.
- 642 56. Gibbs RA, et al. (2007) Evolutionary and biomedical insights from the rhesus macaque genome. *Science* 316(5822):222–234.
- 643 57. Kersey PJ, et al. (2016) Ensembl genomes 2016: more genomes, more complexity. *Nucleic Acids Research* 44(D1):D574–D580.
- 58. Rosenbloom KR, et al. (2015) The UCSC genome browser database: 2015 update. *Nucleic Acids Research* 43(D1):D670–D681.
- 59. Clark AG, et al. (2007) Evolution of genes and genomes on the Drosophila phylogeny. *Nature* 450(7167):203–218.

- 646 60. Jukes TH, Cantor CR (1969) Evolution of protein molecules. *Mammalian Protein Metabolism* pp. 21–132.
- 647
 61. Cozen AE, et al. (2015) ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. *Nat. Methods* 12(9):879–884.
- 649 62. Keightley PD, Eyre-Walker A (2007) Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies. *Genetics* 177(4):2251–2261.
- 651
- 652
- 653
- 654
- 655
- 656