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Transfer RNAs (tRNAs) are a central and necessary component for the biological synthesis of new 12 

proteins, and they are among the most highly conserved and most frequently transcribed sequences 13 

across all of life. Despite their clear significance for fundamental cellular processes, however, the forces 14 

governing tRNA evolution are poorly understood. Here, we present evidence that transcription-15 

associated mutagenesis and strong purifying selection are key determinants of patterns of sequence 16 

polymorphism and divergence within and surrounding tRNA genes across several diverse model 17 

organisms. Remarkably, our results indicate that the mutation rate at broadly expressed tRNA loci is 18 

between 8.7 and 13.8 times greater than the genome-wide average. Furthermore, evolutionary analyses 19 

provide strong evidence that tRNA loci, but not their flanking sequences, experience strong purifying 20 

selection, acting in direct response to this elevated mutation rate. Finally, we also find a highly 21 

significant correlation between tRNA expression levels and the mutation rates in their immediate 22 

flanking regions, suggesting the possibility of predicting gene expression levels based on relative 23 

mutation rates and sequence variation data among tRNA gene loci. Our results provide novel insight 24 

into individual tRNA gene evolution, and imply that tRNA loci contribute disproportionately to 25 

mutational load in human populations.  26 

Significance Statement  27 

tRNAs are essential for the production of all proteins in all tissues across life and are therefore 28 

among the most highly transcribed loci in the genome. Our study shows that the frequent 29 

transcription of tRNAs results in a highly elevated mutation rate at tRNA loci that is between 8- 30 

and 14-fold higher for tRNAs than for the rest of the genome. We also show that the strength of 31 

natural selection, which acts to remove sequence-altering mutations, is extremely strong in 32 

tRNAs, but is relaxed in introns and regions flanking tRNAs. Finally, our results indicate that 33 

mutation rates in non-functional tRNA flanking regions are similarly elevated, and levels of 34 

genetic variation correlate strongly with expression. These observations suggest that a predictive 35 

model could facilitate future studies of tRNA function.  36 

Transfer RNAs (tRNAs) play an essential role in protein synthesis across all of life. Their 37 
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primary function is in the translation of the genetic code into the corresponding amino acid 38 

sequences that make up proteins. Thus, tRNA molecules are critical for virtually all cellular 39 

processes, and the genes encoding tRNA molecules have been highly conserved over 40 

evolutionary time (1). The necessity of tRNAs in large quantities also makes them among the 41 

most highly transcribed loci in the genome. Indeed, many tRNA genes may experience greater 42 

levels of transcription than even the most highly transcribed protein-coding genes (2, 3). Such 43 

high levels of transcription suggest that tRNA genes may experience high levels of transcription-44 

associated mutagenesis (TAM) compared to the rest of the genome, making the tRNA gene 45 

family an excellent model system for studying the interplay between natural selection and 46 

elevated mutation rates.  47 

tRNA | transcription | mutagenesis | TAM  48 

Transcription affects the mutation rates of transcribed genes (4) through the unwinding and 49 

separation of complementary DNA strands (5). In particular, during transcription, a nascent RNA 50 

strand forms a hybrid DNA-RNA complex with a template DNA strand. While the 51 

complementary tract of non-template DNA is temporarily isolated, it is chemically reactive and 52 

thus accessible by potential mutagens (5). In addition, if transcription and DNA replication occur 53 

concomitantly at a particular locus, collisions between RNA Polymerase and the DNA 54 

replication fork are possible, which may also result in damage to DNA (6). Several cellular 55 

agents have also been shown to cause damage in highly expressed genes (7). Among the most 56 

notable sources of mutation associated with high transcription is activation-induced cytidine 57 

deaminase (AID) (8). AID accompanies RNA Polymerase II and converts cytosine to uracil, 58 

causing a relative excess of cytosine to thymine substitutions in the non-template strand and 59 

guanine to adenine substitutions on the template strand (9). More highly transcribed genes are 60 

especially vulnerable to mutation by AID, making it a clear diagnostic signature of TAM (4). 61 

Because tRNA loci are so often unwound for transcription, these regions are therefore expected 62 

to experience elevated mutation rates due to TAM, with deamination via AID being one of the 63 

primary mutational mechanisms.  64 

In order to conserve mature tRNA sequence identity in the presence of an elevated mutation rate, 65 

it is expected that tRNA genes should experience strong selective pressures. At the gene level, 66 

tRNA transcription requires sequence-specific binding of transcription factors to the internal A 67 

and B box promoter elements (10). Once transcribed, precursor tRNAs must fold properly to 68 

undergo a complex process of maturation, which can be disrupted at any step by sequence-69 

altering mutations. The unique structure of tRNAs dictates processing by RNases, addition of an 70 

assortment of modifications, accurate recognition by highly specific aminoacyl tRNA 71 

synthetases, incorporation into the translating ribosome, and accurate positioning of the 72 

anticodon relative to mRNA codons (11, 12). As a consequence of the need to maintain high 73 

sequence-specificity, DNA encoding the mature portions of tRNAs are exceptionally well 74 

conserved segments of the genome (11). Therefore, we expect that a large proportion of 75 

mutations arising in tRNA genes will be deleterious, and therefore experience strong purifying 76 

selection.  77 

While most human tRNA genes do not have external promoters (10, 11), tRNA transcripts 78 

generally include leader and trailer sequences, extending roughly 2-5 nucleotides upstream of the 79 

annotated mature tRNA gene, and 5-15 nucleotides downstream of the mature tRNA sequence, 80 
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based on the position of the genomically encoded poly-T transcription termination sequence. 81 

However, these sequences have limited functionality in most cases (13–16). For example, very 82 

early in the tRNA maturation process, all tRNAs undergo removal of their 5’ leader sequences 83 

by RNase P (13, 14) and removal of their 3’ trailers by RNase Z (17). Because these flanking 84 

sequences are frequently unwound and therefore vulnerable to TAM, we expect that tRNA 85 

flanking regions will experience similar mutation rates to tRNA genes. Whereas tRNAs should 86 

experience purifying selection, we expect that flanking regions should be nearly neutral or under 87 

very weak selection.  88 

Despite these clear predictions for an elevated mutation rate of tRNA loci and strong purifying 89 

selective pressure on tRNA genes compared to their flanks, there has been no attempt to quantify 90 

the overall impact of mutation and selection on patterns of sequence variability in tRNAs or their 91 

flanking regions. Here we investigate the patterns of conservation, divergence and within-species 92 

variation of tRNAs in humans and several other model organisms (Mus musculus, Arabidopsis 93 

thaliana, and Drosophila melanogaster).  94 

Results & Discussion  95 

Flanking regions of tRNA genes are highly variable despite strong conservation of mature 96 

tRNA sequences. To estimate evolutionary conservation, we averaged phyloP data, a measure of 97 

the conservation of each human genomic position across 100 vertebrate species (18), by position 98 

within each tRNA locus (see Methods). To study the effects of evolution on a shorter time-scale, 99 

we also aligned the human and Macacca mulatta (Rhesus macaque) genomes and counted the 100 

non-gap nucleotide mismatches in the alignments as divergent positions for each tRNA locus. 101 

Our analyses indicate that mature tRNA sequences are highly conserved at all positions, based 102 

on both average phyloP score (18) (Figure 1A, Supplementary Table 1) and M. mulatta 103 

alignment (Figure 1B). However, the “inner” flanking regions, defined based on inflection points 104 

in the data (see Methods), show significant divergence by the same measures. The inner 5’ 105 

flanking region, defined as the 20 bases upstream of the tRNA, is the most divergent segment of 106 

these regions on average, with roughly four times the rate of divergence between human and M. 107 

mulatta as the untranscribed reference regions (Figure 1B). We found similarly increased rates of 108 

divergence in the inner 3’ flanking region, which was roughly three times as divergent between 109 

human and M. mulatta as the untranscribed reference regions (Figure 1B). Both the outer 5’ 110 

flank (21-40 bases upstream of the tRNA) and outer 3’ flank (11-40 bases downstream of the 111 

tRNA) are also roughly 1.5 times as divergent as are the untranscribed reference regions. 112 

Furthermore, we find that intergenic regions within clusters of active tRNAs (Figures S1A, S1B) 113 

show similar patterns in their phyloP scores, with increased divergence extending hundreds to 114 

thousands of bases up and downstream of each tRNA gene. Conversely, we find that the 115 

intergenic regions in clusters of inactive tRNA genes do not show this pattern nearly as strongly 116 

(Figure S1C).  117 

To focus our evolutionary timescale further and eliminate any bias due to multi-species sequence 118 

alignment errors, we also studied relative levels of tRNA variation within a human population by 119 

observing the occurrence of low-frequency single nucleotide polymorphisms (SNPs) (minor 120 

allele frequency < 0.05%) for each tRNA gene locus. Consistent with our phyloP and M. mulatta 121 

divergence analyses, we find that low-frequency SNPs are more common across the entire tRNA 122 
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locus, including the mature sequence and flanking regions, relative to untranscribed reference 123 

regions (Figure 1C). Although the inner 5’ and inner 3’ flanking regions are the most 124 

polymorphic, the mature tRNA sequences have about twice as many low-frequency SNPs per 125 

site as untranscribed reference regions. Overall, our results are remarkably consistent on multiple 126 

timescales (across vertebrates, between primates, within human populations), indicating that 127 

functional tRNA sequences are highly conserved across species but prone to mutations at the 128 

individual level, and tRNA flanking regions are both more divergent and more polymorphic than 129 

untranscribed, non-genic sequences.  130 

Transcription contributes to variation in tRNA and flanking regions. We observed that 131 

conservation and divergence patterns varied between tRNA loci, and hypothesized that highly 132 

active tRNA genes would show the greatest mutation rates if transcription-associated 133 

mutagenesis is a primary driver of variation among tRNA loci. Because tRNA transcript 134 

abundance measures are often not attributable to individual loci for multiple reasons, including 135 

redundant gene copies, variation in pre-tRNA processing and tRNA degradation rates, and 136 

difficulty sequencing full-length tRNAs, we estimated relative transcriptional activity based on 137 

chromatin state data from the Epigenomic Roadmap Project ((21); Cozen et al., in preparation). 138 

We classified human tRNA genes as “active” if they were in regions of active chromatin and 139 

near transcription start sites in at least 3% of the 127 tissues for which genome-wide epigenomic 140 

data was available (Figure 2A, see Methods). We considered the remaining tRNAs "inactive". 141 

No isotypes are over-represented in any of the epigenomic groups (Cozen, et al., in preparation). 142 

We found that active tRNAs were significantly more conserved than inactive tRNAs (Mann-143 

Whitney U, p < 8.40e-53), and the flanking regions of active tRNAs were significantly more 144 

divergent than the flanking regions of inactive tRNAs (p < 7.98e-61). Indeed, the peak measure 145 

of divergence in the inner 5’ flanking regions is roughly five times greater in active tRNAs than 146 

in inactive tRNAs (Figure S2A). Active tRNAs also had significantly more low-frequency 147 

polymorphisms per site than inactive tRNAs across the entire locus, including the tRNA and 148 

flanking regions (p < 3.72e-36). Inactive tRNAs were still significantly more conserved (p < 149 

2.02e-12) and polymorphic (p < 0.007) than the untranscribed reference regions, and their flanks 150 

were significantly more divergent than the reference regions (p < 1.36e-16).  151 

That the peak by all three measures is consistently about 12 to 13 nucleotides upstream of the 152 

mature tRNA sequence is a curious result. At the most divergent position, roughly 55% of all 153 

tRNA loci showed a difference between human and M. mulatta (Figure 1B) and roughly 15% of 154 

tRNA loci have a low-frequency SNP at this site (Figure 1C). Furthermore, among tRNA loci 155 

believed to be active, virtually all loci showed a change at this nucleotide between human and M. 156 

mulatta, and roughly 25% have a low-frequency SNP at this site (Figure S2A, S2B). This implies 157 

that this region either does not face uniform selective pressures or is not uniformly vulnerable to 158 

TAM. While it has been suggested that distant flanking sequences may affect tRNA expression 159 

levels in yeast (22), few studies to our knowledge have shown that the immediate flanking 160 

regions have an effect on expression in humans or other higher eukaryotes (23). Importantly, the 161 

duration of transcription initiation is long relative to the process of transcription itself (24, 25), 162 

which would presumably lead to prolonged isolation of the non-template DNA strand at the 163 

initiation site and increased vulnerability to TAM. A poised initiation complex might also 164 

increase the likelihood of collisions between Pol3 and the replication fork (6). Thus, frequent 165 

initiation at highly transcribed tRNA loci could contribute to the pattern of variation we observe. 166 
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This may also explain the increased variation in the outer 3’ flank relative to the outer 5’ flank, 167 

as positioning of downstream transcription termination sites is highly variable among tRNA 168 

genes (19, 26), whereas transcription start site positions are more consistent. Indeed, we find that 169 

the TATA boxes for tRNA-SeC-TCA-1-1, RNase P and U6 RNA are all approximately 25 170 

nucleotides upstream of the start of the gene (27). While most tRNAs do not have clear TATA 171 

boxes, the TATA-Binding Protein (TBP) still binds non-specifically to the DNA duplex at this 172 

position (28), which seems to coincide with the sudden decrease in variability. Furthermore, we 173 

find that, while both flanking regions for many other Pol3-transcribed genes are divergent, the 5’ 174 

flanking regions are generally more divergent than the 3’ flanking regions, suggesting that the 175 

underlying mechanism is not tRNA-specific (Supplementary Table 1). However, additional 176 

studies will be necessary to conclusively support the assertion that this strong mutation pattern is 177 

due entirely or in large part to the process of transcription rather than due to a correlated process.  178 

Two additional and orthogonal analyses strengthen the observed correlations between gene 179 

expression and variation at tRNA loci. First, we found a significant correlation between the 180 

TATA-Binding Protein (TBP) intensity peaks (29–31) (see Methods) and the average level of 181 

divergence in the flanking regions (Spearman’s rho = -0.64, p < 2.2e-16) (Figure 2D), as well as 182 

a correlation between the peaks and the average level of conservation of the mature tRNA 183 

sequence (Spearman’s rho = 0.64, p < 2.2e-16) across all human tRNAs (Figure 2C). The TBP 184 

peak data for these transcription factors provide an estimate of the level of transcription for each 185 

tRNA, and are consistent with the idea that more highly transcribed tRNAs show higher levels of 186 

variability in their transcribed regions.  187 

Second, we found significant correlations between the mature tRNA sequence read counts and 188 

tRNA conservation (Spearman’s rho = 0.18, p < 0.001) and flanking region divergence 189 

(Spearman’s rho = -0.61, p < 2.2e-16) when we exclude mature tRNA sequences encoded for by 190 

more than one gene (Figure 2E,F), as well as when we sum the average levels of tRNA 191 

conservation (Spearman’s rho = 0.12, p < 0.027) and flanking region divergence (Spearman’s 192 

rho = -0.68, p < 2.2e-16) for genes encoding identical tRNAs to account for correlations between 193 

read count and gene copy-number (22, 32) (Figure S3). These read counts were collected from a 194 

single human embryonic kidney cell line by Zheng et al (32) using DM-tRNA-seq, a specialized 195 

sequencing method developed for tRNAs which overcomes modifications that impede standard 196 

small RNA sequencing methods.  197 

Patterns of divergence and conservation can be leveraged to develop a predictive model for 198 

tRNA gene expression. Regardless of whether tRNA expression is estimated based on 199 

epigenetic chromatin marks across many cell types, TBP transcription factor occupancy across 200 

multiple cell lines, or by relative transcript abundance within one cell line, we find highly 201 

significant correlations between gene expression and tRNA conservation, flanking region 202 

divergence, and tRNA locus polymorphism. The consistency of these correlations indicates that 203 

it may be possible to predict tRNA expression based solely on DNA sequence conservation 204 

patterns. Genome-wide chromatin-IP and ChIP-seq data are resource-intensive to collect. As 205 

sequencing technology is rapidly becoming more affordable and accessible, the prospect of 206 

making predictions of tRNA gene expression levels through analysis of multiple alignments and 207 

variant sites within populations is enticing. Creating and refining such a model would make 208 

future tRNA gene annotation significantly easier and cost-effective.  209 
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Applicability of this proposed tool is likely best suited for tRNAs, other Pol3 genes, and unique 210 

classes of highly expressed protein coding genes such as histones. For example, we find that 211 

among the shortest histone protein coding genes (cutoff less than 1,000 nucleotides in length), 212 

the average phyloP score per nucleotide is 3.4485, indicating a comparable level of conservation 213 

to tRNA genes. Consistent with tRNA genes, their immediate 5’ flanking regions are also more 214 

divergent than are their immediate 3’ flanking regions, on average. However, most genes 215 

transcribed by RNA Pol2, including protein coding genes, lincRNAs, miRNAs, snoRNAs, and 216 

others, generally do not appear to be good targets based on analysis of representatives of each. 217 

For example, glyceraldehyde-3-phosphate dehydrogenase and ribosomal proteins are very highly 218 

and very broadly transcribed (33). These genes have extremely well conserved exons, but their 219 

introns and flanking regions are not nearly as divergent as tRNA flanking regions, based on 220 

phyloP data (18, 27). It is possible that high intron and flanking region divergence in protein-221 

coding genes is still indicative of a high transcription rate, but the degree of variation in these 222 

genes occupies a much smaller range, and would therefore be more difficult to incorporate into a 223 

model. Additionally, microRNAs such as miR-21 and miR-25 are highly conserved and highly 224 

abundant (27, 33), but they are processed out of longer pri-miRNA transcripts, and do not show 225 

highly divergent flanking regions at fixed upstream positions, based on phyloP data 226 

(Supplementary Table 1) (18, 27). That tRNAs are the best examples for studying signatures of 227 

TAM can be attributed to the combination of several unique characteristics, including 228 

consistently predictable transcript start and end sites, internal promoters, and extremely high 229 

transcription rates. Other highly transcribed genes have conserved functional elements in their 230 

flanking regions that may obscure the effects of TAM at these loci.  231 

tRNA flanking regions are among the least conserved sites in the human genome. Upon 232 

scanning the human genome for the least conserved base pairs, we found 247 sites in the genome 233 

that had scores of -20, the lowest possible score on the phyloP scale (18, 34). Fifteen of these 234 

sites were within 20 base pairs of an active tRNA, based on chromatin-IP data. Of these, 14 sites 235 

were found in the inner 5’ flanking region of the tRNA, between 10 and 15 base pairs upstream 236 

of the first base of the mature tRNA sequence. We found that this set of minimum-phyloP-score 237 

sites was enriched for sites within tRNA flanking regions (Hypergeometric test, p < 1.65e-48), 238 

indicating that the least conserved sites in the genome are disproportionately found in tRNA 239 

flanking regions. This indicates that the flanking regions of some active tRNA genes are among 240 

the least conserved regions, and perhaps have among the highest mutation rates, of any in the 241 

genome.  242 

Patterns of low-frequency SNPs indicate transcription-associated mutagenesis (TAM). Prior 243 

studies of TAM in protein coding genes indicate that transcription is a mutagenic process, in that 244 

the untranscribed strand becomes more vulnerable to damage, either through collisions between 245 

the DNA replication fork and RNA Polymerase, or by other molecules such as deaminases (4, 7, 246 

9). It has been shown that repair pathways activated in response to deaminations lead to excess 247 

conversions between guanine and adenine and between thymine and cytosine nucleotides on the 248 

coding strand (4, 9). To test this prediction, we analyzed the relative frequencies of all low-249 

frequency SNPs for each region of tRNA loci. Across all tRNA loci, we found that the most 250 

common low-frequency SNPs are C→T, G→A, T→C and A→G (transitions), and that these 251 

mutations are significantly more common in both tRNA flanking regions and the tRNA gene, 252 

relative to untranscribed reference regions (Fisher’s exact test, p < 0.05 for all comparisons) 253 
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(Figure 3). Furthermore, the relative excesses of these SNPs are most pronounced in active tRNA 254 

loci (Figure S4A). In contrast, and consistent with observed levels of divergence, these relative 255 

changes are barely discernible when considering only inactive tRNA loci (Figure S4B).  256 

It is important to note that, due to the necessity of preserving tRNA secondary structure, we 257 

would expect transition mutations (e.g., A-U to G-U base pairs, C-G to U-G base pairs) to be 258 

more common than transversions, regardless of the underlying mechanism, as they should impair 259 

function less often. However, the strong mutational skew expected of regions affected by TAM 260 

is even more pronounced in regions flanking tRNAs. While some pre-tRNAs may have extended 261 

secondary structure that could influence the relative SNP frequencies, such pre-tRNA 5’ leader 262 

sequences tend to be a maximum of five nucleotides long in mammals (unpublished 263 

observations).  264 

Prior studies have implicated that CpG sites are significantly more prone to mutations than other 265 

nucleotides (35). Therefore, to determine whether TAM was the primary cause of these relative 266 

excesses, we repeated our analysis after excluding all CpG sites. We found that CpG sites had no 267 

effect on the substitution patterns that we observed in the polymorphism data (Figure S5).  268 

tRNA flanking region variation in other model organisms is consistent with variation 269 

observed in humans. To test whether the patterns of polymorphism and divergence that we 270 

observed in tRNAs and flanking regions also occurred in other species, we repeated our analyses 271 

for tRNAs in Mus musculus, Drosophila melanogaster and Arabidopsis thaliana. Consistent 272 

with our results from human data, we found similar patterns of sequence conservation of tRNA 273 

loci across all species investigated (Figure S6). In particular, mature tRNA sequences were 274 

highly conserved and the flanking regions were highly divergent (Figures S6A, S6D). 275 

Particularly striking are the similarities in the outgroup comparisons in the inner 5’ flank 276 

(Figures S6B, S6E, S6G). The 5’ flanks were more divergent than the 3’ flanks and the most 277 

divergent sites were roughly 10-15 bases upstream of the tRNA in all species. These results are 278 

consistent with our human data (Figure 1) and suggest the possibility that an underlying 279 

molecular mechanism drives these convergent patterns of polymorphism and divergence across 280 

species.  281 

We also tested whether the correlation between gene expression and variation was conserved 282 

across species (Figure S7). To do this, we utilized chromatin-IP data across nine mouse tissues 283 

and classified mouse tRNAs based on their breadth of expression. By this measure, active mouse 284 

tRNAs were more strongly conserved than their inactive counterparts (Mann-Whitney U test, p < 285 

1.81e-19), and their flanks were more divergent (p < 7.04e-22) (Figure S7A, S7D), consistent 286 

with our results from the human data (Figure 2A,B). Active mouse tRNAs also had more low-287 

frequency SNPs in their flanking regions than did inactive mouse tRNAs (p < 2.23e-4) (Figures 288 

S7C, S7F). Consistent with the human data, inactive mouse tRNAs were also more conserved (p 289 

< 1.76e-8) and their flanking regions more divergent (p < 2.37e-4) than the untranscribed 290 

reference regions (Figure S7D). Such consistency indicates that the mechanism underlying these 291 

patterns works similarly in human and mouse.  292 

The patterns of low-frequency SNPs are also consistent across all species. The greatest levels of 293 

polymorphism are found in the inner 5’ flanking regions for all species studied. The frequency 294 
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spectra of the low-frequency SNPs also show excess A→G, G→A, C→T and T→C SNPs on the 295 

coding strand in all species analyzed (Figure S8) Additionally, as was observed in humans, 296 

active mouse tRNAs show a greater excess of these SNPs (Figure S9A) than do inactive mouse 297 

tRNAs (Figure S9B). Consistent with our analysis of human tRNAs, these patterns suggest that 298 

deamination of the non-coding strand due to TAM and the DNA repair mechanisms acting in 299 

response to deamination are especially common at these loci (4, 9, 36).  300 

In humans, we do not have chromatin-IP data for germline tissues and cannot correct for the fact 301 

that only mutations in these tissues are heritable, but we have no evidence that active tRNAs are 302 

suppressed in the germline. However, the nine mouse tissues for which we had chromatin-IP data 303 

included testes and mouse embryonic stem cells. Virtually all of the tRNAs that are inactive in 304 

both stem cells and testes are also inactive in the other tissues. Because only germline mutations 305 

are heritable, we expect that only germline expression causes elevated mutation rates at these 306 

loci. That virtually all active tRNAs are expressed in the germline and that those not expressed in 307 

the germline are inactive is consistent with our findings and suggests that estimates of tRNA 308 

expression derived from somatic tissues are sufficient for studying the genetic consequences of 309 

exceptional transcription rates. 310 

Functional tRNA sequences experience strong purifying selection in all species studied. Our 311 

analysis of the distribution of fitness effects (DFE) of deleterious mutations demonstrates that 312 

tRNAs evolve under strong purifying selection in all of the species we analyzed. In contrast, 313 

regions flanking tRNAs were inferred to be either neutral or subject to weak selection (NeS < 10) 314 

(Figure 4). These results are consistent with our estimates of evolutionary conservation in tRNA 315 

regions, as well as elevated levels of polymorphism observed in the flanks (Figure 1). Our 316 

estimates of the proportions of new mutations falling into each NeS range of the DFE for tRNAs 317 

indicated that there were far fewer nearly neutral mutations (NeS < 1) and substantially more 318 

strongly deleterious mutations (NeS > 100) in D. melanogaster and A. thaliana than in human or 319 

mouse populations (Figure 4). Given that estimates of Ne in human (7, 000; 37) and mouse (25, 320 

000 − 120, 000; 38) are substantially lower than in A. thaliana (300,000; 39) and especially D. 321 

melanogaster (> 1,000,000; 40), this difference in the inferred strength of selection may be due 322 

to differences in long term Ne. That the A. thaliana life cycle involves selfing may also 323 

contribute to these differences. In addition, the human and mouse genomes contain far more 324 

tRNAs (610 and 471, respectively) than D. melanogaster (295) (19), and this increased 325 

redundancy could also affect the inferred fitness effects across these species, as mutations in high 326 

copy-number tRNAs are potentially less deleterious than those affecting unique tRNAs. 327 

However, given that there are 700 tRNA genes in the A. thaliana genome (19, 41), redundancy 328 

alone is unlikely to fully account for the between-species differences in the DFE.  329 

Several tRNAs are known to contain introns (19). We analyzed the introns separately and found 330 

that intronic variation correlates with flanking variation in tRNAs; that is, tRNAs with the most 331 

variable flanks also had the most variable introns (Figure S10). We considered using introns as 332 

selectively neutral regions for estimating DFE, but found that these regions comprised only 619 333 

nucleotides in total, fewer than the total number of human tRNAs (19). As such, this sample size 334 

was too small to reliably use in our DFE analysis.  335 

tRNA loci contribute disproportionately to mutational load. Our discovery of a highly 336 

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/229906doi: bioRxiv preprint first posted online Dec. 6, 2017; 

http://dx.doi.org/10.1101/229906


elevated mutation rate at tRNA loci suggests that tRNA genes may contribute disproportionately 337 

to segregating mutational load in humans. To obtain an estimate of the contribution of tRNA loci 338 

to this load, we used the ratio of the rate of low-frequency SNPs in tRNA flanking regions to that 339 

in untranscribed reference regions (between 8.7 and 13.8) to estimate the tRNA mutation rate 340 

relative to the neutral mutation rate in humans (1.45e-8, (42)). Given that there are 25,852 base 341 

pairs of tRNA sequence for active tRNAs in the human genome, we estimate that the per 342 

generation rate of deleterious mutation arising from tRNAs per diploid genome (UtRNA ) is 0.01. 343 

Using previous estimates of the rate of deleterious amino acid mutation per diploid genome (0.35, 344 

(43)), this implies that tRNAs may contribute 2.3% of deleterious mutations as protein coding 345 

sequences. Given that tRNAs make up only 0.0009% of the human genome (19), this further 346 

implies that mutations in tRNAs contribute to mutational load, the reduction in individual fitness 347 

due to segregating deleterious mutations (44, 45), with an effect disproportionate to their total 348 

lengths. Although such calculations are clearly approximate, they nevertheless highlight that 349 

mutations at tRNA loci are likely an important source of fitness and disease variation in human 350 

populations.  351 

Conclusions  352 

Our findings demonstrate the fundamental importance of tRNA sequences, which are highly 353 

conserved despite the continual influx of mutations by TAM at a higher rate than anywhere else 354 

in the genome. Our results are consistent across a broad range of taxonomically diverse species, 355 

indicating that elevated mutation rates due to TAM and strong purifying selection are widespread 356 

across life, and may be a good predictor of relative tRNA gene transcription levels. The conflict 357 

between extreme TAM and strong purifying selection at tRNA loci is potentially an 358 

unappreciated source of genetic disease, and may have a profound impact on the fitness of 359 

human populations.  360 

Materials and Methods  361 

Defining tRNA loci and flanking regions. We used tRNA coordinates from GtRNAdb (19) for the human, M. 362 

musculus, D. melanogaster, and A. thaliana genomes. For each species, we defined untranscribed reference 363 

regions to use as negative controls. To find these regions in the human genome, we searched 10 kilobases 364 

upstream of each tRNA and selected a 200-nucleotide tract. If this tract was within a highly transcribed region 365 

of the genome (as determined by genome-wide chromatin-IP data (21)), overlapped a conserved element 366 

(defined as a region with a phastCons log odds score greater than 0 (18)), was within 1,000 nucleotides of a 367 

known gene (27), or overlapped an untranscribed reference region assigned to another tRNA, we selected a 368 

new tract 1,000 bases further upstream, and repeated until we found an acceptable region. For the mouse 369 

genome, we checked only known genes, previously assigned untranscribed reference regions, and conserved 370 

elements, as analogous genome-wide chromatin-IP data of the caliber used for humans was not readily 371 

available for other species. For the D. melanogaster and A. thaliana genomes, we began our searches only 372 

1,000 bases upstream of each tRNA, and searched for 200-nucleotide tracts that were at least 100 nucleotides 373 

away from any annotated genetic element (46, 47). This adjustment was made due to the relatively high 374 

functional densities of the genomes of these species.  375 

For each tRNA in all species, we defined the inner 5’ flank as the 20 bases immediately upstream of the 5’ end 376 

of the tRNA on the coding strand, and the outer 5’ flank as the 20 bases directly upstream of the inner 5’ flank. 377 

Likewise, the inner 3’ flank refers to the 10 bases directly downstream of the tRNA on the coding strand, and 378 

the outer 3’ flank refers to the 30 bases downstream of these 10 bases. We made these decisions based on 379 
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inflection points in our data, as the flanking regions up to 20 bases upstream and 10 bases downstream of 380 

tRNA genes seemed to have less variation. Further, while no studies to our knowledge report the length of 381 

tRNA leader sequences in eukaryotes in general, we found that transcription usually ends about 10 bases 382 

downstream of mature tRNA sequences (26, 48).  383 

Classifying tRNAs based on breadth of expression. The Roadmap Epigenomics Consortium compiled 384 

genome-wide epigenomic data across 127 human tissues and cell lines in order to characterize the state of 385 

chromatin across the genome (21). Cozen, et al. (in preparation) analyzed the regions surrounding each tRNA 386 

in each epigenome sample, and performed a clustering analysis to classify each genomic region according to 387 

its most common epigenomic state. They then classified all human tRNAs based on the epigenomic state 388 

annotation in the genome. In the corresponding model, regions in state 1 are near transcription start sites, and 389 

regions in states 4 and 5 are not near transcription start sites but are nonetheless likely to be transcribed. tRNAs 390 

in state 1 in at least 3% of tissues are referred to here as “active tRNAs”, and we consider the remaining 391 

tRNAs to be “inactive”.  392 

We followed a similar approach to classify mouse tRNAs. We used data from a 15-state Hidden Markov 393 

Model based on chromatin-IP data in which states 5 and 7 corresponded to regions proximal to active 394 

promoters (49). tRNAs in genomic regions annotated as state 5 or 7 in at least 3% of tissues were considered to 395 

be "active", and all other tRNAs were considered "inactive". These classifications were not conducted in other 396 

species due to lack of available data.  397 

Aligning tRNAs. We aligned all tRNAs across all species using covariance models (41) and assigned 398 

coordinates to each position in each tRNA and flank based on the Sprinzl numbering system (20). Using these 399 

alignments, we created files assigning a Sprinzl coordinate to each genomic coordinate within tRNA sequences 400 

or flanking regions for each species studied. For example, the first nucleotide at the 5’ end of each tRNA was 401 

assigned Sprinzl coordinate 1. To create Figures 1 and 2A and B, we averaged the phyloP, divergence and low-402 

frequency SNP data for all sites assigned to the same Sprinzl coordinate for their respective tRNA loci. 403 

Because some tRNAs have insertions, deletions and variations in structure (e.g. Leucine tRNAs often have an 404 

extended V-loop (19)), this alignment was necessary for position-wise comparisons between tRNAs. 405 

Additionally, some low-scoring tRNAs did not align well using these methods, and Sprinzl coordinates could 406 

not be properly assigned. We set a filter such that tRNAs with fewer than 50 aligned bases were excluded.  407 

Some tRNAs are known to have extended leading or trailing sequences that are well conserved across species 408 

and potentially contribute to the secondary structure of the tRNAs (16). We determined whether any conserved 409 

elements (regions with a phastCons log odds score greater than 0 (18)) were present by using the Vertebrate 410 

Multiz Alignment & Conservation track in the UCSC Genome Browser (27) for the regions 4-10 bases up or 411 

downstream of each human tRNA. If a conserved element was present within this region, the tRNA was 412 

excluded from our analyses, as these flanking regions might contribute to the secondary structure of mature 413 

tRNAs, and would therefore be subject to higher levels of selection than the vast majority of tRNA flanking 414 

regions.  415 

We also excluded nuclear-encoded mitochondrial tRNAs from our analyses. These tRNAs are transferred from 416 

mitochondrial genomes and therefore are not subject to the same evolutionary pressures as the vast majority of 417 

tRNAs. Additionally, alignments of these tRNAs across species is dubious, as these transfers likely occurred 418 

following speciation, and many of these genes are without true orthologs in other species. Therefore, excluding 419 

these genes would better explain the patterns of mutation and selection affecting most tRNA genes.  420 

Parsing variation data. We analyzed human variation data from the African superpopulation of humans, 421 

consisting of 661 individuals from Kenya, Nigeria, Sierra Leone, The Gambia and Barbados, from Phase 3 of 422 

the 1000 Genomes Project (50). For D. melanogaster, we acquired variation data for the Siavonga, Zambia 423 
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populations from the Drosophila Genome Nexus Database (46, 47). Mus musculus castaneus raw data were 424 

obtained from Waterston, et al (51) and the A. thaliana data were obtained from the Arabidopsis Genome 425 

Initiative (52). All non-human data were aligned and genotypes curated as described in Corbett-Detig et al (53).  426 

Within each tRNA, flank, or untranscribed reference region, we considered positions with minor allele 427 

frequencies greater than 0 but less than 0.05 to be low-frequency single nucleotide polymorphisms (SNPs). 428 

This is based on the idea that SNPs with low minor allele frequencies are generally due to new mutations, on 429 

which selection is less of a factor (54). Therefore, these are expected to more closely reflect the neutral 430 

mutation rate and spectrum. We also determined the frequency of the 12 possible classes of mutations (e.g. 431 

A→G, T→A) within each region of each tRNA where the identity of each base is defined according to the 432 

coding strand sequence. Using the alignments, we found the frequency of divergences and low-frequency 433 

SNPs by position across all tRNAs and flanking regions, and we obtained 95% confidence intervals for each 434 

point estimate by non-parametric bootstrapping across tRNA loci.  435 

For conservation studies across multiple species, we used the phyloP track (18) (across 100 vertebrate species 436 

for the human data, across 60 vertebrate species for mouse), and across 27 insect species for the D. 437 

melanogaster data) from the UCSC Genome Browser (27, 34) and calculated the average score for each 438 

position within the tRNAs and flanking regions. The phyloP track assigns scores to each nucleotide in the 439 

genome based on alignments to other species, where the score represents the -log p-values under a null model 440 

of neutral evolution. Positive scores indicate strong conservation, negative scores indicate accelerated 441 

evolution, and sites with scores of zero are undergoing change at a rate consistent with neutral genetic drift 442 

(18). When plotting this data, we multiplied the average phyloP scores by negative one, such that sites 443 

undergoing accelerated change would have high positive scores, and sites that were strongly conserved would 444 

have negative scores (Figures 1A and D, 2A and B). We also performed non-parametric bootstrapping across 445 

tRNA loci to determine 95% confidence intervals for all positions. No analogous genome-wide phyloP data 446 

was available for A. thaliana (18).  447 

For direct comparisons between the species of interest and an outgroup, we used the Multiz Alignment & 448 

Conservation track from the UCSC Table Browser (34) and the Stitch MAFs tool from Galaxy (55) to create 449 

sequence alignments of the regions of interest in the human and mouse genomes. For the human genome, we 450 

downloaded the hg19 human reference genome from the UCSC Genome Browser and aligned to the Macacca 451 

mulatta reference genome (rheMac2) (56), also from the UCSC Genome Browser (27). We also compared the 452 

mouse (Mus musculus, mm10) and rat (Rattus norvegicus, rn6) genomes (34), and the A. thaliana (TAIR10) 453 

and A. lyrata (v.1.0) genomes (57, 58) using the same methods. For D. melanogaster, we used an alignment of 454 

the dm6 genome to the droYak2 (D. yakuba) genome (59). Non-gap nucleotide mismatches in the alignments 455 

were classified as divergent sites. To account for the possibility that multiple substitutions occurred at a single 456 

site, we applied a Jukes-Cantor correction to the average rate of divergence at each position (60).  457 

Transcription factor binding. The ENCODE Project Consortium used ChIP-Seq data to identify binding 458 

regions for regulatory factors (29–31), including the TATA-binding protein (TBP) and several Pol3 459 

transcription factors in the human genome (10). These data were taken from the UCSC Genome Browser (27) 460 

in the form of peak calls, in which the intensity of a given peak correlates with a greater frequency of 461 

transcription factor binding to that region. For each human tRNA, we found the strongest TBP peak in the 50 462 

base pairs immediately upstream of the tRNA, across the GM12878, H1-hESC, HeLa-S3, HepG2 and K562 463 

cell lines. We chose to use TBP instead of Pol3 peaks because, although TBP is not specific to Pol3 genes, we 464 

found that this data was a stronger and more reliable indicator of transcriptional activity. We also calculated 465 

the average phyloP score across the flanking regions for each tRNA (18), and performed a Spearman’s rank 466 

correlation test to quantify the relationship between these data. We repeated this test for the maximum peaks 467 

for BDP1 and RPC155 as well, but searched for peaks within the mature tRNA sequence instead, as this is 468 

where these transcription factors bind (10). Further, we used only HeLa-S3 and K562 cell data for the BDP1 469 

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/229906doi: bioRxiv preprint first posted online Dec. 6, 2017; 

http://dx.doi.org/10.1101/229906


and RPC155 tests, as this was the only data available for these peaks (31). This ChIP-Seq data was available 470 

only for the human genome, so other species were excluded from this part of our analysis.  471 

Correlating variation to cell-line read counts. Zheng, et al (32) developed a high-throughput demethylation 472 

sequencing pipeline in order to efficiently detect tRNAs within human embryonic kidney (HEK293T) cells (32, 473 

61). We performed Spearman’s rank correlation tests to determine the relationship between their mature tRNA 474 

read counts and tRNA gene and flanking region conservation. Because Zheng, et al (32) sequenced mature 475 

tRNA sequences, which are sometimes encoded by multiple genes, and because we had variation data by gene, 476 

we needed to account for this discrepancy. For example, tRNA-Val-CAC-1-1 and tRNA-Val-CAC-1-2 are two 477 

distinct genes with different degrees of variation, but they encode the same mature tRNA. For tRNAs encoded 478 

at only one locus, we evaluated the correlation between the read counts and the levels of variation at that locus. 479 

However, for tRNAs encoded at multiple loci, we took two approaches. First, we excluded these genes entirely, 480 

to eliminate the need to control for the correlation between gene copy-number and overall expression (Figure 481 

2E, F) (22, 32). In a separate analysis, we summed the average phyloP scores at these loci, and evaluated the 482 

correlation between these totals to the tRNA read counts (Figure S3).  483 

Finding genome-wide minimum phyloP scores. We used the UCSC Table Browser (34) to determine which 484 

sites in the human genome had phyloP scores of -20, the lowest possible phyloP score. These are the least 485 

conserved sites in the human genome across the 100 vertebrate species compared in this track (18). Using 486 

genomic coordinates of tRNAs from GtRNAdb (19), we determined what proportion of these sites overlapped 487 

tRNA genes or flanking regions and performed hypergeometric tests to quantify associations between these 488 

data.  489 

Estimating the distribution of fitness effects. We estimated the distribution of fitness effects (DFE) for each 490 

species by maximum likelihood using the method of Keightley et al (62), implemented in the DFE-α software. 491 

The method is based on site frequency spectra (SFS) obtained from within-species SNP data, and assumes a 492 

simple model of recent demographic change to correct the SFS at functional sites for possible skews caused by 493 

demography. We used a two-epoch model of demographic change and estimated the DFEs for tRNAs, inner 3’ 494 

and inner 5’ flanking regions for each species. Each of these classes of sites was assumed to be subject to 495 

mutation, selection and drift, with gamma-distributed DFEs and an initial shape parameter (β) of 0.5. We also 496 

estimated the DFE for sites that are likely to be evolving neutrally (outer 5’ flanking regions), which were used 497 

as the presumably untranscribed reference regions for generating the expected allele frequency distributions. 498 

For each class of putatively selected sites, we analyzed folded site frequency spectra, and the fitness effects of 499 

new deleterious mutations were estimated on a scale of NeS, where Ne is a measure of the recent effective 500 

population size and S is the strength of selection on a new mutation.  501 
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 508 

Fig. 1. Strong pattern of variation in regions flanking human tRNA genes relative to vertebrates, upon comparison to 509 
Rhesus macaque, and within the human population. A: The negative of the average phyloP score (comparing humans to 100 510 
vertebrate species) is plotted for each position within the tRNA and flank, across all human tRNAs. For consistency in plotting, 511 
we multiplied the average score at each position by -1, so that more highly divergent regions would have higher, positive 512 
scores. B: Divergence at non-gap alignments between the hg19 and rheMac2 genomes at each position within tRNAs and their 513 
flanking regions. C: The frequency at which each position within tRNAs and flanks have a low-frequency SNP (minor allele 514 
frequency less than or equal to 0.05) across all human tRNAs. The black dotted line in each plot represents the average value 515 
across the untranscribed reference regions used in this study. The acceptor stem (gray), D-stem (red), C-stem (green) and V-stem 516 
(blue) are highlighted within the tRNA, both in the plots and in the legend to the right, which shows the secondary structure of 517 
the tRNA (19). The black vertical lines separate the inner and outer flanking regions. The 20 bases upstream and 10 bases 518 
downstream of each tRNA are considered the inner 5' and inner 3' flanking regions, respectively, as these regions tended to show 519 
a marked increase in variation relative to the outer flanking regions (see Methods). The dotted lines surrounding the plots depict 520 
95% confidence intervals, calculated by bootstrapping by tRNA loci.  521 
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 523 

 524 

Fig. 2. Three measures of tRNA expression are significantly correlated to both tRNA conservation and flanking region 525 
divergence. A: The negative of the average phyloP score (comparing humans to 100 vertebrate species) is plotted for each 526 
position within the tRNA and flank, across all active human tRNA loci. For consistency with Figure 1A, we used the negative of 527 
the phyloP score. B: The negative of the average phyloP score is plotted for each position within the tRNA and flank, across all 528 
inactive human tRNA loci, following the same format as A. C: Each tRNA’s average phyloP score across its mature sequence is 529 
plotted against the value of the TBP peak corresponding to that tRNA. D: Each tRNA’s average phyloP score across its inner 5’ 530 
flanking region (20 nucleotides upstream of each tRNA gene) is plotted against the value of the TBP peak corresponding to that 531 
tRNA. E: The average phyloP score for each tRNA gene encoding a unique mature tRNA sequence is plotted against the log of 532 
the HEK293T cell read count for that tRNA (28). F: The average phyloP score across the inner 5’ flanking region for each tRNA 533 
gene encoding a unique mature tRNA sequence is plotted against the log of the HEK293T cell read count for that tRNA 534 
(28). Several tRNAs are encoded by multiple sequentially identical genes. Because these would be expected to produce more 535 
tRNAs, and therefore have inflated read counts, we excluded these tRNAs from plots E and F. These tRNAs are included in 536 
Figure S3. 537 
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 539 

 540 

Fig. 3. SNP classes most common in regions affected by TAM are also most common at tRNA loci. The distribution of each 541 
class of low-frequency polymorphisms, here defined as a SNP with a minor allele frequency less than or equal to 0.05, is shown 542 
by region across all human tRNAs. At the top, the significance levels of Fisher’s exact tests comparing the SNP distribution 543 
within each region of the tRNA and flank (outer 5’ flank is yellow, inner 5’ flank is orange, tRNA is purple, inner 3’ flank is cyan, 544 
outer 3’ flank is blue) to that of the untranscribed reference region (black) are represented by stars. One star represents a p value 545 
≤ 0.05, two stars represents a p value ≤ 0.005, and three stars represents a p value ≤ 0.0005.   546 
 547 
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 548 

 549 

Fig. 4. Estimated Distribution of Fitness Effects (DFE) indicates that tRNAs show high proportion of deleterious 550 
mutations are under strong selection. Estimated DFE of new deleterious mutations for tRNA genes and inner 3’ flanking 551 
regions are shown in human, mouse, A. thaliana and D. melanogaster. The proportions of deleterious mutations are shown for 552 
each bin of purifying selection strength, estimated on a scale of NeS, where Ne is a measure of the recent effective population size 553 
and S is the strength of selection. The species are arranged by increasing Ne.   554 

 555 
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