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ABSTRACT

In finite populations, genetic drift generates interference between selected loci, causing advantageous
alleles to be foundmore often on different chromosomes than on the same chromosome, which reduces the
rate of adaptation. This ‘‘Hill–Robertson effect’’ generates indirect selection to increase recombination
rates. We present a new method to quantify the strength of this selection. Our model represents a new
beneficial allele (A) entering a population as a single copy, while another beneficial allele (B) is sweeping at
another locus. A third locus affects the recombination rate between selected loci. Using a branching process
model, we calculate the probability distribution of the number of copies of A on the different genetic
backgrounds, after it is established but while it is still rare. Then, we use a deterministic model to express the
change in frequency of the recombination modifier, due to hitchhiking, as A goes to fixation. We show that
thismethod cangive good estimates of selection for recombination.Moreover, it shows that recombination is
selected through two different effects: it increases the fixation probability of new alleles, and it accelerates
selective sweeps. The relative importance of these two effects depends on the relative times of occurrence of
the beneficial alleles.

ONE of the first general hypotheses proposed to
explain the maintenance of sex and recombina-

tion states that sex increases the rate of adaptation, by
allowing beneficial mutations initially present on dif-
ferent chromosomes to be combined onto the same
chromosome (Morgan 1913; Fisher 1930; Muller

1932). The first analytical treatment of the question was
done in the 1960s and led to some debate: using a
simple calculation, Crow and Kimura (1965) showed
that the rate of incorporation of beneficial mutations is
indeed higher in sexual than in asexual populations,
whereas a deterministic model made by Maynard Smith
(1968) showed no difference between sexual and asexual
populations. Felsenstein (1974) pointed out that this
disagreement stemmed from the different assumptions
made by these models: Crow and Kimura represented a
finite population in which advantageous alleles first arise
as single copies, whileMaynard Smith considered the case
of an infinite population, in which deleterious alleles at
two loci are maintained at mutation–selection equilib-
rium and become advantageous after a change in the en-
vironment. Because the model assumes no epistasis, the
two loci always stay in linkage equilibrium, and recombi-
nation has no effect on the change in genotype fre-
quencies. By contrast, in a finite population such as the
onemodeled by Crow and Kimura, selection and random
drift combine to generate some linkage disequilibrium
even in the absence of epistasis. For example, consider

the case where a new beneficial allele enters the pop-
ulation while another beneficial allele at a second locus is
already present. The new mutation can occur either on
the good background at the second locus, in which case
the linkage disequilibrium (LD) is positive, or on the bad
background, in which case the linkage disequilibrium is
negative. A simple calculation shows that, on average, this
initial linkage disequilibrium is zero. However, when both
advantageous alleles arise in coupling (LD. 0) they tend
to increase in frequency rapidly, while when they are in
repulsion (LD , 0) they compete against each other,
which slows their rate of increase. Because situations in
which LD , 0 tend to last longer, the initial variance in
linkage disequilibrium generates, on average, negative
linkage disequilibrium. The same ‘‘Hill–Robertson effect’’
occurs when the variance in LD is generated by drift due
to finite population size in a single population (Hill and
Robertson 1966; Felsenstein 1974) or in an arbitrary
number of interconnected populations (Martin et al.
2006). The negative linkage disequilibrium generated by
the Hill–Robertson effect reduces the rate of incorpora-
tion of advantageous alleles and limits the speed of
adaptation. Barton (1995b) quantified this effect by
calculating the reduction in fixation probability of an
advantageous allele when selection occurs simultaneously
at another linked locus.
Increasing the recombination rate between loci de-

creases the strength of the Hill–Robertson effect and
thus increases the rate of fixation of beneficial alleles.
Simulation and analytical models have shown that this
generates indirect selection on modifier genes that in-
crease recombination rates (Felsenstein and Yokohama
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1976; Otto and Barton 1997, 2001; Iles et al. 2003;
Barton and Otto 2005; Martin et al. 2006). Recom-
bination modifiers are not mere theoretical constructs,
but have been identified in a number of experimental
studies. In particular, selection experiments have shown
that it is possible to artificially increase recombina-
tion within genomes, either by direct selection on re-
combination rates or as a by-product of selection for
another trait (e.g., Kidwell 1972; Charlesworth and
Charlesworth 1985a,b; Korol and Iliadi 1994;
Korol et al. 1994; and references in Otto and Barton
2001). In some cases, genetic factors affecting recombi-
nation rates have been mapped, revealing a variety of
effects: some factors have a local effect, increasing
recombination only over a small region of the genome
(which can be located on the same or on a different
chromosome), while others affect the overall recombi-
nation rate of whole chromosomes. Recombination
rates are also known to evolve in nature: for example,
True et al. (1996) found that the genetic map of the
island endemic Drosophila mauritiana is 1.8 times longer
than the map of its sister species D. melanogaster, with a
higher frequency of crossovers along each chromo-
some. Rapid adaptation to a new environment may
have selected for a higher recombination rate, but a
broader survey is needed to establish whether there is a
correlation between adaptation and recombination
rate.

The first analytical study on the evolution of re-
combination due to the Hill–Robertson effect was by
Otto and Barton (1997). Their model represents two
loci under directional selection: at the first locus, a new
beneficial allele arises as a single copy, while at the
second locus another beneficial allele is already estab-
lished and sweeps through the population; finally, a
third locus affects the recombination rate between the
selected loci. Because recombination decreases inter-
ference between the selected loci, the new beneficial
allele has a higher fixation probability when it occurs on
the high-recombination background. The frequency of
the modifier allele coding for higher recombination is
then expected to increase by hitchhiking, on average, as
the new beneficial allele goes to fixation. Otto and
Barton’s analysis proceeds in two steps: first, they derive
the probability of fixation of the new advantageous
allele, arising on each of the four possible backgrounds
at the two other loci; then, they use a deterministic
calculation to obtain the change in frequency of the
recombination modifier, given that the new beneficial
allele reaches fixation. This approach, however, has
several limitations. In particular, although interference
between selected loci due to the Hill–Robertson effect
is taken into account in the calculation of fixation
probabilities, it does not enter the deterministic calcu-
lation of the hitch given by the new beneficial allele to
the modifier, given that it fixes. This last calculation
indeed assumes linkage equilibrium between the se-

lected loci. There are, however, three possible sources
of LD, which, as discussed by Otto and Barton, are
probably the cause of the quantitative differences they
observe between analytical and simulation results.
The first is the initial disequilibrium generated by the
mutation event producing the new beneficial allele;
although this disequilibrium is zero on average, it is
sometimes positive (when the new allele arises in
coupling with the other beneficial allele) and some-
times negative (when it arises in repulsion), and the
effect of this disequilibrium on the change in frequency
of the modifier does not cancel out. This initial dis-
equilibrium is taken into account in some of the
numerical calculations of Otto and Barton (dotted lines
in Figures 4–9 of Otto and Barton 1997), but this still
leaves important departures from simulation results in
several cases. The second source of disequilibrium is
random drift, which can have strong effects while the
new allele is still rare. The effect of this disequilibrium is
analyzed in a more recent model (Barton and Otto

2005), by considering small fluctuations around the
deterministic increase of the new allele. This analysis,
however, does not apply while the allele is present in just
a few copies (in which case drift can generate important
departures from the deterministic trajectory), which is
just when the effect on the modifier is strongest. Finally,
a third source of disequilibrium comes from the fact
that when the new beneficial allele happens to reach
fixation, it is more likely to be in coupling with the
beneficial allele at the other selected locus. Therefore,
the disequilibrium on the paths that lead to fixation
of the new allele tends to be more positive than the
disequilibrium observed on the paths leading to loss of
the allele.

In this article, we show that these restrictions can be
overcome by finding the distribution of numbers of the
new mutation across the four backgrounds, after it has
become established but while it is still rare. Since this
initial stage involves the independent replication of rare
mutants, it can be described by a branching process; the
solution can then be taken forward deterministically, to
find the net expected increase of the modifier allele.
This assumes that population size is sufficiently large
that the effects of drift can be neglected once alleles are
established within the population. As we will see, this
method involves solving numerically a set of differential
equations; therefore, one has to resort to a computer to
evaluate the strength of selection on the modifier, as
with simulation methods. However, our method has two
main advantages over simulations: first, it can stand in
place of the millions of replicate simulations needed to
get accurate estimates of the change in frequency of the
modifier; second (and more importantly), it provides
us with an understanding of the scaling relationships
among the parameters. We will see that our method
provides accurate predictions over a wide range of pa-
rameter values. It also captures two different effects of
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recombination modifiers: they affect the fixation prob-
ability of new advantageous alleles and also the speed of
selective sweeps. These two effects both generate in-
direct selection at the modifier locus; we will see that
their relative importance depends on the relative times
of occurrence of beneficial alleles. Finally, we use our
method to estimate the overall strength of selection
on a modifier affecting recombination over the whole
genome, when recurrent beneficial mutations occur
throughout the genome. This shows that the rate of
adaptive substitutions has to be relatively high for in-
teractions between selected alleles to generate a sub-
stantial force on recombination modifiers. Although
the estimated rates of adaptive amino acid substitutions
for the Drosophila and the human lineages do not seem
compatible with such high values, it is still possible that
most adaptive changes occurred in relatively short
periods, during which indirect selection on recombina-
tion may have been important. Despite this require-
ment for a high substitution rate, stochastic forces
may still appear as a more likely candidate to explain
the widespread occurrence of recombination than de-
terministic forces generated by epistasis among loci.
Indeed, epistasis can select for increased recombina-
tion rates only when it is negative and not too variable
among loci (Barton 1995a; Otto and Feldman 1997),
whereas available data do not show any clear tendency
for epistasis to follow this pattern. Finally, we will see that
our model does not give accurate results for all possible
parameter values and initial conditions: it best describes
the case where a new, relatively weakly selected allele
occurs when a more strongly selected allele is already
sweeping through the population. We have also worked
on another method that better describes the case where
a relatively strongly selected allele occurs while a more
weakly selected one is already established and the case
where two beneficial alleles occur at about the same
time (N. H. Barton and D. Roze, unpublished results).
In these cases, recombination has little influence on
fixation probabilities, but still has an effect in acceler-
ating selective sweeps. Finally, the method of Barton
and Otto (2005) deals with the effects of small fluctua-
tions due to drift, once alleles are abundant. Together,
thesemethods thus give us a complete understanding of
the different regimes under which recombination can
be favored.

GENERAL METHOD

The general setting is the same as inOtto and Barton
(1997).Weconsider ahaploidpopulationof sizeN;mating
is random, and generations are discrete and nonoverlap-
ping. We assume that selection occurs at two loci, favoring
alleleAover allele a at the first locus and alleleBover allele
b at the second locus. We call sA and sB the selective ad-
vantages of A and B and assume no epistasis, so that the
fitnesses of the different genotypes are given by

Wab ¼ 1 WAb ¼ 11 sA

WaB ¼ 11 sB WAB ¼ ð11 sAÞð11 sBÞ : ð1Þ

We assume that N?1=sA, and N?1=sB , so that the fate
of alleles A and B is decided while they are still rare. We
then assume that a third locus, with two alleles M
and m, affects the recombination rate between the two
selected loci (recombination modifier). The recombi-
nation rate between loci (A, a) and (B, b) equals rAB(1�
dr), rAB, and rAB(11 dr) inmm,Mm, andMM individuals,
respectively; dr thus measures the modifier effect, and
for simplicity we suppose that this effect is additive. The
recombination rate between loci (M, m) and (A, a) is
denoted rMA. We present the model in the case where
loci are in order (M, m)–(A, a)–(B, b); the method ap-
plies more generally, however, and we also give results
for different orderings of the three loci.
We call t the time at which allele A enters the pop-

ulation (as a single copy). We suppose that, at this time,
allele B is already established (although it can still be
rare).We see later that this assumption is not crucial and
that in many cases we can still obtain accurate results
even if B is not established at t. We also assume that allele
M is frequent enough that stochastic fluctuations can be
neglected at the (M,m) locus and suppose that, at time t,
the (M, m) and (B, b) loci are in linkage equilibrium
(thus, we neglect any associations betweenM and B that
may have been generated by previous sweeps at yet
other loci).
We decompose the spread of allele A into two phases:

during the first phase, between times t and t*, A either is
lost from the population by drift or becomes established
(i.e., reaches a high enough number of copies so that it
will almost certainly fix). In the following we assume
that A is still rare in the population at t*, so that between
t and t*, the replication of each copy of A does not
depend on the presence of other A alleles in the pop-
ulation, in which case the change in number of A’s can
be described by a branching process. After t* we assume
that A, if not lost, increases in frequency on a deter-
ministic trajectory. As we said before, allele B at the
other selected locus is supposed to be already estab-
lished at t, and we assume that the frequency of B stays
on a deterministic trajectory all the time. We suppose
that t* is sufficiently far that B will have reached fixation
at t*. We assume that the frequency of the modifier
alleleM is not too small, so thatM changes in frequency
solely due to its effect on the spread of allele A: whenM
helps A to recombine onto the good B background, it
then tends to be carried along during the spread of A
after time t*, by hitchhiking. Before t*, the effect ofA on
the frequency of the modifier is very small (because A
remains at low frequency). Thus, we assume that the
frequency of M remains constant between t and t*.
In summary, the only stochastic process in our model

concerns the change in number of copies of A between
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times t and t*. During this time, the frequency ofM does
not change, while B increases in frequency on a de-
terministic trajectory, until fixation. After t*, B is fixed,
A increases on a deterministic trajectory if it is still
present, andM changes in frequency due to the linkage
disequilibrium established with A during the first phase.
Note that these different assumptions all stem from the
assumption that population size is large and thatM and
B are common enough at t that the effects of drift at
these loci can be neglected.

In appendix a, we show that the expected total
change in frequency of the recombination modifier
after time t* is given by

E ½DpM � � N �rGð1� rÞGð11 rÞE ½Sr�1D�; ð2Þ

where r¼ rMA/sA, S is the total number of A alleles at t*,
and D is the linkage disequilibrium between loci (M, m)
and (A, a) at t*, multiplied by population size N. To
express the expected change in frequency of the mod-
ifier, we thus need to calculate the expectation of S r�1D
over the probability distribution of the number of
copies of A on the different possible backgrounds at
t*. We now present a method to derive this distribution.

In the following, we use index j to denote a possible
genetic background on which allele Amay be found (in
our three-locus model, the possible backgrounds are
thus mb, mB,Mb, andMB). As we said before, we assume
that A is present as a single copy at time t; however, let us
assume for themoment that the initial number of copies
ofA is arbitrary and call nj;0 the number of copies ofA on
background j at t. We denote by n0 the vector of all nj;0.
We then call nj the number of copies of A on back-
ground j at time t* and n the vector of all nj. Finally,f(n)
is the probability that the number of copies of A on the
different backgrounds at t* is equal to n. Although it is
difficult to derive the distribution f directly, we show
below that it is possible to obtain its Fourier transformc,
defined using the vector of dummy variables v,

cðvÞ ¼
ð
n
fðnÞe�i

P
j
njvj dn; ð3Þ

where i is the imaginary number
ffiffiffiffiffiffiffi
�1

p
, and where the

integral is a multiple integral over all possible values of
n. Note that although n takes only discrete values, we
treat it here as a continuous variable (since we integrate
over n, rather than summing); this will later allow us to
use a diffusion approximation. The Fourier transform c

is thus a function of variablesvj, andv is the vector of all
vj’s (which has the same dimension as n). Considering c
rather than f proves useful, because we canmake use of
the convolution theorem, which states that the Fourier
transform of the distribution of a sum of independent
random variables is equal to the product of the Fourier
transforms of the individual distributions of these var-
iables. Because we assume that copies of allele A rep-
licate independently between t and t*, the distributions

of the number of copies originating from each initial A
allele are independent. Since n is the sum of these
numbers, c must take the form

cðvÞ ¼
Y
j

½cjðvÞ�nj ;0 ; ð4Þ

where cjðvÞ is the Fourier transform of the distribution
of the number of copies of A at t* originating from a
single copy, present on background j at t (the functions
cj thus do not depend on the nj;0’s). Equation 4 can also
be written

cðvÞ ¼ e
�
P

j
Pj nj ;0 ; ð5Þ

where each Pj equals �ln½cjðvÞ�. Note that instead of
the Fourier transform, we could also use the Laplace
transform or the generating function of f, which also
satisfies the convolution theorem. However, in the fol-
lowing we need to invert the transform, and for this the
Fourier transform proves more convenient.

When t ¼ t*, the distribution f is reduced to a single
point at n ¼ n0. The Fourier transform of such a dis-
tribution is given by cðvÞ ¼ exp(�i

P
j nj ;0vj), giving at

t ¼ t*

Pj ¼ ivj ð6Þ

for all j. We then use a diffusion approximation to
express the Pj’s as a function of t, for a given value of t*.
A backward diffusion on c is given by

@c

@t
¼ �

X
j

X
k

sjknk;0

 !
@c

@nj ;0
1

nj ;0

2

@2c

@n2
j ;0

" #
: ð7Þ

The term
P

k sjknk;0 in Equation 7 represents the ex-
pected increase in nj at t, assuming that all nj;0 are small
relative to N (the term sjk represents the expected
change in nj accounting for possible movement from
background k and can be expressed in terms of re-
combination rates and selection coefficients). Assuming
a Poisson number of offspring per parent, the variance
in the change of nj at t is approximately nj;0 (for
nj ;0>N ), while the covariance between the changes in
nj and nk is negligible for all j 6¼ k. Substituting Equation
5 into Equation 7 then yields

@Pj

@t
¼ �

X
k

skjPk

 !
1

P 2
j

2
ð8Þ

(e.g., Harris 1963, chap. V.15). Equation 8, together
with the boundary condition (6), can be used to express
the Pj’s, and thusc, for arbitrary t. In general, Equation 8
will have to be solved numerically. One can then recover
the distributionfby taking an inverse Fourier transform
or derive directly moments of f from its Fourier trans-
form c; this is illustrated in the next two-locus example.
Because we use the diffusion approximation, we have to
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assume that selection and recombination are weak (so
that the nj’s change slowly over time). However, we will
see that this is not a major restriction of our model.
Finally, we note that Equation 8 is identical to the equa-
tion giving fixation probabilities of mutations occurring
on different backgrounds in Barton (1995b) andOtto

and Barton (1997), except that boundary conditions
differ. As we will see later, fixation probabilities can be
recovered from the limit of the Fourier transform c as v
tends to infinity (this is because the distribution f has a
spike at zero, corresponding to the loss of the A allele,
which is described by the limit of c for large v). In the
next section, we illustrate our method by considering
the case of two selected loci (without a recombination
modifier).

TWO-LOCUS CASE

We consider here the effect of selection at the (B, b)
locus on the distribution of the number of copies of A at
t*, in the absence of a recombination modifier. Because
we assume that B is fixed at t*, allele A can be found only
on background B at that time. The distribution f is thus
a function of a single variable (the number ofA alleles at
t*, which will be on background B), which we simply
denote n. The Fourier transform of f(n) is given by

cðvÞ ¼
ð‘
0
fðnÞe�invdn: ð9Þ

Wealso know from the convolution theorem thatcmust
take the form

cðvÞ ¼ e�PBnB;0�Pbnb;0 ð10Þ

(Equation 5), where PB and Pb are functions of v, and
where nB;0 and nb;0 are the number of copies of A on the
B and b backgrounds at time t, respectively. At t¼ t*, the
distribution f is reduced to a single point at n ¼ nB;0,
and its Fourier transform is thus given by cðvÞ ¼ e�ivnB;0.
This, with Equation 10, gives the boundary conditions

PB ¼ iv; Pb ¼ 0 ð11Þ

at t ¼ t* (Equation 11 is a special case of Equation 6,
constrained so that allele A is present only on the B
background at t*). From now on, we assume that A
enters the population as a single copy at t. This copy will
be on background B with probability pB (which is the
frequency of B at t) or on background b with probability
pb (which is the frequency of b). Equation 10 can thus be
written

cðvÞ ¼ pBe
�PBðvÞ 1 pbe

�PbðvÞ: ð12Þ

Indeed, e�PBðvÞ is the Fourier transform c(v) condi-
tional on the initial copy ofA being on backgroundB (in
which case nB;0 ¼ 1 and nb;0 ¼ 0 in Equation 10), while

e�PbðvÞ is c(v) conditional on the initial copy of A being
on background b. Assuming that selection is relatively
weak at the (B, b) locus, pB and pb are given by the logistic
equations

pB ¼ esB t

11 esBt
; pb ¼

1

11 esB t
; ð13Þ

where t ¼ 0 is at the midpoint of the sweep of allele B.
The s-coefficients that appear in Equation 8 are easily

obtained. The expected number of offspring copies
produced by an A allele present on a b background at
time t is (11 sA)/(11 sB pB)� 11 sA� sB pB. Of these, a
proportion rAB pB moves to the B background, while a
proportion 1 � rAB pB stays on the b background. The
expected number of copies produced by an A allele
present on a B background at t is (11 sA)(11 sB)/(11

sBpB)� 11 sA 1 sBpb; of these, a proportion rABpbmoves
to the b background, while a proportion 1 � rABpb stays
on the B background. This gives (using Equation 8)

@Pb

@t
¼ �ðs�ÞPb 1 rABpBðPb � PBÞ1

P 2
b

2

@PB

@t
¼ �ðs1ÞPB 1 rABpbðPB � PbÞ1

P 2
B

2
ð14Þ

with

s� ¼ sA � sBpB ; s1 ¼ sA 1 sBpb : ð15Þ

These are the same as Equations 5a and 5b in Barton
(1995b). Equation 14, with boundary condition (11),
can be solved numerically using the NDSolve routine of
Mathematica (notebook available on request), giving c

(Equation 12).
To recover the distribution f(n) from the Fourier

transform c(v), it is useful to decompose f into two
parts: a distribution that is different from zero only
when n ¼ 0 (loss of allele A) and that is equal to f(0) at
this point [this distribution is thus given by f(0)d(n),
where d is Dirac’s ‘‘delta function’’) and the rest of the
distribution f for n . 0 that we approximate by a
continuous function on the range n $ 1. The Fourier
transform of the first part (which we call c0) is a
constant: c0(v) ¼ f(0) for all v [because the Fourier
transform of d(n) is 1], while the Fourier transform of
the second part (which we call c.0) tends to zero as v
tends to infinity (because the Fourier transform of a
piecewise continuous function tends to zero as v tends
to infinity, e.g., Lighthill 1958). Becausec is the sumof
c0 and c.0, its limit as v tends to infinity is thus f(0):
therefore, we can obtain the probability that allele A is
extinct at time t* from the value ofc for largev. The rest
of the distribution f (for n . 0) can be recovered by
inverting the Fourier transform c.0. In appendix b, we
show that this can be done for each value of n by cal-
culating a sum of nmax terms, where nmax is an arbitrary
value such that the probability that allele A is present in
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a number of copies greater than nmax at time t* can
safely be ignored (remember that we assume that A is
still rare at t*). One obtains

fðnÞ ¼ 1

nmax

Xnmax=2�1

k¼�nmax=2

½cðvkÞ � cð‘Þ�eivkn; withvk ¼ 2p
k

nmax

ð16Þ

and where c(‘) is the limit of c as v tends to infinity
(which can be determined by evaluating c for a very
large value of v or from Equation 6 in Barton 1995b,
giving fixation probabilities). The number of terms to
be evaluated can then be reduced by using some sym-
metries of c (see appendix b). In Figure 1 we compare
this solution with simulation results, for sA ¼ 0.01, sB ¼
0.1, rAB ¼ 0.02, t ¼ �100, t* ¼ 100, and N ¼ 106 (and
where pB is given by Equation 13). Note that the
population size N does not appear in the derivation,
but appears in the simulation program, which repre-
sents aWright–Fishermodel withmultinomial sampling
in each generation (our simulation program is written
in C11 and is available on request). Figure 1 shows that
Equation 16 accurately describes the probability distri-
bution f(n).

Moments of the distribution f can be obtained
directly from c, without having to invert the Fourier
transform (in essence, the method is similar to Ohta
and Kimura’s method for deriving moments using the
diffusion approximation, e.g., Ohta and Kimura 1969,
1971). For example, we show in appendix b that the
variance of f is obtained by solving numerically a system
of three differential equations, derived from Equation
14. Figure 2 shows the logarithm of the variance at time
t*¼ 100, as a function of the time t at which allele A first
entered the population for sA¼ 0.01, sB¼ 0.1, rAB¼ 0.02
(solid line), and rAB ¼ 0.04 (dashed line). The dotted
line shows the logarithm of the variance in the absence

of interference (in the one-locus model), given by
esADt(esADt � 1)=sA, with Dt ¼ t* � t (e.g., Feller 1951).
Figure 2 illustrates the fact that increasing recombi-
nation between the selected loci decreases stochastic
effects at the (A, a) locus (the variance is lower with
rAB ¼ 0.04 than with rAB ¼ 0.02); this generates an
indirect selective pressure to increase recombination
rates, which we quantify in the next section.

CHANGE IN FREQUENCY AT THE
MODIFIER LOCUS

We now introduce the recombination modifier locus
(M, m). As we said before, because N is large we can
assume that the frequency of allele M does not change
between times t and t*; we denote this frequency pM,
while pm is the frequency of allele m. Furthermore, since
we suppose that allele B is fixed at t*, allele A can be
found only on backgrounds MB and mB at t*. Calling
nMB and nmB the numbers of copies of A on these two
backgrounds at t*, the Fourier transform of the prob-
ability distribution f(nMB ;nmB) is given by

cðvMB ;vmBÞ¼
ðð

fðnMB ;nmBÞe�ivMBnMB�ivmBnmB dnMB dnmB :

ð17Þ

From the convolution theorem, we also know that c

must take the form

cðvMB ;vmBÞ ¼ e
�
P

j
Pj nj ;0 ð18Þ

(Equation 5), where the sum is over all possible initial
backgrounds j ¼ mb, mB, Mb, and MB, and where the
Pj’s are functions of vMB and vmB. At t ¼ t*, we have
boundary conditions

PMB ¼ ivMB ; PmB ¼ ivmB ; PMb ¼ 0; Pmb ¼ 0:

ð19Þ

Figure 1.—Two-locus model: probability distribution of the
number of copies of allele A at time t* (n), in the absence of
recombination modifier, from the analytical model (using
Equation B6 with nmax ¼ 5000, solid curve) and from simula-
tions (shaded points). Parameter values are sA ¼ 0.01, sB ¼
0.1, rAB ¼ 0.02, t ¼ �100, t* ¼ 100, and N ¼ 106. In the sim-
ulations, the distribution is obtained from 108 replications.

Figure 2.—Logarithm of the variance of the number of
copies of allele A at time t* ¼ 100, as a function of the time
t when allele A first appeared. Curves correspond to the
model predictions, circles and squares to simulation results
(variance observed among 107 replications). Solid curve,
filled circles: two-locus model, sA ¼ 0.01, sB ¼ 0.1, rAB ¼
0.02, N ¼ 106. Dashed curve, squares: two-locus model, sA ¼
0.01, sB ¼ 0.1, rAB ¼ 0.04, N ¼ 106. Dotted curve: single se-
lected locus (no interference), sA ¼ 0.01, N ¼ 106.
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From Equation 8, one then obtains the system

@Pmb

@t
¼ �ðs�ÞPmb � rABð1� pmdr ÞpBðPmB � PmbÞ

� rMApM ðPMb � PmbÞ1
P 2
mb

2
@PMb

@t
¼ �ðs�ÞPMb � rABð11 pMdrÞpBðPMB � PMbÞ

� rMApmðPmb � PMbÞ1
P 2
Mb

2
@PmB

@t
¼ �ðs1ÞPmB � rABð1� pmdrÞpbðPmb � PmBÞ

� rMApM ðPMB � PmBÞ1
P 2
mB

2
@PMB

@t
¼ �ðs1ÞPMB � rABð11 pMdrÞpbðPMb � PMBÞ

� rMApmðPmB � PMBÞ1
P 2
MB

2
; ð20Þ

where s� and s1 are given by Equation 15, while pB and pb
are given by Equation 13. For example, the expected
number of copies produced by an allele A present on
background MB at t is 1 1 sA 1 sBpb (to the first order
in selection coefficients). Of these, a proportion rAB(11
dr 3 pM)pb will move to the Mb background—since the
expected recombination rate between selected loci,
experienced by a chromosome carrying the M allele, is
rAB(1 1 dr 3 pM)—a proportion rMApm will move to
the mB background, and the rest will stay on the MB
background (note that because we need to express the
s-coefficients of Equation 8 only to first order in selec-
tion coefficients and recombination rates, we can neglect
double-recombination events). Allowing the modifier to
affect the recombination rate rMA would not affect the
equations above. Specifically, we may denote the re-
combination rates between loci (M, m) and (A, a) inmm,
Mm, and MM individuals by rMA(1 � drMA), rMA, and
rMA(1 1 drMA), respectively. However, because recombi-
nation between (M, m) and (A, a) would affect genotype
frequencies only when it occurs in Mm heterozygotes,
drMA would not enter into the equations.

The system (20), with boundary conditions (19), can
be solved numerically to obtain the Pj’s for arbitrary t. In
the case where A is present as a single copy at t, and
assuming linkage equilibrium between the (M, m) and
(B, b) loci at t, the expression for the Fourier transformc

becomes (from Equation 18)

c ¼ pBðpM e�PMB 1 pme
�PmB Þ1 pbðpMe�PMb 1 pme

�Pmb Þ:
ð21Þ

Using Equations 19–21, one can express c for any time t
of occurrence of the A mutation.

In the following, we use scaled parameters and var-
iables; this allows us to factor out selection coefficients
and obtain more general results, in terms of the ratio of
selection coefficients at both loci. In the diffusion limit,

vj and Pj are of order sA for all backgrounds j. We define
the scaled variables ṽj and P̃j as

ṽj ¼
vj

2sA
; P̃j ¼

Pj

2sA
: ð22Þ

We then use the scaled parameters

T ¼ sBt; T* ¼ sBt*; u ¼ sA
sB
; rMA ¼ rMA

sB
; rAB ¼ rAB

sB
:

ð23Þ

The frequency of allele B as a function of time thus
becomes pB ¼ 1=ð11 e�T Þ. Using these scaled parame-
ters and variables, Equations 20 become

@P̃mb

@T
¼ �ðu� pBÞP̃mb � rABð1� pmdr ÞpBðP̃mB � P̃mbÞ

� rMApM ðP̃Mb � P̃mbÞ1 2uP̃ 2
mb

@P̃Mb

@T
¼ �ðu� pBÞP̃Mb � rABð11 pMdr ÞpBðP̃MB � P̃MbÞ

� rMApmðP̃mb � P̃MbÞ1 2uP̃ 2
Mb

@P̃mB

@T
¼ �ðu1 pbÞP̃mB � rABð1� pmdrÞpbðP̃mb � P̃mBÞ

� rMApM ðP̃MB � P̃mBÞ1 2uP̃ 2
mB

@P̃MB

@T
¼ �ðu1 pbÞP̃MB � rABð11 pMdrÞpbðP̃Mb � P̃MBÞ

� rMApmðP̃mB � P̃MBÞ1 2uP̃ 2
MB : ð24Þ

From Equation 2, the change in frequency of the
modifier after T*can be obtained from E ½Sr�1D�, where
r ¼ rMA/sA ¼ rMA/u, S is the total number of A alleles
at T*, and D is the linkage disequilibrium between loci
(M, m) and (A, a) at T*, multiplied by population size N
(see appendix a). The variables S and D are given by

S ¼ nMB 1nmB

D ¼ pmnMB � pMnmB : ð25Þ

In appendix c, we present a method to derive E ½Sr�1D�
from the Fourier transform c, in the case of a modifier
of small effect (dr small), and when linkage between the
modifier and the (A, a) locus is sufficiently tight (r, 1).
We then calculate the selection gradient on themodifier
allele M, defined as

sM ¼ 1

pMpm

@E ½DpM �
@dr

: ð26Þ

The expected change in frequency of the modifier over
the whole process is given by

E ½DpM � ¼ drsMpMpm 1 oðdr Þ: ð27Þ

Interestingly, appendix c shows that sM is independent of
the initial frequency of the modifier (pM) and can be
written in the form sM ¼ 2sAs̃M , where s̃M is a function of
T, u, rAB, rMA, and NsA. A measure of the strength of
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selection at the modifier locus, generated by the Hill–
Robertson effect at the selected loci, is thus given by
2sAdr s̃M . As shown in appendix c, obtaining s̃M for a
given set of parameter values involves solving numerically
a system of differential equations (Equations C15–C22)
and performing a numerical integration (Equation C23).
These operations have been implemented in a Mathe-
matica notebook, which is available on request. Modi-
fying our model to represent different orderings of the
three loci is straightforward and leads to minor changes
to our equations (see end of appendix c).

Figure 3 shows a test of our method against simu-
lations, for u¼ 0.1, rMA ¼ 0.01, rAB ¼ 0.2, and NsA ¼ 104

(in the simulations sB ¼ 0.1, dr ¼ 0.5, N ¼ 106, and the
initial frequency of the modifier is pM ¼ 0.5). In the
simulation program, we start from a population where
allele B is at frequency pB ¼ 1/(1 1 e�T) (the deter-
ministic frequency of B at time T), allele M is at fre-
quency pM, and B and M are in linkage equilibrium.

Allele A is introduced as a single copy in a random
background; then for each generation we calculate the
expected change in genotype frequencies and sample
the new frequencies according to a multinomial distri-
bution. We stop when allele A has disappeared or has
reached fixation and measure the change in frequency
of M over the whole process. Figure 3 shows that our
method provides a good prediction of selection on the
modifier, as long as T is not too negative (bottom,
dashed curve). The discrepancy for T , ��10 comes
from the fact that the model assumes that allele B is
established at T. However, when T is too negative, the
initial frequency of B is too low for the allele to be
established; this is shown in Figure 3, top, which plots
the deterministic trajectory of allele B (solid curve) and
its probability of fixation as a function of T (dashed
curve), where we calculate the fixation probability from
the standard one-locus diffusion formula

PfixðBÞ ¼
1� e�2NsBpB

1� e�2NsB
¼ 1� e�2sApB=u

1� e�2sA=u
; ð28Þ

where sA ¼ NsA (e.g., Crow and Kimura 1970). When
T,��15, Figure 3 shows that alleleBhas a high chance
of being lost from the population, in which case
selection on the modifier disappears. If we multiply
the expression for the change in frequency of the
modifier given by Equation C23 with the probability of
fixation of B (given by Equation 28), we obtain a result
that matches the simulations very well (Figure 3,
bottom, solid curve). To generate the curves of Figure
3, we set the value of time T * to 50; however, other
values of T * between 30 and 350 lead to indistinguish-
able curves. When T *, 30, allele A can be still present
in the population but not established (which leads to an
overestimation of the change in frequency of the
modifier), while when T * . 350, allele A, when still
present in the population, has already reached a sub-
stantial frequency (which may lead either to an un-
derestimation or to an overestimation of the change in
frequency of the modifier, depending on the parameter
values, as the model ignores changes in modifier
frequency before T *, but tends to overestimate the
change after T *). The fact that the results are in-
sensitive to T * over a large range of values shows that
the method is consistent. In Figure 4, we show that our
model also gives very good results for different values of
the selection coefficients sA and sB. Finally, Figure 5
compares results obtained using our method and Otto
and Barton’s method for sA ¼ sB ¼ 0.1, rMA ¼ 0.001
(Figure 4A), and rMA¼ 0.01 (Figure 4B), corresponding
to the values used in Figures 7 and 9 of Otto and
Barton (1997). Figure 5 shows that the presentmethod
provides a better prediction of the change in frequency
of themodifier. In Figure 5A, it can be seen that both the
model and simulations give a bimodal curve; this effect
is explained in the next section.

Figure 3.—(Top) Deterministic increase in frequency of
allele B (solid curve) and probability of fixation of B (dashed
curve, from Equation 28) from initial frequency pB (given by
Equation 13) as a function of time T. (Bottom) Scaled selec-
tion gradient on the modifier s̃M ¼ sM=ð2sAÞ, as a function of
T. The dashed curve shows the results obtained from Equa-
tion C23, and the solid curve shows the results obtained
from (C23) multiplied by the probability of fixation of B
(from Equation 28). Dots show simulation results (average
over 107 replications); error bars measure 61.96 SE. Param-
eter values are: u ¼ 0.1, rMA ¼ 0.01, rAB ¼ 0.2, and NsA ¼
104; in the simulations sB ¼ 0.1, dr ¼ 0.5, with N ¼ 106

and pM ¼ 0.5, while in the analytical model the splice point
T* is set to 50.
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NET SELECTION GRADIENT OVER
RECURRENT SWEEPS

What will be the net selection gradient for a modifier
increasing the total map length of a genome, under a
constant input of beneficial mutations? We assume
here that the modifier increases the recombination rate
uniformly over the genome and that adaptive sweeps are
sufficiently rare that we can neglect interactions among
more than two beneficial alleles. More specifically, we
derive an expression for the net selection gradient to the
order L2, where L is the rate of adaptive substitutions,
and neglect terms of higher order in L. Our model
allows us to consider two classes of mutations. One can
assume, for example, that some strongly selected alleles
enter the population at a given rate (sufficiently low that
the effect of interactions among these mutations can be
neglected), while weakly selected mutations occur at a
higher rate and have a reduced fixation probability due
to the recurrent sweeps of strongly selected alleles. The
interaction between strongly and weakly selected alleles
will select for higher recombination rates. Interactions
among weakly selected alleles will also select for more
recombination, but as the effect of these interactions is
weaker (e.g., Barton 1995b), they may be neglected
(this should be checked, however, as this depends on
how much more numerous weakly selected alleles are).
To obtain the average effect of strong substitutions on
weak ones, we can consider the case where allele B is

strongly selected and allele A weakly selected. Equation
C23 then gives the rate of increase of themodifier, given
that B fixes, and for given positions of the (A, a) and (B,
b) loci. The selection gradient, conditional on fixing
both alleles, is then given by sM/Pfix(A), where Pfix(A)
is the fixation probability of allele A, which can be
obtained from Equation 6 in Barton (1995b). Because
Pfix(A) can be written as 2sAP̃fixðAÞ, where P̃fixðAÞ is a
function ofT, u, and rAB, while sM ¼ 2sAs̃M , the selection
gradient given the fixation of both alleles is s̃M=P̃fixðAÞ,
which depends onT, u, rMA, rAB, andNsA. Averaging over
time gives the net selection gradient, for given positions
of alleles A and B:

sM ðrMA; rABÞ ¼
ð1‘

�‘

s̃M
P̃fixðAÞ

dt ¼ 1

sB

ð1‘

�‘

s̃M
P̃fixðAÞ

dT : ð29Þ

The net selection gradient, under constant rates of
substitutionsLA andLB for weakly and strongly selected
alleles, and for all possible positions of selected loci, is
then obtained by integrating over the genetic map,

sM ¼ LALB

R2

ð ð1‘

0
sM ðrMA; rABÞdrMA drAB

¼ ðsBÞ2
LALB

R2

ð ð1‘

0
sM ðrMA; rABÞdrMA drAB ; ð30Þ

Figure 4.—Scaled selection gradi-
ent on the modifier s̃M ¼ sM=ð2sAÞ
times the probability of fixation of
B as a function of T. Curves: results
obtained from Equation C23, multi-
plied by the probability of fixation
of B (from Equation 28). Circles
and squares: simulation results (aver-
age over 107 replications); error bars
measure 61.96 SE (when the error
bars do not appear, they are smaller
than the dots). (A) sA¼ 0.01 and sB¼
0.1 (solid curve, solid circles), 0.05

(dashed curve, squares), 0.02 (dotted curve, open circles). (B) sB ¼ 0.1 and sA ¼ 0.01 (solid curve, solid circles), 0.02 (dashed
curve, squares), 0.05 (dotted curve, open circles). In each case rMA ¼ 0.001, rAB ¼ 0.02, N ¼ 106. In the simulations dr ¼ 0.5 and
pM ¼ 0.5, while in the analytical model the splice point T* is set to 50.

Figure 5.—Scaled selection gradi-
ent on the modifier s̃M ¼ sM=ð2sAÞ
times the probability of fixation of
B as a function of T. Solid curves, re-
sults obtained from Equation C23;
dotted curves, results obtained from
Equations 7–10 and 19 in Otto and
Barton (1997); dashed lines, results
obtained by the method of Otto

and Barton (1997), taking into ac-
count the initial linkage disequilib-
rium between selected loci. Dots:
simulations results (average over 2 3

107 replications), error bars measure 61.96 SE (in B, the error bars are smaller than the size of dots). Parameter values: sA ¼
0.1, sB ¼ 0.1, rAB ¼ 0.02, N ¼ 106, and rMA ¼ 0.001 (A) and 0.01 (B). In the simulations, dr ¼ 0.5 and pM ¼ 0.5.
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where R is the total map length (because only selected
loci that are sufficiently tightly linked to the modifier
contribute significantly to its increase in frequency, we
can take 1‘ as the integration limit when integrating
over the genetic map). Equations 29 and 30 finally give

sM ¼ sB
LALB

R2

ð ð1‘

0

ð1‘

�‘

s̃M
P̃fixðAÞ

dT drMA drAB ; ð31Þ

where the triple integral depends on u and on NsA.
Moreover, we expect that sM should scale roughly with
1=logðNsAÞ. Indeed, from Equation C23, s̃M takes the
form ð2NsAÞ�r ¼ e�r logð2NsAÞ, multiplied by a function of
rMA, rAB, and u, say f ðrMA; rAB ; uÞ. Expanding f using a
Taylor series and integrating over r ¼ rMA/u gives

ð‘
0
e�r logð2NsAÞf ðrMA; rAB ; uÞdr

¼
ð‘
0
e�r logð2NsAÞ½ f ð0; rAB ; uÞ1 rf 9ð0; rAB ; uÞ1 � � ��dr

¼ f ð0; rAB ; uÞ
logð2NsAÞ

1
f 9ð0; rAB ; uÞ
½logð2NsAÞ�2

1 � � �; ð32Þ

which is dominated by the first term when logð2NsAÞ is
large. This slow decrease in the strength of selection on
themodifier as population size increases probably reflects
the fact that what matters most in a large population are
stochastic effects occurring when selected alleles are
present in small numbers of copies, which are not
affected much by population size. Finally, it is important
to note that the calculation of sM given above considers
only pairwise interactions among selected loci and thus
cannot be applied to the case where more than two
selective sweeps overlap in time. However, as is discussed
later, rates of amino acid substitutions in the human and
Drosophila lineages are rather low, suggesting that inter-
actions betweenmore than two sweepsmay be quite rare.

Equation 31 involves the selection gradient for the
modifier, conditional upon the fixation of allele B (s̃M ).
Moreover, the integral over T includes cases where allele
A enters the population before allele B. In the previous
section, we compared simulation results with themodel’s
predictions for the unconditional selection gradient for
the modifier, s̃MPfixðBÞ. If we now condition upon the
fixation ofB, selection on themodifier can be substantial
even when allele A occurs before allele B, but is still
segregating at the time where B occurs. This is shown, for
example, in Figure 6, which plots the selection gradient
for themodifier, conditional upon the fixation of allele B
(s̃M ). The solid and dashed curves give the model pre-
dictions for rMA ¼ 0.01 and rMA ¼ 0.005 (respectively),
obtained from Equation C23; dots represent simulation
results, for sB ¼ 0.1. In the simulation program, allele B
appears as a single copy at the time where pB ¼ 1/N
according to the deterministic expression (13); this time
is��13.8 for the parameter values used in Figure 6. For
values ofT,�13.8, alleleA enters the populationbefore

allele B and appears on a random background at the
modifier locus. Then, at time �13.8, allele B enters the
population on a random background. The program
stops when both selected loci are fixed, and the change
in frequency of the modifier is measured among those
cases where B has reached fixation. For values of T .

�13.8, allele B enters the population before allele A;
again, the program runs until both loci are fixed, and the
change in frequency of the modifier is measured only
among cases where B is fixed.

Several aspects of Figure 6 deserve attention. First, the
model does not provide a good prediction of the change
in frequency of the modifier for very negative values of
T, that is, when alleleA appears long before alleleB. This
is due to the fact that the model assumes that, at a time
T* after the sweep of allele B, allele A is either lost or
established, but still at low frequency in the population.
However, for very negative values of T, A may have
reached a high frequency at time T* or even be fixed.
For example, for T ¼ �125, simulations indicate that
the frequency of A at time T* ¼ 50, given that A will fix,
is �0.99. In that case, the branching process approxi-
mation (independent replication of the different copies
of A) has ceased to apply long before T* and probably
even before the sweep of B. In this case, most of the
change at the modifier locus occurs before T*, while
the model assumes no change before T*. However, the
model greatly overestimates the change after T*, be-
cause it overestimates E ½Sr�1D� at T* (this is confirmed
by simulations), and also because Equation A7 assumes
that allele A is still in low frequency at T*. Another
potential problem is that themodel allows pB. 0 before

Figure 6.—Scaled selection gradient for the modifier
(s̃M ¼ sM=ð2sAÞ) as a function of the time of appearance of
allele A (T), conditional on the fixation of allele B. Curves:
results obtained from Equation C23, with rMA ¼ 0.01 (solid
line) and rMA ¼ 0.005 (dashed line). Dotted curve: result ob-
tained from Equations 7–10 and 19 in Otto and Barton
(1997), with rMA ¼ 0.01. Dots: simulation results (average
over 63 107 replications), with rMA ¼ 0.01 (solid circles) and
rMA ¼ 0.005 (open circles); error bars measure 61.96 SE.
In the simulations, allele B enters the population as a single
copy (on a random background) at time T ¼ �13.8. Other
parameters: u ¼ 0.1, rAB ¼ 0.2, NsA ¼ 104; in the simulations,
sB ¼ 0.1, dr ¼ 0.5, N ¼ 106, and pM ¼ 0.5. In the analytical
model the splice point T* is set to 50.
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allele B actually appears in the population (that is,
before time �13.8). However, this does not seem to
cause problems when A appears at time �50, for ex-
ample. In any case, it appears unlikely that these prob-
lems can be solved by simple adjustments of our model:
indeed, the discrepancy occurs when the sweeps of A
and B overlap, which requires using the full three-locus
recursions for describing the deterministic phase. We
are currently working on an alternative method to treat
this case, as is discussed next.

A second important result shown by Figure 6 is that
the curves giving the selection gradient on the modifier
as a function of T are bimodal (this can also be seen in
Figure 5A and is confirmed by the simulations). This is
due to the fact that themodifier has two different effects
on the spread of allele A, whose relative importance
depends on the time of appearance of A relative to B.
When allele A appears after or shortly before allele B, its
probability of fixation is reduced by the sweep of B. By
reducing this interference, the recombination modifier
increases the fixation probability of A and then benefits
from the sweep of A (by hitchhiking). However, for
values of T, � �40, the sweep of allele B has very little
effect on the probability of fixation of A (this can be
seen, for example, in Figure 4 of Otto and Barton
1997): A is either lost or already established when B
enters the population. In this case, the modifier does
not affect the probability of fixation of A, but still has an
effect in accelerating the sweep of A, by helping it to
recombine onto the B background. This effect also
generates an indirect selective force on the modifier
and explains the leftmost maxima of the curves of
Figure 6. Because the two peaks are separated by a time
�ð1=sAÞlogðN Þ (which is the time needed for allele A
to become established, in the absence of allele B), they
will move apart as N increases (this is confirmed by
simulations—not shown). It is possible in principle to
calculate the advantage of the modifier via accelerating
sweeps (left peak) using a deterministic calculation;
indeed, one can relatively easily describe changes in
genotype frequencies when A and B are rare and then
solve for the change when they become common using
eight coupled differential equations, describing evolu-
tion at the three loci. Such a calculation is presently
being assembled (N. H. Barton and D. Roze, un-
published data).

Finally, Figure 6 shows that increasing the recombi-
nation rate rMA can have different qualitative effects on
the rate of increase of the modifier, depending on the
time of appearance of A relative to B (this can also be
seen by comparing Figure 5A and 5B). When A appears
after or shortly before B, increasing rMA decreases the
rate of increase of the modifier, by decreasing the effect
of hitchhiking. When A appears long before B, how-
ever, increasing rMA has the opposite effect. Before the
time when B enters the population, the only effect of
recombination between loci (M, m) and (A, a) is to

decrease the variance in linkage disequilibrium DMA. By
using the method of Barton and Otto (2005), we
found that the only effect of an initial variance in DMA is
to reduce the genetic variance at the modifier locus,
pMpm. Indeed, in the absence of selection at locus (B, b),
the expected change in genetic variance at the modifier
locus, over one generation, is given by

E ½ p9Mp9m � ¼ E ½pMpm � � 4ðsAÞ2E ½ðDMAÞ2�1 o½ðsAÞ2�:
ð33Þ

This corresponds to the classical result that selection
tends to reduce genetic diversity at linked loci. Because
the expected change in frequency of themodifier, at any
generation, is proportional to the genetic variance at
the modifier locus (at this generation), the variance in
DMA tends to reduce the rate of increase of themodifier.
Increasing the recombination rate rMA decreases the
variance in DMA and thus decreases this effect.
Because the present method does not deal well with

the case where allele A occurs a long time before allele B
(as shown by Figure 6), it has to be coupled to another
method describing this case better before we can use
Equation 31 to obtain the net selection gradient for the
modifier under recurrent sweeps (N. H. Barton and
D. Roze, unpublished data). Nevertheless, we can still
obtain some results for the case where u ¼ 1 (sA ¼ sB).
Indeed, simulations indicate that the method gives
accurate predictions as long as A occurs after B (e.g.,
Figure 5). However, in the opposite case (when A occurs
before B), and when sA¼ sB, we can simply swap A and B
and continue to use the samemethod. However, to do so
we need to incorporate the fact that allele B starts from
frequency 1/N; we thus need to specify the values of N
and sA, while Equation 31 depends only on the product
NsA. We performed numerically the triple integration of
Equation 31 for the case where sA ¼ sB ¼ 0.05 and
obtained sM R2/L2� 0.151, 0.126, and 0.102 forN¼ 105,
N¼ 106, andN¼ 107, respectively. These results confirm
the fact that the selection gradient roughly scales with
1=logðNsAÞ for large logðNsAÞ; indeed, sM 3 logðNsAÞ �
R2=L2 gives 1.29, 1.36, and 1.34 forN¼ 105, 106, and 107,
respectively. The values given above lead to exceedingly
small selection gradients, using current estimates for L
and R for Drosophila and humans. From comparisons
between D. simulans and D. yakuba, the rate of adaptive
amino acid substitutions has been estimated at one
every 450 generations (Smith and Eyre-Walker 2002).
This estimate has since been decreased to one every 800
generations (Bierne and Eyre-Walker 2004). The total
map length R is estimated to be �3.6 for D. simulans
(True et al. 1996). For humans, the rate of adaptive
amino acid substitution is estimated to be one every 200
years since the divergence with old-world monkeys (Fay
et al. 2001), which, using a generation time of 25 years
(Eyre-Walker and Keightley 1999) gives L ¼ 1

8 per
generation. The total map length is �R ¼ 34 for
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humans. In both cases, the ratio L2/R2 is very small
(of order 10�5 for humans and 10�7 for Drosophila).
Combining the present method with the method of
N.H.Barton andD.Roze (unpublisheddata) that studies
the effect of recombination modifiers in accelerating
sweeps and the method of Barton and Otto (2005)
that deals with the effects of small departures from
deterministic trajectories once alleles are common, we
should be able to obtain estimates over a range of
selection coefficients and population sizes. However, it
appears unlikely that the selection gradient for recom-
bination modifiers will be large, except during periods
of frequent selective sweeps or in genomes with very
tight linkage.

DISCUSSION

Apart from the idea that recombination brings a
mechanistic advantage to individuals in terms of DNA
repair (e.g., Bernstein et al. 1988), the different hypoth-
eses proposed to explain the maintenance of high rates
of recombination in higher organisms state that re-
combination is advantageous because it reduces LD
among selected loci (Kondrashov 1993; Barton and
Charlesworth 1998; Otto and Lenormand 2002).
Different possible sources of LD have been identified.
First, LD may be generated by epistatic interactions
among loci. In this case, increased recombination is
selected when epistasis is weakly negative (Feldman et al.
1980; Kondrashov 1982, 1988; Barton 1995a) and not
too variable among pairs of loci (Otto and Feldman
1997) or when epistasis fluctuates over short periods of
time (Charlesworth 1976; Barton 1995a). However,
experimental evidence does not indicate any strong
trend for epistasis to follow this pattern, and it seems
likely that the variance in epistasis is high in most cases
(e.g., Seager and Ayala 1982; Seager et al. 1982; de
Visser et al. 1996, 1997a,b; Elena and Lenski 1997;
Elena 1999; de la Peña et al. 2000; Wloch et al. 2001). A
second possible source of LD is environmental hetero-
geneity, in which case recombination is selected when
directional selection at different loci covaries negatively
between habitats (Lenormand and Otto 2000). Finally,
LD may be generated by drift and directional selection:
in a finite population, somenegative disequilibriumdoes
develop, on average, between selected loci, even in
the absence of epistasis (Hill and Robertson 1966;
Felsenstein 1974). By decreasing the effect of these
interactions among loci, recombination increases the
rate of fixation of advantageous alleles (Barton 1995b).
In this article, we presented a newmethod to quantify the
strength of selection acting on a recombinationmodifier,
due to this last effect.

Although the idea that sex and recombination in-
crease the rate of adaptation has a long history in
population genetics, theoretical models addressing the

question of the effect of interference among loci on the
evolution of recombination have been developed rela-
tively late. Otto and Barton (1997) calculated the
expected change in frequency of a modifier allele
affecting the recombination rate between two selected
loci in a finite population, using a method derived from
branching processes. This model has led to important
insights, but it does not always provide good quantitative
estimates of the strength of selection at the modifier
locus. This is due to the fact that interference among
selected loci is neglected in part of the analysis: the
linkage disequilibriumgenerated by theHill–Robertson
effect is taken into account in the calculation of prob-
abilities of fixation of selected alleles, but not in the
calculation of the hitch given by a selected allele to the
recombination modifier, given that it fixes. In a more
recent work, Barton and Otto (2005) used a different
method to calculate the effect of linkage disequilibrium
generated by drift on the change in frequency of a
recombination modifier; however, their analysis as-
sumes small departures from deterministic trajectories
and thus does not apply when selected alleles start from
a small number of copies (which is the case where drift
will have the strongest effect, when population size is
large).

In this article, we have presented a new method that
overcomes these difficulties, in the case where popula-
tion size is sufficiently large. The essence of the method
lies in the calculation of the probability distribution of
the number of copies of a new selected allele on
different genetic backgrounds, once it is established
but while it is still rare. Assuming a large population size,
one can then neglect further stochastic fluctuations
and express the change in frequency of the recombina-
tion modifier in terms of this probability distribution.
Because the new allele remains rare during the estab-
lishment phase, the change in number of its copies
on the different backgrounds can be described by a
branching process, which generates a system of differ-
ential equations that can be solved numerically to
obtain the Fourier transform of the probability distri-
bution. This method fully takes into account the linkage
disequilibrium between selected loci generated by the
initial mutation event, by genetic drift during the estab-
lishment phase, and by the fact that the allele tends to
be foundmore often in coupling with the other selected
allele on the paths leading to its fixation than on the
paths leading to its loss. We used this method to cal-
culate the full probability distribution of the number
of copies of a new selected allele when selection also
occurs at a linked locus and found a good match
with simulation results (Figure 1). To obtain an expres-
sion for the change in frequency of the recombina-
tion modifier, we coupled this stochastic approach to
a deterministic calculation of the hitch given to the
modifier by the new selected allele, after establishment.
By comparing our results with simulations, we found
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that this method provides very accurate predictions as
long as the basic assumptions of the model are satisfied,
that is, when allele A appears once allele B is already
established.

As illustrated by Figure 6, our method also provides
good results when the weakly selected allele A enters the
population before the strongly selected allele B (both
alleles being initially present as single copies), as long as
A occurs not too long before B. Furthermore, Figure 6
shows that the modifier increases in frequency through
two different mechanisms, whose relative importance
depends on the relative times of occurrence of the two
favored alleles: the modifier increases the probability of
fixation of allele A (this effect being marked mostly
whenA occurs around the time of appearance ofB), and
it also accelerates the sweep of A (this effect being
markedmostly when allele A is already established when
allele B occurs). These two effects generate an indirect
pressure selecting for the modifier. We have also seen
that in some cases (when allele A occurs before allele B)
increasing the recombination rate rMA can lead to a
greater expected increase in frequency of the modifier.
This is due to the fact that increasing rMA decreases the
variance in linkage disequilibrium DMA. Indeed, the
variance in DMA tends to reduce the genetic variance at
the modifier locus, which in turn reduces the expected
change in frequency of the modifier.

Finally, we have seen that the net selection gradient
for a modifier affecting recombination over a whole
genome, during recurrent selective sweeps, takes the
form sBLALB/R2 (where LA and LB are rates of sub-
stitutions and R is the map length of the genome),
multiplied by a function of u ¼ sA/sB and of NsA; this
function has to be obtained by integrating numerically
over time and over the possible locations of selected
loci. Because our method does not describe accurately
the case where allele A occurs a long time before allele
B, however, we could perform this integration only for
the case where sA ¼ sB. For sA ¼ sB ¼ 0.05, we obtained
that the net selection gradient for the modifier is given
by sM R 2/L2 � 0.151, 0.126, and 0.102 for N ¼ 105, 106,
and 107, respectively. Combining the present method
with the method of N. H. Barton and D. Roze (un-
published data), however, we should be able to obtain
more results for different values of u and of NsA.

According to current estimates of rates of amino acid
substitutions for Drosophila and humans, the opportu-
nity for indirect selection on recombination rates is
rather small. Amuchhigher estimate for the rate of adap-
tive substitution (of about one every 10 generations) has
been advanced for Drosophila from a study of differ-
ences in genetic variability across loci (Schlötterer
et al. 1997; Nurminsky 2001). While other factors than
selective sweeps may also account for these differences,
it remains possible that a proportion of advantageous
mutations do not cause any change in protein com-
position (mutations in regulatory sequences, for ex-

ample). In a multilocus simulation study, Otto and
Barton (2001) obtained substantial changes in re-
combination rates due to Hill–Robertson effects be-
tween selected loci (in particular, Figure 4 in Otto and
Barton 2001); similar results were obtained in much
larger populations that are spatially structured (Martin

et al. 2006). These results are not incompatible with the
present results, however, as sweeps were occurring at
several loci at the same time (high L), in a small-sized
genome (small R), while population size was relatively
small (N # 1000). Such conditions (high L, small N )
may explain increases in recombination rates obtained
after selection experiments. Similarly, Iles et al. (2003)
found substantial increases in recombination when
selective sweeps occur simultaneously at more than
two loci. However, such a situation may appear unlikely
given the current estimates of rates of amino acid
substitutions. Still, this does not mean that Hill–
Robertson interactions have little effect on the evolu-
tion of sex and recombination. First, it is possible that
adaptation occurs mostly during relatively short time
periods, during which substitution rates are higher.
Also, the direction of selection may fluctuate over time,
in which case rates of substitutions may not be a good
indicator of the frequency of sweeps occurring within
populations. Second, population structure increases the
effects of Hill–Robertson interference among loci
(Martin et al. 2006). Third, the effect of deleterious
alleles at mutation–selection balance may be far greater
than the effect of beneficial alleles sweeping through
populations: indeed, given the high rates of deleterious
mutation that have been estimated for several species,
populations should be polymorphic for deleterious
mutations at many loci. The Hill–Robertson effect will
also generate negative linkage disequilibria among these
loci, reducing the efficiency of selection against deleteri-
ous alleles. More analytical and simulation work is thus
needed before we can assess the plausibility of the hy-
pothesis that stochastic interactions among loci play an
important role in the evolution of sex and recombination.
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APPENDIX A

We express here the total change in frequency of themodifier after t*, for given numbers of A alleles present on the
M and m backgrounds at t*. We assume that the change in genotype frequencies is deterministic after t*; in this case,
the change in pM and pA (the frequencies of alleles M and A) over one generation can be written in the form

DpM ¼ aADMA;DpA ¼ aApAqA ðA1Þ
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(e.g., Barton and Turelli 1991), where DMA is the linkage disequilibrium between the two loci, aA is a function of sA
and pA, and qA ¼ 1 � pA. We thus have

DpM ¼ DpA
DMA

pAqA
: ðA2Þ

Furthermore, it can be shown that DMA/(pAqA) decays at a rate 1 � rMA per generation, so that

DMA

pAqA

� �
t

¼ ð1� rMAÞt�t* DMA

pAqA

� �
t*

� e�rMAðt�t*ÞD

S
; ðA3Þ

where D is the linkage disequilibrium DMA at time t* multiplied by population size N, and S is the number of copies of
allele A in the population at time t*. Furthermore, the dynamics of selection give

pA
qA

� �
t

� esAðt�t*Þ pA
qA

� �
t*

� esAðt�t*Þ S

N
; ðA4Þ

giving

e�rMAðt�t*Þ ¼ S

N

� �
r pA

qA

� ��r

t

ðA5Þ

with r ¼ rMA/sA. We thus have

DMA

pAqA
¼ N �rSr�1D

pA
qA

� ��r

: ðA6Þ

The total change in frequency of allele M is then obtained by integrating over pA (going from 0 to 1):

DpM ¼ N �rSr�1D

ð1
0

pA
qA

� ��r

dpA ¼ N �rGð1� rÞGð11 rÞSr�1D ðA7Þ

(Barton 1998). For small r, Gð11 rÞGð1� rÞ is close to 1. The average change in frequency of the modifier over all
possible realizations at t* is thus obtained by averaging the quantity S r�1D over the probability distribution f at t*.

APPENDIX B

Inverting the Fourier transform: We explain here how to derive the probability distribution of the number of A
alleles (n) at t* from the Fourier transform c(v), in the two-locus model. Because n can take only discrete values, the
true probability distribution of n is discrete. We explained in the text how one can obtain the probability of loss of
allele A (n¼ 0) from the value of c for large v. Here we denote fD

.0ðnÞ the true (and discrete) probability distribution
of n at time t*, for n. 0. Because we assume that allele A is still rare at time t*, we can choose an integer nmax such that
fD
.0ðnÞ becomes vanishingly small for n . nmax (this allows us to reduce computation time). In the following we

assume that nmax is an even number.
The discrete Fourier transform (DFT) of fD

.0 is given by

cD
.0ðkÞ ¼

Xnmax

n¼1

fD
.0ðnÞe�2pikn=nmax : ðB1Þ

The DFT cD
.0 takes nmax distinct values (for k ¼ 0, . . . ,nmax � 1) and is periodic: for any integer j, we have

cD
.0ðk1 jnmaxÞ ¼ cD

.0ðkÞ (periodicity comes from the fact that e ix¼ cos x1 i sin x). The sum in Equation B1 can also be
written

Xnmax

n¼1

fD
.0ðnÞe�ivkn; withvk ¼ 2p

k

nmax
; ðB2Þ

and can be approximated by the integral ðnmax

1
f.0ðnÞe�ivkndn ¼ c.0ðvkÞ: ðB3Þ
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The function c.0 is the continuous transform of the distribution f(n) for n . 0 and is given by c(v) � c(‘), where
c(‘) is the limit of c(v) asv tends to infinity (see text). The distributionfD

.0 can be recovered from cD
.0 by the inverse

DFT:

fD
.0ðnÞ ¼

1

nmax

Xnmax�1

k¼0

cD
.0ðkÞe2pikn=nmax : ðB4Þ

Because cD
.0 is periodic, this is also

fD
.0ðnÞ ¼

1

nmax

Xnmax=2�1

k¼�nmax=2

cD
.0ðkÞe2pikn=nmax � 1

nmax

Xnmax=2�1

k¼�nmax=2

c.0ðvkÞe ivkn: ðB5Þ

The number of terms to be evaluated can then be reduced by noting that the real parts of c.0ðvkÞ and c.0ð�vkÞ are
equal, while their imaginary parts cancel out (this can be seen from Equation B3). Thus, to invert the transform it is
sufficient to calculate the real part of c.0ðvkÞe ivkn for nmax/2 1 1 values of vk between 0 and p,

fD
.0ðnÞ �

1

nmax
Re c.0ð0Þ1 ð�1Þnc.0ðpÞ1 2

Xnmax=2�1

k¼1

c.0ðvkÞe ivkn

" #
; ðB6Þ

where Re½x� stands for the real part of x. Computations could in principle bemademore efficient by using Fast Fourier
algorithms, although we did not explore this possibility here.

Calculating moments of f: Moments of the probability distribution f(n) can be obtained directly from its Fourier
transform c. For example, the expected number of copies of allele A at time t* is given by

M [E ½n� ¼ i
dc

dv

����
v¼0

: ðB7Þ

Using Equation 12, and noting that PB and Pb ¼ 0 when v ¼ 0, we obtain

M ¼ �i pB
dPB

dv
1 pb

dPb

dv

� �
; ðB8Þ

the derivatives being evaluated at v ¼ 0. Differential equations of the derivatives of PB and Pb with respect to v are
obtained by differentiating Equations 14, giving

@t
dPb

dv
¼ �ðs�Þ

dPb

dv
1 rABpB

dPb

dv
� dPB

dv

� �

@t
dPB

dv
¼ �ðs1Þ

dPB

dv
1 rABpb

dPB

dv
� dPb

dv

� �
: ðB9Þ

From this, and noting that @tpB ¼ sBpBpb, one obtains

@tM ¼ �sAM ðB10Þ

and thus M ¼ esAðt*�tÞ, corresponding to the deterministic increase of allele A. Our method thus does not detect the
effect of interference on the expected number of copies ofA at t (because changes in frequencies are expressed only to
first order); however, it shows an effect on higher moments of the distribution f. For example, the variance of the
number of copies of A at t* is given by

V [E ½n2� � E ½n�2 ¼ �d2c

dv2 1
dc

dv

� �2

; ðB11Þ

the derivatives being evaluated atv¼ 0. After differentiating Equations 14 twice with respect tov and simplifying, one
obtains

@tV ¼ pB
dPB

dv

� �2

1 pb
dPb

dv

� �2

1 ðsA 1 2rABÞpBpb
dPB

dv
� dPb

dv

� �2

1 sBpBpb
dPB

dv

� �2

� dPb

dv

� �2� �
� sAV : ðB12Þ
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Equations B9 and B12 can be solved numerically to express V as a function of t. Figure 2 illustrates that selection at the
(B, b) locus increases the variance of the number of copies of A at t*.

APPENDIX C

Here we develop amethod to obtain the expected change in frequency of the recombinationmodifier, in the three-
locusmodel. Equation 2 expresses this change in frequency in terms of the expectation of Sr�1D at time t*, where S and
D are given by

S ¼ nMB 1nmB

D ¼ pmnMB � pMnmB : ðC1Þ

Changing variables in Equation 17 (by expressing nMB and nmB in terms of S and D), we can express the Fourier
transform of the probability distribution f(S, D) as

cðvS ;vDÞ ¼
ð ð

fðS ;DÞe�ivS S�ivDDdS dD ðC2Þ

with

vS ¼ pMvMB 1 pmvmB

vD ¼ vMB � vmB : ðC3Þ

Using these new variables, the boundary conditions (19) become

PMB ¼ iðvS 1 pmvDÞ
PmB ¼ iðvS � pMvDÞ
PMb ¼ Pmb ¼ 0 ðC4Þ

at t¼ t*. To evaluate E ½Sr�1D�, we then proceed as follows. The derivative of c with respect tovD, evaluated atvD¼ 0, is
given by

@c

@vD
¼ ð�iÞ

ð ð
DfðS;DÞe�ivS SdS dD ¼ ð�iÞ

ð
f ðSÞe�ivS SdS ; ðC5Þ

where

f ðSÞ ¼
ð
DfðS ;DÞdD ¼ E ½D j S �: ðC6Þ

Equation C5 thus shows that the Fourier transform of E ½D j S � is given by i(@c/@vD). Inversion of this Fourier
transform gives

E ½D j S � ¼ i

2p

ð1‘

�‘

@c

@vD
eivS SdvS : ðC7Þ

We then have (for r , 1)

E ½Sr�1D� ¼
ð‘
0
Sr�1f ðSÞdS ¼ i

2p

ð1‘

�‘

@c

@vD

ð‘
0
Sr�1e ivS SdS

� �
dvS ¼ iGðrÞ

2p

ð1‘

�‘

@c

@vD
ð�ivSÞ�rdvS : ðC8Þ

Combining Equation C8 with Equation 2 leads to an expression for the expected increase of the modifier, in terms of
c. This allows us to calculate the selection gradient, sM, acting on the modifier, as defined by (26),

sM ¼ 1

pMpm

@E ½DpM �
@dr

¼ i

2p
N �rGðrÞGð1� rÞGð11 rÞ3

ð1‘

�‘

1

pMpm

@2c

@vD@dr

� �
ð�ivSÞ�rdvS ; ðC9Þ

where the derivative of c is evaluated at vD ¼ 0, dr ¼ 0.
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The derivative ofc that appears in Equation C9 can then be expressed in terms of partial derivatives of the Pj’s, using
Equation 21. Using the fact that Pj variables are of order sA, one obtains to first order in sA

1

pMpm

@2c

@vD@dr
¼ �ðpBỸB 1 pbỸbÞ ðC10Þ

with

ỸB ¼ 1

pMpm
pM

@2P̃MB

@v~D@dr
1 pm

@2P̃mB

@v~D@dr

� �
ðC11Þ

Ỹb ¼
1

pMpm
pM

@2P̃Mb

@v~D@dr
1 pm

@2P̃mb

@v~D@dr

� �
; ðC12Þ

where v~D ¼ vD=ð2sAÞ.
Using transformed variables, it can be shown that ỸB and Ỹb do not depend on the initial frequency of the modifier,

pM. From Equation 24, one can show that the pairs ð@P̃mB=@v~D ; @P̃MB=@v~DÞ, ð@P̃mb=@v~D ; @P̃Mb=@v~DÞ remain in the ratio
�pM/pm for all T (the derivatives being evaluated at v~D ¼ 0, dr ¼ 0). We can thus define the quantities

Z̃B;vD
¼ � 1

pM

@P̃mB

@v~D
¼ 1

pm

@P̃MB

@v~D
; Z̃b;vD

¼ � 1

pM

@P̃mb

@v~D
¼ 1

pm

@P̃Mb

@v~D
: ðC13Þ

We then define

Z̃B;dr ¼
@P̃MB

@dr
� @P̃mB

@dr
; Z̃b;dr ¼

@P̃Mb

@dr
� @P̃mb

@dr
: ðC14Þ

Using these variables, and after differentiating Equations 24 with respect to v~D and dr, one obtains the following
differential equations for ỸB and Ỹb ,

@ỸB

@T
¼ ½�u1 ðrAB � 1Þpb 1 2uP̃B �ỸB � rABpbðỸb � Z̃B;vD 1 Z̃b;vD Þ1 2uZ̃B;vD Z̃B;dr ðC15Þ

@Ỹb

@T
¼ ½�u1 ðrAB 1 1ÞpB 1 2uP̃b �Ỹb � rABpBðỸB � Z̃b;vD

1 Z̃B;vD
Þ1 2uZ̃b;vD

Z̃b;dr ðC16Þ

with boundary conditions ðỸB ; ỸbÞ ¼ ð0; 0Þ at T ¼ T*. Equations C15 and C16 use the fact that P̃mB ¼ P̃MB ¼ P̃B , and
P̃mb ¼ P̃Mb ¼ P̃b when v~D ¼ 0 and dr¼ 0. Differential equations for the Z̃-variables are also obtained from Equation 24,
giving

@Z̃B;vD

@T
¼ ½�u1 ðrAB � 1Þpb 1 rMA 1 2uP̃B �Z̃B;vD � rABpbZ̃b;vD ðC17Þ

@Z̃b;vD

@T
¼ ½�u1 ðrAB 1 1ÞpB 1 rMA 1 2uP̃b �Z̃b;vD

� rABpBZ̃B;vD
ðC18Þ

with boundary conditions ðZ̃B;vD
; Z̃b;vD

Þ ¼ ði; 0Þ at T ¼ T*, and

@Z̃B;dr

@T
¼ ½�u1 ðrAB � 1Þpb 1 rMA 1 2uP̃B �Z̃B;dr � rABpbðZ̃b;dr � P̃B 1 P̃bÞ ðC19Þ

@Z̃b;dr

@T
¼ ½�u1 ðrAB 1 1ÞpB 1 rMA 1 2uP̃b �Z̃b;dr � rABpBðZ̃B;dr � P̃b 1 P̃BÞ ðC20Þ

with boundary conditions ðZ̃B;dr ; Z̃b;dr Þ ¼ ð0; 0Þ at T ¼ T*. Finally, differential equations for P̃B and P̃b are given by

@P̃b

@T
¼ �ðu� pBÞP̃b 1 rABpBðP̃b � P̃BÞ1 2uP̃ 2

b ðC21Þ

@P̃B

@T
¼ �ðu1 pbÞP̃B 1 rABpbðP̃B � P̃bÞ1 2uP̃ 2

B ðC22Þ

with boundary conditions ðP̃B ; P̃bÞ ¼ ðiv~S ; 0Þ at T ¼ T*, with v~S ¼ vS=ð2sAÞ.
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In practice, to evaluate the strength of selection on the modifier (sM) when allele A appears in the population at a
given time T, we solve numerically the system of differential Equations C15–C22 for a large array of values of v~S . The
selection gradient sM is then given by (from Equation C9)

sM ¼ ð2sAÞð2NsAÞ�rGðrÞGð1� rÞGð11 rÞ3�i

2p

ð1‘

�‘

ðpBỸB 1 pbỸbÞð�iv~SÞ�rdv~S ; ðC23Þ

where the integral is calculated using the NIntegrateInterpolatingFunction routine of Mathematica (notebook
available on request). Finally, it is important to note that as Equations C15–C22 do not depend on the initial frequency
of the modifier (pM), sM is also independent of pM.

In the case where loci are in order A–M–B, Equations C17–C20 are changed to

@Z̃B;vD

@T
¼ ½�u� pb 1 rMA 1 2uP̃B �Z̃B;vD

ðC24Þ

@Z̃b;vD

@T
¼ ½�u1 pB 1 rMA 1 2uP̃b �Z̃b;vD

ðC25Þ

@Z̃B;dr

@T
¼ ½�u� pb 1 rMA 1 2uP̃B �Z̃B;dr 1 rABpbðP̃B � P̃bÞ ðC26Þ

@Z̃b;dr

@T
¼ ½�u1 pB 1 rMA 1 2uP̃b �Z̃b;dr 1 rABpBðP̃b 1 P̃BÞ; ðC27Þ

while in the case where loci are in order M–B–A, they become

@Z̃B;vD

@T
¼ ½�u1 ðrMB � 1Þpb 1 rMA 1 2uP̃B �Z̃B;vD

� rMBpbZ̃b;vD
ðC28Þ

@Z̃b;vD

@T
¼ ½�u1 ðrMB 1 1ÞpB 1 rMA 1 2uP̃b �Z̃b;vD

� rMBpBZ̃B;vD
ðC29Þ

@Z̃B;dr

@T
¼ ½�u1 ðrMB � 1Þpb 1 rMA 1 2uP̃B �Z̃B;dr � rMBpbZ̃b;dr 1 rABpbðP̃B � P̃bÞ ðC30Þ

@Z̃b;dr

@T
¼ ½�u1 ðrMB 1 1ÞpB 1 rMA 1 2uP̃b �Z̃b;dr � rMBpBZ̃B;dr 1 rABpBðP̃b � P̃BÞ ðC31Þ

with rMB ¼ rMB/sB. Differential equations on ỸB , Ỹb , P̃B , P̃b remain the same.

Interference and Recombination 1811


