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1 Allele and genotype frequencies

1.1 Allele frequencies

Consider a diploid autosomal locus segregating at two alleles (A1 and A2). Let N11 and N12

be the number of A1A1 homozygotes and A1A2 heterozygotes, respectively. Moreover, let N
be the total number of diploid individuals in the population. We can then define the relative
frequencies of A1A1 and A1A2 genotypes as f11 = N11/N and f12 = N12/N , respectively.
The frequency of allele A1 in the population is then given by

p =
2N11 +N12

2N
= f11 +

1

2
f12. (1)

Note that this holds independently of Hardy–Weinberg proportions and equilibrium [see
below]. The frequency of the alternate allele (A2) is then just q = 1− p.

1.2 Hardy–Weinberg proportions

Imagine a population mating at random with respect to genotypes, i.e. no inbreeding, no
population structure, no sex differences in allele frequencies. The frequency of allele A1 in
the population at the time of reproduction is p. An A1A1 genotype is made by reaching
out into our population and independently drawing two A1 allele gametes to form a zygote.
Therefore, the probability that an individual is an A1A1 homozygote is p2. This probability
is also the expected frequency of the A1A1 homozygote in the population. The expected
frequency of the three possible genotypes is

f11 f12 f22
p2 2pq q2

.

Note that we only need to assume random mating with respect to our alleles in order for
these expected frequencies to hold, as long at p is the frequency of the A1 allele in the
population at the time when gametes fuse. See Figure 1 for a nice empirical demonstration
of Hardy-Weinberg proportions.

Question 1. You are investigating a locus with three alleles, A, B, and C, with allele
frequencies pA, pB, and pC . What fraction of the population is expected to be homozygotes
under Hardy-Weinberg?

1.3 Coefficient of kinship

We will define two alleles to be identical by descent (IBD) if they are identical due to a
common ancestor in the past few generations. For the moment, we ignore mutation, and we
will be more precise about what we mean by ‘past few generations’ later on. For example,
parent and child share exactly one allele identical by descent at a locus, assuming that the
two parents of the child are randomly mated individuals from the population. In figure 3 I
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Figure 1: Demonstrating Hardy-Weinberg proportions using 10,000 SNPs from the HapMap
CEU European and YRI African populations. Within each of these populations I plot the
allele frequency against the frequency of the 3 genotypes. Each SNP is represented by 3
different coloured points. The solid lines show the mean genotype frequency (calculated
using a loess smoothing). The dashed line shows the predicted genotype frequency from
Hardy Weinberg equilibrium. I find it really pretty that the analytical predictions work
as well as they do. See http://gcbias.org/2011/10/13/population-genetics-course-resources-
hardy-weinberg-eq/ here on this plot.
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Figure 2: Three pairs of diploid individuals sharing 0, 1, or 2 alleles IBD where lines show
the sharing of alleles by descent (e.g. from a shared ancestor).

Figure 3: Alleles being transmitted through an inbred pedigree. The mum and the aunt
share two alleles identical by descent (IBD). The cousins share one allele IBD. The offspring
of first cousins is homozygous by descent at this locus.

show a pedigree demonstrating some configurations of IBD.

A key quantity is the probability that our pair of individuals share 0, 1, or 2 alleles iden-
tical by descent (see Figure 2). We denote these probabilities by r0, r1, and r2 respectively.
See Table 1 for some examples.

One summary of relatedness that will be important is the probability that two alleles
picked at random, one from each of the two different individuals i and j, are identical by
descent. We call this quantity the coefficient of kinship of individuals i and j, and denote it
by Fij. It is calculated as

Fij = 0× r0 +
1

4
r1 +

1

2
r2. (2)

The coefficient of kinship will appear multiple times, in both our discussion of inbreeding
and in the context of phenotypic resemblance between relatives.
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Relationship (i,j)∗ r0 r1 r2 Fij
parent–child 0 1 0 1/4
full siblings 1/4 1/2 1/4 1/4
identical (monzygotic) twins 0 0 1 1/2
1st cousins 3/4 1/4 0 1/16

Table 1: Probability that two individuals of a given relationship share 0, 1, or 2 alleles
identical by descent on the autosomes. ∗ assuming this is the only relationship the pair
of individuals share (above that expected from randomly sampling individuals from the
population).

Figure 4: First cousins sharing a stretch of chromosome identical by descent. The different
grandparental diploid chromosomes are coloured so we can track them and recombinations
between them across the generations. Notice that the identity by descent between the
cousins persists for a long stretch of chromosome due to the limited number of generations
for recombination.

Question 2. What are r0, r1, and r2 for 1/2 sibs? (1/2 sibs share one parent but not
the other).

Question 3. Consider a biallelic locus where allele 1 is at frequency p, and two
individuals who have IBD allele sharing probabilities r0, r1, r2.
What is the overall probability that these two individuals are both homozygous for allele 1?

1.4 Inbreeding

We can define an inbred individual as an individual whose parents are more closely related
to each other than two random individuals drawn from some reference population.
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f11 f12 f22
(1− F )p2 + Fp (1− F )2pq (1− F )q2 + Fq

Table 2: Generalized Hardy–Weinberg

When two related individuals produce an offspring, that individual can receive two alleles
that are identical by descent, i.e. they can be homozygous by descent (sometimes termed
autozygous), due to the fact that they have two copies of an allele through different paths
through the pedigree. This increased likelihood of being homozygous relative to an outbred
individual is the most obvious effect of inbreeding. It is also the one that will be of most
interest to us, as it underlies a lot of our ideas about inbreeding depression and population
structure. In figure 3 our offspring of first cousins is homozygous by descent having received
the same IBD allele via two different routes around an inbreeding loop.

As the offspring receives a random allele from each parent (i and j), the probability that
those two alleles are identical by descent is equal to the kinship coefficient Fij of the two
parents (Eqn. 2). This follows from the fact that the genotype of the offspring is made by
sampling an allele at random from each of our parents. We will use IBD for identical by
descent.

The only way the offspring can be heterozygous (A1A2) is if their two alleles at a locus
are not IBD (otherwise they would necessarily be homozygous). Therefore, the probability
that they are heterozygous is

(1− F )2pq, (3)

where we have dropped the indices i and j for simplicity. The offspring can be homozygous
for the A1 allele in two different ways. They can have two non-IBD alleles that are not IBD
but happen to be of the allelic type A1, or their two alleles can be IBD, such that they
inherited allele A1 by two different routes from the same ancestor. Thus, the probability
that an offspring is homozygous is

(1− F )p2 + Fp. (4)

Therefore, the frequencies of the three possible genotypes can be written as given in Table
2, which provides a generalization of the Hardy–Weinberg proportions.

Note that the generalized Hardy–Weinberg proportions completely specify the genotype
probabilities, as there are two parameters (p and F ) and two degrees of freedom (as p and q
have to sum to one). Therefore, any combination of genotype frequencies at a biallelic site
can be specified by a combination of p and F .

Question 4. The frequency of the A1 allele is p the frequency of the A2 allele is
q. Assume that our population is randomly mating and that the genotype frequencies in
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the population follow from HW. We select two individuals at random to mate from this
population. We then mate the children from this cross. What is the probability that the
child from this sib-mating is homozygous?

1.5 Calculating inbreeding coefficients from data

If the observed heterozygosity in a population is HO, and we assume that the generalized
Hardy–Weinberg proportions hold, we can set HO equal to f12, and solve Eq. (3) for F to
obtain an estimate of the inbreeding coefficient as

F̂ = 1− f12
2pq

=
2pq − f12

2pq
. (5)

As before, p is the frequency of allele A1 in the population. This can be rewritten in
terms of the observed heterozygosity (HO) and the heterozygosity expected in the absence
of inbreeding, HE = 2pq, as

F̂ =
HE −HO

HE

= 1− HO

HE

. (6)

Hence, F quantifies the deviation due to inbreeding of the observed heterozygosity from
the one expected under random mating, relative to the latter. If we have multiple loci, we
can replace HO and HE by their means over loci, H̄O and H̄E, respectively. Note that, in
principle, we could also calculate F for each individual locus first, and then take the average
across loci. However, this procedure is more prone to introducing a bias if sample sizes vary
across loci, which is not unlikely when we are dealing with real data.

Question 5. Suppose the following genotype frequencies were observed for at an
esterase locus in a population of Drosophila (A denotes the fast allele and B denotes the
slow allele):

AA AB BB
0.6 0.2 0.2

.

What is the estimate of the inbreeding coefficient at the esterase locus?

1.6 Summarizing population structure

We defined inbreeding as having parents that are more closely related to each other than
two individuals drawn at random from some reference population. The question that natu-
rally arises is: Which reference population should we use? While I might not look inbred in
comparison to allele frequencies in the United Kingdom (UK), where I am from, my parents
certainly are not two individuals drawn at random from the world-wide population. If we
estimated my inbreeding coefficient F using allele frequencies within the UK, it would be
close to zero, but would likely be larger if we used world-wide frequencies. This is because
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there is a somewhat lower level of expected heterozygosity within the UK than in the human
population across the world as a whole.

Wright (1943, 1951) developed a set of ‘F-statistics’ (also called ‘fixation indices’) that
formalize the idea of inbreeding with respect to different levels of population structure.
See figure 5 for a schematic diagram. He defined FXY as the correlation between random
gametes, drawn from the same level X, relative to level Y . We will return to why F -
statistics are statements about correlations between alleles in just a moment. One commonly
uses FIS for the inbreeding coefficient between an individual (I) and the subpopulation (S).
Consider a single locus, where in a subpopulation (S) a fraction HI = f12 of individuals
are heterozygous. In this subpopulation, let the frequency of allele A1 be pS, such that the
expected heterozygosity under random mating is HS = 2pS(1− pS). We will write FIS as

FIS = 1− HI

HS

= 1− f12
2pSqS

, (7)

a direct analog of eqn. 5. Hence, FIS is the relative difference between observed and expected
heterozygosity due to a deviation from random mating within the subpopulation. We could
also compare the observed heterozygosity in individuals (HI) to that expected in the total
population, HT . If the frequency of allele A1 in the total population is pT , then we can write
FIT as

FIT = 1− HI

HT

= 1− f12
2pT qT

, (8)

which compares heterozygosity in individuals to that expected in the total population. As
a simple extension of this, we could imagine comparing the expected heterozygosity in the
subpopulation (HS) to that expected in the total population HT , via FST:

FST = 1− HS

HT

= 1− 2pSqS
2pT qT

. (9)

If the total population contains the subpopulation then 2pSqS ≤ 2pT qT , and so FIS ≤ FIT

and FST ≥ 0. We can relate the three F -statistics to each other as

(1− FIT) =
HI

HS

HS

HT

= (1− FIS)(1− FST). (10)

Hence, the reduction in heterozygosity within individuals compared to that expected in the
total population can be decomposed to the reduction in heterozygosity of individuals com-
pared to the subpopulation, and the reduction in heterozygosity from the total population
to that in the subpopulation.

If we want a summary of population structure across multiple subpopulations, we can
average HI and/or HS across populations, and use a pT calculated by averaging pS across
subpopulations (or our samples from sub-populations). For example, the average FST across
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Figure 5: A diagram showing the hierarchical nature of F statistics. We can compare the
heterozygosity on individuals (Hi), to that found by randomly drawing alleles from the
sub-population (HS = 2pSqS), to that found in the total population (HT = 2pT qT ).

K subpopulations (sampled with equal effort) is

FST = 1− H̄S

HT

, (11)

where H̄S = 1/K
∑K

i=1H
(i)
S , and H

(i)
S = 2piqi is the expected heterozygosity in subpopula-

tion i. Furthermore, if we have multiple sites, we can replace HI , HS, and HT with their
averages across loci (as above).

Let us now return to Wright’s definition of the F -statistics as correlations between random
gametes, drawn from the same level X, relative to level Y . Without loss of generality, we
may think about X as individuals and S as the subpopulation. Rewriting FIS in terms of
the observed homozygote frequencies (f11, f22) and expected homozygosities (p2S, q2S) we find

FIS =
2pSqS − f12

2pSqS
=
f11 + f22 − p2S − q2S

2pSqS
, (12)

using the fact that p2 + 2pq + q2 = 1, and f12 = 1− f11 − f12. The form of eqn. (12) reveals
that FIS is the covariance between pairs of alleles found in an individual, divided by the
expected variance under binomial sampling. Thus, F -statistics can be understood as the
correlation between alleles drawn from a population (or an individual) above that expected
by chance (i.e. drawing alleles sampled at random from some broader population).
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We can also interpret F -statistics as proportions of variance explained by different lev-
els of population structure. To see this, let us think about FST averaged over K sub-
populations, whose frequencies are p1, . . . , pK . The frequency in the total population is
pT = p̄ = 1/K

∑K
i=1 pi. Then, we can write

FST =
2p̄q̄ − 1

K

∑K
i=1 2piqi

2p̄q̄
=

(
1
K

∑K
i=1 p

2
i + 1

K

∑K
i=1 q

2
i

)
− p̄2 − q̄2

2p̄q̄
=

Var(pi)

Var(p̄)
, (13)

which shows that FST is the proportion of the variance explained by the subpopulation labels.

1.7 Other approaches to population structure

There is a broad spectrum of methods to describe patterns of population structure in popu-
laion genetic datasets. We’ll briefly discuss two broad-classes of methods, assigment methods
and principal components analysis,that appear often in the literature.

1.7.1 Assignment Methods

Here we’ll describe a simple probabilistic assignment to find the probability that an individual
of unknown population comes from one of K predefined populations. We’ll then briefly
explain how to extend this to cluster individuals into K initially unknown populations. This
method is a simplified version of what Bayesian population genetics clustering algorithms
such as STRUCTURE and ADMIXTURE do (Pritchard et al. Genetics 2000).

A simple assignment method We have genotype data from unlinked S bi-allelic loci
for K populations. The allele frequency of allele A1 at locus l in population k is denoted
by pk,l, so that the allele frequencies in population 1 are p1,1, · · · p1,L and population 2 are
p2,1, · · · p2,L and so on.

You type a new individual from an unknown population at these L loci. This individual’s
genotype at locus l is gl, where gl denotes the number of copies of allele A1 this individual
carries at this locus (gl = 0, 1, 2).

The probability of this individual’s genotype at locus l conditional on coming from pop-
ulation k (i.e. their alleles being a random HW draw from population k) is

P (gl|pop k) = I(gl = 0)(1− pk,l)2 + I(gl = 1)2pk,l(1− pk,l) + I(gl = 2)p2k,l (14)

where I(gl = 0) is an indicator function which is 1 if gl = 0 and zero otherwise, and likewise
for the other indicator functions. This follows simply from HWE.

Assuming that the loci are independent, the probability of individual’s genotypes condi-
tional on them coming from population k is

P (ind.|pop k) =
S∏
l=1

P (gl|pop k) (15)
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We wish to know the probability that this new individual comes from population k, i.e.
P (pop k|new ind.). We can obtain this through Bayes rule

P (pop k|ind.) =
P (ind.|pop k)P (pop k)

P (ind.)
(16)

where

P (ind.) =
K∑
k=1

P (ind.|pop k)P (pop k) (17)

is the normalizing constant. We interpret P (pop k) as the prior probability of the individual
coming from population k, unless we have some other prior knowledge we will assume that
the new individual has a equal probability of coming from each population P (pop k) = 1/K.

We intepret
P (pop k|ind.) (18)

as the posterior probability that our new individual comes from each of our 1, · · · , K popu-
lations.

More sophisticated versions of this are now used to allow for hybrids, e.g, we can have
a proportion qk of our individual’s genome come from population k and estimate the set of
qk’s.

Question 6. We have two populations where the frequency of capital allele at two
SNPs (A/a and B/b) is given by

Population locus A locus B
1 0.1 0.85
2 0.95 0.2

We sample an individual whose genotype is AA at the first locus and bb at the second. What
is the posterior probability that our indvidual comes from population 1 vs population 2? Lets
assume that with probability q1 our individual draws an allele from population 1 and that
with probability q2 = 1− q1 they draw an allele from population 2. What is the probability
of our individual’s genotype given q1? You could plot this probability as a function of q1.
How does your plot change if our individual is heterozygote at both loci?

Clustering based on assignment methods While it is great to be able to assign our
individuals to particular population, these ideas can be pushed to learn about how best to
describe our genotype data in terms of discrete populations without assigning any of our
individuals to populations a priori. We wish to cluster our individuals into K unknown
populations. We begin by assigning our individuals at random to these K populations.

• Given these assignments we estimate the allele frequencies at all of our loci in each
population.
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• Given these allele frequencies we chose to reassign each individual to a population k
with a probability given by eqn. (15).

We iterate steps 1 and 2 for many iterations. If the data is sufficiently informative the
assignments and allele frequencies will quickly converge.

To do this in a full bayesian scheme we need to place priors on the allele frequencies
(e.g. a beta distribution).Technically we are using this is the joint posterior of our allele
frequencies and assignments.

1.7.2 Principal components analysis

The use of principal component analysis in population genetics was pioneered by Cavalli-
Sforza. With large genotyping datasets PCA has made a come back. See Patterson et al
2006, PLoS Genetics and McVean, G. 2010 PLoS Genetics and for recent discussion.

Consider a dataset consisting of N individuals at S bi-allelic SNPs. The ith individual’s
genotype data at locus ` takes value gi,`=0,1, or 2 (corresponding to the number of copies of
allele A1 an individual carrys at this SNP). We can think of this as a N x S matrix (where
usually N � S).

Denoting the sample mean allele freq at SNP ` by p` we usually standardize the genotype
in the following way

gi,` − 2p`√
p`(1− p`)

(19)

i.e. at each SNP we center the genotypes by minusing of the mean genotype (2ε`) and divide
through by the expected variance assuming that alleles are sampled binomially from the
mean frequency (

√
p`(1− p`)). Doing this to all of our genotypes we form a data matrix (of

dimension N x S). We can then perform principal components analysis of this data matrix
to cover the major axes of genotype variance in our sample.

It is worth taking a moment to delve further into what we are doing here. There’s a
number of equivalent ways to thinking about what PCA is doing, one of these is to think
that when we do PCA we are building the individual by individual covariance matrix and
performing eigen-value decomposition of this matrix (with the eigen-vectors giving the PC).
This individual by individual covariance matrix has entries the (i, j)th entry given by

S∑
`=1

(gi,` − 2p`)(gj,` − 2p`)

p`(1− p`)
(20)

note that this is the covariance, is very similar to those we encountered in discussing F -
statistics as correlations (equation (12)), expect now we are asking about the allelic covari-
ance between two individuals above that expected if they were both drawn from the total
sample at random (rather than the covariance of alleles within a single individual). So
by performing PCA on the data we are learning about the major (orthogonal) axes of the
kinship matrix.
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1.8 Correlations between loci, linkage disequilibrium, and recom-
bination

Up to now we have been interested in correlations between alleles at the same locus, e.g.
correlations within individuals (inbreeding) or between individuals (relatedness). We have
seen how relatedness between parents affects the extent to which their offspring is inbred.
We now turn to correlations between alleles at different loci. To understand correlations
between loci we need to understand recombination.

Recombination Lets consider an individual heterozygous for a AB and ab haplotype.
If no recombination occurs between our two loci in this individual, then these two haplo-
types will be transmitted intact to the next generation. While if a recombination (or more
generally an odd number of recombinations) occurs between our two loci on the haplotype
transmitted to the child then 1

2
the time the child receives a Ab haplotype and 1

2
the time

the child receives a aB haplotype. So recombination is breaking up the association between
loci. We’ll define the recombination fraction (r) to be the probability of an odd number
of recombinations between our loci. In practice we’ll often be interested in relatively short
regions where recombination is relatively rare, and so we might think that r = rBPL � 1,
where rBP is the average recombination rate per base pair (typically ∼ 10−8) and L is the
number of base pairs separating our two loci.

Linkage disequilibrium The (horrible) phrase linkage disequilibrium (LD) refers to the
statistical non-independence (i.e. a correlation) of alleles at different loci. Our two loci,
which segregate alleles A/a and B/b, have allele frequencies of pA and pB respectively. The
frequency of the two locus haplotype is pAB, and likewise for our other three combinations.
If our loci were statistically independent then pAB = pApB, otherwise pAB 6= pApB We can
define a covariance between the A and B alleles at our two loci as

DAB = pAB − pApB (21)

and likewise for our other combinations at our two loci (DAb, DaB, Dab). These D statistics
are all closely related to each other as DAB = −DAb and so on. Thus we only need to specify
one DAB to know them all, so we’ll drop the subscript and just refer to D. Also a handy
result is that we can rewrite our haplotype frequency pAB as

pAB = pApB +D. (22)

If D = 0 we’ll say the two loci are in linkage equilibrium, while if D > 0 or D < 0 we’ll say
that the loci are in linkage disequilibrium (we’ll perhaps want to test whether D is statisti-
cally different from 0 before making this choice). You should be careful to keep the concepts
of linkage and linkage disequilibrium separate in your mind. Genetic linkage refers to the
linkage of multiple loci due to the fact that they are transmitted through meiosis together
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(most often because the loci are on the same chromosome). Linkage disequilibrium merely
refers to the correlation between the alleles at different loci, this may in part be due to the
genetic linkage of these loci but does not necessarily imply this (e.g. genetically unlinked
loci can be in LD due to population structure).

Another common statistic for summarizing LD is r2 which we write as

r2 =
D2

pA(1− pA)pB(1− pB)
(23)

as D is a covariance, and pA(1− pA) is the variance of an allele drawn at random from locus
A, r2 is the squared correlation coefficient.

Question 7. You genotype 2 bi-allelic loci (A & B) segregating in two mouse subspecies
(1 & 2) which mate randomly among themselves, but have not historically interbreed since
they speciated. On the basis of previous work you estimate that the two loci are separated
by a recombination fraction of 0.1. The frequencies of haplotypes in each population are:

Pop pAB pAb paB pab
1 .02 .18 .08 .72
2 .72 .18 .08 .02

A) How much LD is there within populations, i.e. estimate D?

B) If we mixed the two populations together in equal proportions what value would D
take before any mating has had the chance to occur?

The decay of LD due to recombination We will now examine what happens to LD
over the generations if we only allow recombination to occur in a very large population (i.e.
no genetic drift, i.e. the frequencies of our loci follow their expectations). To do so consider
the frequency of our AB haplotype in the next generation p′AB. We lose a fraction r of
our AB haplotypes to recombination ripping our alleles apart but gain a fraction rpApB per
generation from other haplotypes recombining together to form AB haplotypes. Thus in the
next generation

p′AB = (1− r)pAB + rpApB (24)

this last term here is r(pAB + pAb)(pAB + paB), which multiplying this out is the probability
of recombination in the different diploid genotypes that could generate a pAB haplotype.

We can then write the change in the frequency of the pAB haplotype as

∆pAB = p′AB − pAB = −rpAB + rpApB = −rD (25)
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so recombination will cause a decrease in the frequency of pAB if there is an excess of AB
haplotypes within the population (D > 0), and an increase if there is a deficit of AB
haplotypes within the population (D < 0). Our LD in the next generation is D′ = p′AB, so
we can rewrite the above eqn. in terms of the D′

D′ = (1− r)D (26)

so if the level of LD in generation 0 is D0 the level t generations later (Dt) is

Dt = (1− r)tD0 (27)

so recombination is acting to decrease LD, and it does so geometrically at a rate given by
(1− r). If r � 1 then we can approximate this by an exponential and say that

Dt ≈ D0e
−rt (28)

Question 8. You find a hybrid population between the two mouse subspecies described
in the question above, which appears to be comprised of equal proportions of ancestry from
the two subspecies. You estimate LD between the two markers to be 0.0723. Assuming that
this hybrid population is large and was formed by a single mixture event, can you estimate
how long ago this population formed?
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2 Genetic Drift and Neutral Diversity

Various sources of randomness are inherent in evolution. One major source of stochasticity
in population genetics is genetic drift. Genetic drift occurs because more or less copies of
an allele by chance can be transmitted to the next generation. This can occur because by
chance the individuals carrying a particular allele can leave more or less offspring in the next
generation. In a sexual population genetic drift also occurs because mendelian transmission
means that only one of the two alleles in an individual, chosen at random at a locus, is
transmitted to the offspring.

Genetic drift can play a role in the dynamics of all alleles and populations, but it will
play the biggest role for neutral alleles. A neutral polymorphism occurs when the segregating
alleles at a polymorphic site have no discernable effect on the fitness (we’ll make clear what
we mean by discernable later, for the moment think of this as no effect on fitness).

2.1 Loss of heterozygosity due to drift.

Genetic drift will, in the absence of new mutations, slowly purge our population of neutral ge-
netic diversity as alleles slowly drift to high or low frequencies and are lost or fixed over time.

Imagine a population of a constant size N diploid individuals, and that we are examining
a locus segregating for two alleles that are neutral with respect to each other. This popula-
tion is randomly mating with respect to the alleles at this locus. See figures 6 and 7 to see
how genetic drift proceeds, by tracking alleles within a small population.

In generation t our current level of heterozygosity is Ht, i.e. the probability that two
randomly sampled alleles in generation t are non-identical is Ht. Assuming that the mu-
tation rate is zero (or vanishing small), what is our level of heterozygosity in generation t+1?

In the next generation (t+ 1) we are looking at the alleles in the offspring of generation
t. If we randomly sample two alleles in generation t+ 1 which had different parental alleles
in generation t then it is just like drawing two random alleles from generation t. So the
probability that these two alleles in generation t + 1, that have different parental alleles in
generation t, are non-identical is Ht.

Conversely, if our pair of alleles have the same parental allele in the proceeding generation
(i.e. the alleles are identical by descent one generation back) then these two alleles must be
identical (as we are not allowing for any mutation).

In a diploid population of size N individuals there are 2N alleles. The probability that
our two alleles have the same parental allele in the proceeding generation is 1/(2N), the
probability that they have different parental alleles is is 1 − 1/(2N). So by the above
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Figure 6: Loss of heterozygosity over time, in the absence of new mutations. A diploid
population of 5 individuals over the generations, with lines showing transmission. In the
first generation every individual is a heterozygote..

Figure 7: Loss of heterozygosity over time, in the absence of new mutations. A diploid
population of 5 individuals. In the first generation I colour every allele a different colour so
we can track their descendants.

18



argument the expected heterozygosity in generation t+ 1 is

Ht+1 =
1

2N
× 0 +

(
1− 1

2N

)
Ht (29)

By this argument if the heterozygosity in generation 0 is H0 our expected heterozygosity in
generation t is

Ht =

(
1− 1

2N

)t
H0 (30)

i.e. the expected heterozygosity with our population is decaying geometrically with each
passing generation. If we assume that 1/(2N)� 1 then we can approximate this geometric
decay by an exponential decay, such that

Ht = H0 exp

(
− t

2N

)
(31)

i.e. heterozygosity decays exponentially at a rate 1/(2N).

Question 1. You are in charge of maintaining a population of delta smelt in the
Sacramento river delta. Using a large set of microsatellites you estimate that the mean level
of heterozygosity in this population is 0.005. You set yourself a goal of maintaining a level
of heterozygosity of at least 0.0049 for the next two hundred years. Assuming that the smelt
have a generation time of 3 years, and that only genetic drift affects these loci. What is the
smallest fully outbreeding population that you would need to maintain to meet this goal?
(Note this is similar to the calculations being carried out by conservation biologists but my
numbers are made up.).

2.2 Levels of diversity maintained by a balance between mutation
and drift

Looking backwards in time from one generation to the next, we are going to say that two
alleles which have the same parental allele (i.e. find their common ancestor) in the preceding
generation have coalesced, and refer to this event as a coalescent event.

The probability that our pair of randomly sampled alleles have coalesced in the preceding
generation is 1/(2N), the probability that our pair of alleles fail to coalesce is 1− 1/(2N).

The probability that a mutation changes the identity of the transmitted allele is µ per
generation. So the probability of no mutation occurring is (1−µ). We’ll assume that when a
mutation occurs it creates some new allelic type which is not present in the population. This
assumption (commonly called the infinitely-many-alleles model) makes the math slightly
cleaner, and also is not too bad an assumption biologically. See figure 8 for a depiction of
mutation-drift balance in this model over the generations.

This model lets us calculate when our two alleles last shared a common ancestor and
whether these alleles are identical as a result of failing to mutate since this shared ancestor.
For example we can work out the probability that our two randomly sampled alleles coalesced
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Figure 8: Mutation-drift balance. A diploid population of 5 individuals. In the first genera-
tion everyone has the same allele. Each generation the transmitted allele can mutate and we
generate a new colour. In the bottom plot I trace the frequency of alleles in our population
over time.

2 generations in the past (i.e. they fail to coalesce in generation 1 and then coalescent in
generation 2), and that they are identical as(

1− 1

2N

)
1

2N
(1− µ)4 (32)

note the power of 4 is because our two alleles have to have failed to mutate through 2 meioses
each.

More generally the probability that our alleles coalesce in generation t+1 and are identical
due to no mutation to either allele in the subsequent generations is

P (coal. in t+1 & no mutations) =
1

2N

(
1− 1

2N

)t
(1− µ)2(t+1) (33)

assuming that 1
2N
� and µ� 1 then we can approximate this as

P (coal. in t+1 & no mutations) ≈ 1

2N
e−t/(2N)e−2µ(t+1) (34)

to make this slightly easier on ourselves lets further assume that t ≈ t + 1 and so rewrite
this as

≈ 1

2N
e−t(2µ+1/(2N)) (35)

If we sample two alleles at random from the population we will not in general know
when they share a common ancestor. In which case we will need to integrate out over when
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this coalescent event occurred. Doing this we find the probability that our two alleles are
identical due to no mutation on either ancestral lineage since the pair shared a common
ancestor to be

1

2N

∫ ∞
0

e−t(2µ+1/(2N))dt =
1/(2N)

1/(2N) + 2µ
=

1

1 + 4Nµ
(36)

The probability that our pair of alleles are non-identical is simply one minus this, i.e.

4Nµ

1 + 4Nµ
(37)

This compound parameter 4Nµ, the population-scaled mutation rate, will come up a number
of times so we’ll give it its own name

θ = 4Nµ (38)

So all else being equal, species with larger population sizes should have proportionally
higher levels of neutral polymorphism.

2.3 The effective population size.

In practice populations rarely conform to our assumptions of being constant in size with
low variance in reproduction success. Real populations experience dramatic fluctuations in
size, and there is often high variance in reproductive success. Thus rates of drift in natural
populations are often a lot higher than the census population size would imply.

To cope with this population geneticists often invoke the concept of an effective popula-
tion size (Ne). In many situations (but not all), departures from model assumptions can be
captured by substituting Ne for N .

Specifically the effective population size (Ne) is the population size that would result in
the same rate of drift in an idealized constant population size, obeying our modeling as-
sumptions, as that observed in our true population.

If population sizes vary rapidly in size, we can (if certain conditions are met) replace
our population size by the harmonic mean population size. Consider a diploid population
of variable size, whose size is Nt t generations into the past. The probability our pairs of
alleles have not coalesced by the generation tth is given by

t∏
i=1

(
1− 1

2Nt

)
(39)

note that this is simply collapses to our original expression
(
1− 1

2N

)t
if Ni is constant. If

1/(Ni) is small, then we can approximate 1− 1
2Ni

by exp(− 1
2Ni

). Such that if Ni is never too
small

t∏
i=1

(
1− 1

2Ni

)
≈

t∏
i=1

exp

(
− 1

2Ni

)
= exp

(
−

t∑
i=1

1

2Ni

)
. (40)
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Figure 9: Loss of heterozygosity over time in a bottlenecking population. A diploid popu-
lation of 10 individuals, that bottlenecks down to three individuals repeatedly. In the first
generation I colour every allele a different colour so we can track their descendants, there
are no new mutations.

In our constant population size case the probability of failing to coalesce is exp(−t/(2N)). So
the variable population coalescent probabilities are still of the same form but the exponent
has changed. Comparing the exponent in the two cases we see

t

2N
=

t∑
i=1

1

2Ni

(41)

so that if we want a constant effective population size (Ne) that has the same coalescent
probability as our variable population we need to set N = Ne and rearrange this to see

Ne =
1

1
t

∑t
i=1

1
Ni

. (42)

this is the harmonic mean of the varying population size. Thus our effective population size,
the size of an idealized constant population which matches the rate of genetic drift, is the
harmonic mean true population size over time. The harmonic mean is very strongly affected
by small values, such that if our population size is one million 99% of the time but drops to
a 1000 every hundred or so generations, Ne will be much closer to 1000 than a million. See
figure 9 for a depiction of a repeatedly bottlenecked population losing diversity at a fast rate.

Variance in reproductive success will also affect our effective population size. Even if
our population has a large constant size of N individuals, if only small proportion of them
get to reproduce then the rate of drift will reflect this much small number of reproducing
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Figure 10: High variance on reproductive success increases the rate of genetic drift. A diploid
population of 10 individuals, where the circled individuals have much higher reproductive
success. In the first generation I colour every allele a different colour so we can track their
descendants, there are no new mutations.

individuals. See figure 10 for a depiction of the higher rate of drift in a population where
there is high variance in reproductive success.

If only NM males get to contribute to the next generation and NF females get to con-
tribute to the next generation. When our two alleles pick an ancestor, 25% of the time our
alleles were both in a female ancestor in which case they coalesce with probability 1/(2NF ),
and 25% of the time they are both in a male ancestor in which case they coalesce with
probability 1/(2NM). The remaining 50% of the time our ancestral lineages are in two indi-
viduals are different sexes in a generation so cannot coalescence. Therefore, our probability
of coalescence in the preceding generation is

1

4

1

2NM

+
1

4

1

2NF

=
1

8

NF +NM

NFNM

(43)

i.e. the rate of coalescence is the harmonic mean of the two sexes population sizes, equating
this to 1

2Ne
we find

Ne =
4NFNM

NF +NM

(44)

Thus if reproductive success is very skewed in one sex (e.g. NM � N/2) our effective popu-
lation size will be much reduced as a result.
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2.4 The Coalescent and patterns of neutral diversity

Pairwise Coalescent time distribution and the number of pairwise differences.
Thinking back to our calculations we made about the loss of neutral heterozygosity and
equilibrium levels of diversity (in Sections 2.1 and 2.2), you’ll note that we could first spec-
ify what generation a pair of sequences coalesce in, and then calculate some properties of
heterozygosity based on that. That’s because neutral mutations do not affect the probabil-
ity that an individual transmits that allele, so don’t affect the way in which we can trace
ancestral lineages back.

As such it will often be helpful to consider the time to the common ancestor of a pair of
sequences, and then think of the impact of that on patterns of diversity. See Figure 11 for an
example of this. The probability that a pair of alleles have failed to coalesce in t generations
and then coalesce in the t+ 1 generation back is

1

2N
(1− 1

2N
)t ≈ 1

2N
e−t/(2N) (45)

thus the coalescent time of a pair of sequences (T2) is approximately exponentially distributed
with a rate 1/(2N). We’ll denote that by saying that T2 ∼ Exp (1/(2N)). The mean coa-
lescent time of a pair of a pair of alleles is 2N generations

Conditional on a pair of alleles coalescing t generations ago there are 2t generations in
which a mutation could occur. Thus the probability of our pair of alleles are separated by j
mutations since they last shared a common ancestor is

P (j|T2 = t) =

(
2t

j

)
µj(1− µ)2t−j (46)

i.e. mutations happen in j generations, and do not happen in 2t− j generations (with
(
2t
j

)
ways this can possibly happen). Assuming that µ � 1, and that 2t − j ≈ 2t then we can
approximate the probability that we have j mutations as a Poisson distribution

P (j|T2 = t) =
(2µt)je−2µt

j!
(47)

i.e. a Poisson with mean 2µt.

As our expected coalescent time is 2N generations, the expected number of mutations
separating two alleles drawn at random from the population is

E(j) = 4Nµ = θ (48)

We’ll assume that mutations never happen at the same site twice, i.e. no multiple hits, such
that we get to see all of the mutation events that separate our pair of sequences (we’ll call
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Figure 11: A simple simulation of the coalescent process. The simulation consists of a diploid
population of 10 individuals (20 alleles). In each generation, each individual is equally likely
to be the parent of an offspring (and the allele transmitted is indicated by a light grey line).
We track a pair of alleles, chosen in the present day, back 14 generations untill they find a
common ancestor.
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this the infinitely-many-sites assumption, which should be fine if NµBP � 1). Thus the
number of mutations between a pair of sites is the observed number of differences between
a pair of sequences.

We’ll denote the observed number of pairwise differences at putatively neutral sites sep-
arating a pair of sequences as π (we usually average this over a number of pairs of sequences

for a region). So we can estimate of θ from π, θ̂π by setting θ̂π = π. If we have an inde-

pendent estimate of µ, then from setting π = θ̂π = 4Nµ we can obtain an estimate of the
population size N that is consistent with our levels of neutral polymorphism.

2.5 The coalescent process of a sample of alleles.

Usually we are not just interested pairs of alleles, or the average pairwise diversity, we are
interested in the properties of diversity in samples of a number of alleles drawn from the
population. To allow for this instead of just following a pair of lineages back until they
coalesce, we can follow the history of a sample of alleles back through the population.

Consider first sampling three alleles at random from the population. The probability
that all three alleles choose exactly the same ancestral allele one generation back is 1/(2N)2.
If N is reasonably large then this is a very small probability. As such it is very unlikely
that our three alleles coalesce at once, a in a moment we’ll see that it is safe to ingnore such
unlikely events.

The probability that a specific pair of alleles find a common ancestor in the preceding
generation is still 1/(2N). There are three possible pairs of alleles so the probability that no
pair finds a common ancestor is(

1− 1

(2N)

)3

≈
(

1− 3

2N

)
(49)

in making this approximation we are multiplying out the right hand-side and ignoring terms
of 1/N2 and higher. See Figure 12 for a random realization of this process.

More generally when we sample i alleles there are
(
i
2

)
pairs, i.e. i(i− 1)/2 pairs, thus the

probability that no pair of alleles coalesces in the preceding generation is(
1− 1

(2N)

)(i2)
≈

(
1−

(
i
2

)
2N

)
(50)

while the probability of any pair coalescing is ≈ (i2)
2N

.

We can ignore the possibility of more than pairs of alleles (e.g. tripletons) simultaneously
coalescing at once as terms of 1/N2 and higher can be ignored as they are vanishingly rare.
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Figure 12: A simple simulation of the coalescent process for three lineages. We track the
ancestry of three modern-day alleles, the first pair (blue and purple) coalesce four generations
back their are then two independent lineages we are tracking, this pair then coalesces twelve
generations in the past. Note that different random realizations of this process will differ
from each other a lot.
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Obviously there are in reasonable sample sizes there are many more triples (
(
i
3

)
), and higher

order combinations, than pairs (
(
i
2

)
) but if i� N then we are safe to ignore these terms.

When there are i alleles the probability that we wait until the t + 1 generation before
any pair of alleles coalesce is(

i
2

)
2N

(
1−

(
i
2

)
2N

)t

≈
(
i
2

)
2N

exp

(
−
(
i
2

)
2N

t

)
(51)

thus the waiting time Ti to the first coalescent event in a sample of i alleles is exponentially

distributed with rate
(i2)
2N

, i.e. Ti ∼ Exp

(
(i2)
2N

)
. The mean waiting time till any of pair within

our sample to coalesce is 2N/
(
i
2

)
.

When a pair of alleles first find a common ancestral allele some number of generations
back further into the past we only have to keep track of that common ancestral allele for the
pair. Thus when a pair of alleles in our sample of i alleles coalesce, we then switch to having
to follow i− 1 alleles back. Then when a pair of these i− 1 alleles coalesce, we then have to
follow i − 2 alleles back. This process continues until we coalesce back to a sample of two,
and from there to a single most recent common ancestor (MRCA).

To simulate a coalescent genealogy at a locus for a sample of n alleles we therefore simply
follow this algorithm

1. set i = n.

2. We simulate a random variable to be the time ti to the next coalescent event from

ti ∼ Exp

(
(i2)
2N

)
3. choose a pair of alleles to coalesce at random from all possible pairs.

4. set i = i− 1

5. continue looping of steps 1-3 until i = 1 i.e. the most recent common ancestor of the
sample is found.

by following this algorithm we are generating realizations of the genealogy of our sample.

We will first consider the time to the most recent common ancestor of the entire sample
(TMRCA). This is

TMRCA =
2∑
i=n

Ti (52)

28



generations back. As our coalescent times for different i are independent, the expected time
to the most recent common ancestor is

E(TMRCA) =
2∑
i=n

E(Ti) =
2∑
i=n

2N/

(
i

2

)
(53)

using the fact that 1
i(i−1) = 1

i−1 −
1
i

with a bit of rearrangement we can rewrite this is

E(TMRCA) = 4N

(
1− 1

n

)
(54)

so the average TMRCA scales linearly with population size. Interestingly, as we move to larger
and larger samples (i.e. n � 1) the average time to the most recent common ancestor is
converging on 4N . What’s happening here is that in large samples our lineages typically co-
alesce rapidly at the start and very soon coalesce down to a much smaller number of lineages.

Above we argued that a mutation is only becomes a fixed difference if it is lucky enough
to be the ancestor of the entire population. As we saw above this occurs with probability
1/(2N). How long does is take on average for such an allele to fix within our population.
We’ve just seen that it takes 4N generations for a large sample of alleles to all trace their
ancestry back to a single most recent common ancestor. Thus it must take roughly 4N
generations for a neutral allele present in a single copy within the the population to the
ancestor of all alleles within our population. This argument can be made more precise, but
in general we would still find that it takes ≈ 4N generations for a neutral allele to go from
its introduction to fixation with the population.

The total amount of time in the genealogy (Ttot)

Ttot =
2∑
i=n

iTi (55)

as when there are i lineages each contributes a time Ti to the total time. Taking the expec-
tation of the total time in the genealogy

E(Ttot) =
2∑
i=n

i
2N(
i
2

) =
2∑
i=n

4N

i− 1
=

1∑
i=n−1

4N

i
(56)

so our expected total amount of time in the genealogy scales linearly with our population
size. Our expected total amount of time is also increasing with sample size but is doing so
very slowly. To see this more carefully we can see that for large n

E(Ttot) =
1∑

i=n−1

4N

i
≈ 4N

∫ n

1

1

i
di = 4N log(n− 1) (57)
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here we are approximating our sum by an integral, which will work for large n. So our
expected total amount of time in the genealogy is growing with n but it is doing so very
slowly. This again follows from the fact that in large samples the initial coalescence usually
happens very rapidly, so that extra samples adds little to the total amount of time in the tree.

We saw above that the number of mutational differences between a pair of alleles that
coalescence T2 generations ago was Poisson with a mean of 2µT2. A mutation that occurs on
any branch of our genealogy will cause a segregating polymorphism in the sample (making
our infinitely-many-sites assumption). Thus if the total time in the genealogy is Ttot there is
Ttot generations for mutations. So the total number of mutations segregating in our sample
(S) is Poisson with mean µTtot. Thus the expected number of segregting in history a sample
of size n is

E(S) = µE(Ttot) =
1∑

i=n−1

4Nµ

i
= θ

1∑
i=n−1

1

i
(58)

Thus we can use this formula to derive another estimate of the population scaled mutation
rate, by setting our observed number of segregating sites in a sample (S) equal to this

expectation. We’ll call this estimator θ̂W

θ̂W =
S∑1

i=n−1
1
i

(59)

this estimator was devised by Watterson, hence the W .

2.6 The fixation of neutral alleles

It is very unlikely that a rare neutral allele accidentally drifts up to fixation, it is much
more likely that such an allele is eventually lost from the population. However, there is a
large and constant influx of rare alleles into the population due to mutation, so even if it is
very unlikely that an individual allele fixes within the population, some neutral alleles will fix.

Probability of the eventual fixation of a neutral allele. An allele which reaches fix-
ation within a population, is an ancestor to the entire population. In a particular generation
there can be only single allele that all other alleles at the locus in later generation can claim
as an ancestor. As at a neutral locus all of our alleles are exchangeable, as they have no
effect on the number of descendents an individual leaves, so any allele is equally likely to be
the ancestor of the entire population. In a diploid population size of size N , there are 2N
alleles all of which are equally likely to be the ancestor of the entire population at some later
time point. So if our allele is present in a single copy, the chance that is the ancestor to the
entire population in some future generation is 1/(2N), i.e. the chance our neutral allele is
eventually fixed is 1/(2N). See Figure 13, our orange allele in the first generation is one of
10 differently coloured alleles, and so has a 1/10 chance of being the ancestor of the entire
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Figure 13: Each allele initially present in a small diploid population is given a different colour
so we can track their descendants over time. By the 9th generation all of the alleles present
in the population can trace their ancestry back to the orange allele.

population at some later time point (as it is by the 9th generation).

More generally if our neutral allele is present in i copies in the population, of 2N alleles,
the probability that this allele is fixed is i/(2N). I.e. the probability that a neutral allele is
eventually fixed is simply given by its frequency (p) in the population. We can also derive
this result by letting Ns→ 0 in eqn. (172).

Rate of substitution of neutral alleles. A substitution between populations that do
not exchange gene flow is simply a fixation event within one population. The rate of substi-
tution is therefore the rate at which new alleles fix in the population, so that the long-term
substitution rate is the rate at which mutations arise that will eventually become fixed within
our population.

Assume that there are two classes of mutational changes that can occur with a region,
highly deleterious mutations and neutral mutations. A fraction C of all mutational changes
are highly deleterious, and can not possibly contribute to substitution nor polymorphism
(i.e. Ns� 1). While a fraction 1−C are neutral. If our mutation rate is µ per transmitted
allele per generation, then a total of 2Nµ(1 − C) neutral mutations enter our population
each generation.
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Each of these neutral mutations has a 1/(2N) probability chance of eventually becoming
fixed in the population. Therefore, the rate at which neutral mutations arise that eventually
become fixed within our population is

2Nµ(1− C)
1

2N
= µ(1− C) (60)

thus the rate of substitution under a model where newly arising alleles are either highly dele-
terious or neutral, is simply given by the mutation rate towards neutral alleles, i.e. µ(1−C).

Consider a pair of species have diverged for T generations, i.e. orthologous sequences
shared between the species last shared a common ancestor T generations ago. If they have
maintained a constant µ over that time, will have accumulated an average of

2µ(1− C)T (61)

neutral substitutions. This assumes that T is a lot longer than the time it takes to fix a
neutral allele, such that the total number of alleles introduced into the population that will
eventually fix is the total number of substitutions. We’ll see below that a neutral allele takes
on average 4N generations to fix from its introduction into the population.

This is a really pretty result as the population size has completely canceled out of the
neutral substitution rate. However, there is another way to see this in a more straightward
way. If I look at a sequence in me compared to say a particular chimp, I’m looking at the
mutations that have occurred in both of our germlines since they parted ways T generations
ago. Since neutral alleles do not alter the probability of their transmission to the next gen-
eration, we are simply looking at the mutations that have occurred in 2T generations worth
of transmissions. Thus the average number of neutral mutational differences separating our
pair of species is simply 2µ(1− C)T .

2.7 Neutral diversity and population structure

Upto now we have assumed that our alleles that we have modelled in the coalescent setting
are drawn from a randomly mating population such that any pair of lineages is equally likely
to coalesce with each other. However, when there is population structure this assumption is
violated.

We have previously written the measure of population structure FST as

FST =
HT −HS

HT

(62)

where HS is the probability that two alleles sampled at random from a subpopulation differ,
and HT is the probability that two alleles sampled at random from the total population
differ.
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A simple population split model Imagine a population of constant size of Ne diploid in-
dividuals that τ generations in the past split into two daughter populations (sub-populations)
each of size Ne individuals, who do not subsequently exchange migrants. In the current day
we sample an equal number of alleles from both subpopulations.

Consider a pair of alleles sampled within one of our sub-populations, they have experi-
enced a population of size Ne and so the probability that they differ is HS = θ/(1+θ) (where
θ = 4Neµ). The heterozygosity in our total population is a little more tricky to calculate.
Assuming that we equally sample both sub-populations, when we draw two alleles from our
total sample, 50% of the time they are drawn from the same subpopulation and 50% of the
time they are drawn from different subpopulations. Therefore, our total heterozygosity is
given by

HT = 1
2
HS + 1

2
HB (63)

whereHB is the probability that a pair of alleles drawn from our two different sub-populations
differ from each other. Our pair of alleles can not find a common ancestor with each other
for at least τ generations into he past as they are in distinct populations (not connected by
migration). The probability that one or other of them mutates in this time is 1− (1− µ)2T .
With probability (1 − µ)2T neither of our alleles mutate in the T generations back in time
before they find themselves back in the combined ancestral population. Conditional on
failing to mutating before the combined ancestral population, the probability that they do
manage to mutate before coalescing in that population of size Ne is θ/(θ+ 1). Putting these
components together

HB =
(
1− (1− µ)2T

)
+ (1− µ)2T

θ

θ + 1
(64)

We can plug this into our expression for HT , and then that in turn into FST.
To understand this better we can make a simple approximation based on our mutation

rate being very low, such that Neµ � 1 ao HS ≈ 4Neµ, and that µ � 1 and µT � 1.
Assuming this, then

HB ≈ 2µT + 4Neµ. (65)

So that

FST ≈
µT

µT + 4Neµ
(66)

note that µ cancels out of this. In this simple toy model FST is increasing because the amount
of between population diversity increases with the divergence time of the two populations
(initially linearly with T ). It does so at a rate give by T/(4Ne) so that differentiation will
be higher between populations separated by long divergence times or with small effective
population sizes.

A simple model of migration between an island and the mainland. We can also use
the coalescent to think about patterns of differentiation under a simple model of migration
drift equilibrium. Lets consider a small island population that is relatively isolated from a
large mainland population, and that both of these populations are constant in size. We’ll
assume that the expected heterozygosity for a pair of alleles sampled on the mainland is HM .
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Figure 14: Change in allele frequencies following a population split.
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Our island has a population size NI that is very small compared to our mainland popu-
lation. Each generation some low fraction m of our individuals on the island have migrant
parents from the mainland the generation before. Our island may also send migrants back
to the mainland, but these are a drop in the ocean compared to the large population size on
the mainland and their effect can be ignored.

If we sample an allele on the island back and trace its ancestral lineage backward in time,
each generation our ancestral allele have a low probability m of being descended from the
mainland in the proceeding generation (if we go far enough the allele eventually has to be
descended from an allele on the mainland). The probability that a pair of alleles sampled
on the island are descended from a shared recent common ancestral allele on the island, is
the probability that our pair of alleles coalesce before either lineage migrates. For example,
the probability that our pair of alleles coalesce t+ 1 generations back is

1

2NI

(1−m)2(t+1)

(
1− 1

2NI

)t
≈ 1

2NI

exp

(
−t
(

1

2NI

+ 2m

))
, (67)

with the approximation following from assuming that m� 1 & 1/(2NI)� 1 (note that this
is very similar to our derivation of heterozygosity above). The probability that our alleles
coalescence before either one of them migrates off the island, irrespective of the time, is∫ ∞

0

1

2NI

exp

(
−t
(

1

2NI

+ 2m

))
dt =

1/(2NI)

1/(2NI) + 2m
. (68)

Lets assume that the mutation rate is very low such as it is very unlikely that the pair
of alleles mutate before they coalesce on the island. Therefore, the only way that the alleles
can be different from each other is if one or other of them migrates to the mainland, which
happens with probability

1− 1/(2NI)

1/(2NI) + 2m
(69)

Conditional on one or other of our alleles migrating to the mainland, both of our alleles
represent independent draws from the mainland and so differ from each other with probability
HM . Therefore, the level of heterozygosity on the island is given by

HI = (1− 1/(2NI)

1/(2NI) + 2m
)HM (70)

So the reduction of heterozygosity on the island compared to the mainland is

FIM = 1− HI

HM

=
1/(2NI)

1/(2NI) + 2m
=

1

1 + 4NIm
. (71)

The level of inbreeding on the island compared to the mainland will be high in the migration
rate is low and the effective population size of the island is low, as allele frequencies on the
island are drifting and diversity is not being replenished on the island by migration. The
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key parameter here is the number individuals on the island replaced by immigrants from the
mainland each generation (NIm).

We have framed this as being about the reduction in genetic diversity on the island
compared to the mainland. However, if we consider collecting a individuals on the island
and mainland in proportion to population sizes the total level of heterozygosity would be
HT = HM , as samples from our mainland would greatly outnumber those from our island.
Therefore, considering our island our sub-population we have derived another simple model
of FST .
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3 The phenotypic resemblance between relatives

We can use our understanding of the sharing of alleles between relatives to understand the
phenotypic resemblance between relatives in quantitative phenotypes. We can then use this
to understand the evolutionary change in quantitative phenotypes in response to selection.

Let’s imagine that the genetic component of the variation in our trait is controlled by
L autosomal loci that act in an additive manner. The frequency of allele 1 at locus l is pl,
with each copy of allele 1 at this locus increasing your trait value by al above the population
mean. The phenotype of an individual, let’s call her i, is Xi. Her genotype at SNP l, is Gi,l.
Here Gi,l = 0, 1, or 2 represents the number of copies of allele 1 she has at this SNP. Her
expected phenotype, given her genotype, is then

XA,i = µ+ E(Xi|Gi,1, · · · , Gi,L) = µ+
L∑
l=1

Gi,lal (72)

where µ is the mean phenotype in our population. Now in reality the genetic phenotype is
a function of the expression of those alleles in a particular environment. Therefore, we can
think of this expected phenotype as being an average across a set of environments that occur
in the population.

When we measure our individual’s phenotype we see

Xi = µ+XA,i +XE,i (73)

where XE is the deviation from the mean phenotype due to the environment. This XE

included the systematic effects of the environment our individual finds herself in and all of
the noise during development, growth, and the various random insults that life throws at
our individual. If a reasonable number of loci contribute to variation in our trait then we
can approximate the distribution of XA,i by a normal distribution due to the central limit
theorem (see Figure 15). Thus if we can approximate the distribution of the effect of envi-
ronmental variation on our trait (XE,i) also by a normal distribution, which is reasonable as
there are many small environmental effects, then the distribution of phenotypes within the
population (Xi) will be normally distributed (see Figure 15).

Note that as this is an additive model we can decompose eqn. 73 into the effects of the
two alleles at each locus, in particular we can rewrite it as

Xi = µ+XiM +XiP +XiE (74)

where XiM and XiP are the contribution to the phenotype of the allele that our individual
received from her mother (maternal alleles) and father (paternal alleles) respectively. This
will come in handy in just a moment when we start thinking about the phenotype covariance
of relatives.
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Figure 15: The convergence of the phenotypic distribution to a normal distribution. Each of
the three histograms shows the distribution of the phenotype in a large sample, for increasing
large numbers of loci (L). I have simulated each individual’s phenotype following equation
72 and 73. Specifically I simulate each individuals biallelic genotype at L loci, assuming
Hardy-Weinberg proportions and that the allele is at 50% frequency. I assume that all of the
alleles have equal effects and combine them additively together. I then add an environmental
contribution, which is normally distributed with variance 0.05. Note that in the left two
pictures you can see peaks corresponding to different genotypes.
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Now obviously this model seems silly at first sight as alleles don’t only act in an additive
manner, as they interact with alleles at the same loci (dominance) and at different loci
(epistasis). Later we’ll relax this assumption, however, we’ll find that if we are interested
in evolutionary change over short time-scales it is actually only the “additive component”
of genetic variation that will (usually) concern us. We will define this more formally later
on, but for the moment we can offer the intuition that parents only get to pass on a single
allele at each locus on to the next generation. As such, it is the effect of these transmitted
alleles, averaged over possible matings, that is an individual’s average contribution to the
next generation (i.e. the additive effect of the alleles that their genotype consists of).

3.0.1 Additive genetic variance and heritability

As we are talking about an additive genetic model we’ll talk about the additive genetic
variance (VA), the variance due to the additive effects of segregating genetic variation. This
is a subset of the total genetic variance if we allow for non-additive effects.

The variance of our phenotype across individuals (V ) can write this as

V = V ar(XA) + V ar(XE) = VA + VE (75)

in writing this we are assuming that there is no covariance between XG,i and XE,i i.e. there
is no covariance between genotype and environment.

Our additive genetic variance can be written as

VA =
L∑
l=1

V ar(Gi,lal) (76)

where V ar(Gi,lal) is the contribution to the additive variance among individuals of the l
locus. Assuming random mating we can write our additive genetic variance as

VA =
L∑
l=1

a2l 2pl(1− pl) (77)

where the 2pl(1−pl) term follows the binomial sampling of two alleles per individual at each
locus.

The narrow sense heritability We would like a way to think about what proportion of
the variation in our phenotype across individuals is due to genetic differences as opposed to
environmental differences. Such a quantity will be key in helping us think about the evolu-
tion of phenotypes. For example, if variation in our phenotype had no genetic basis then no
matter how much selection changes the mean phenotype within a generation the trait will
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not change over generations.

We’ll call the proportion of the variance that is genetic the heritability, and denote it by
h2. We can then write this as

h2 =
V ar(XA)

V
=
VA
V

(78)

remember that we thinking about a trait where all of the alleles act in a perfectly additive
manner. In this case our heritability h2 is referred to as the narrow sense heritability, the
proportion of the variance explained by the additive effect of our loci. When we allow domi-
nance and epistasis into our model we’ll also have to define the broad sense heritability (the
total proportion of the phenotypic variance attributable to genetic variation).

The narrow sense heritability of a trait is a useful quantity, indeed we’ll see shortly that
it is exactly what we need to understand the evolutionary response to selection on a quanti-
tative phenotype. We can calculate the narrow sense heritability by using the resemblance
between relatives. For example, if our phenotype was totally environmental we should not
expect relatives to resemble each other any more than random individuals drawn from the
population. Now the obvious caveat here is that relatives also share an environment, so may
resemble each other due to shared environmental effects.

3.0.2 The covariance between relatives

So we’ll go ahead and calculate the covariance in phenotype between two individuals (1 and
2) who have a phenotype X1 and X2 respectively.

Cov(X1, X2) = Cov ((X1M +X1P +X1E), ((X2M +X2P +X2E)) (79)

We can expand this out in terms of the covariance between the various components in these
sums.

To make our task easier we (and most analyses) will assume two things

1. that we can ignore the covariance of the environments between individuals (i.e. Cov(X1E, X2E) =
0)

2. that we can ignore the covariance between the environment variation experience by
an individual and the genetic variation in another individual (i.e. Cov(X1E, (X2M +
X2P )) = 0).

The failure of these assumptions to hold can severely undermine our estimates of heri-
tability, but we’ll return to that later. Moving forward with these assumptions, we can write
our phenotypic covariance between our pair of individuals as

Cov(X1, X2) = Cov((X1M , X2M)+Cov(X1M , X2P )+Cov(X1P , X2M)+Cov(X1P , X2P ) (80)
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This is saying that under our simple additive model we can see the covariance in phenotypes
between individuals as the covariance between the allelic effects in our individuals. We can
use our results about the sharing of alleles between relatives to obtain these terms. But
before we write down the general case lets quickly work through some examples.

The covariance between Identical Twins Lets first consider the case of a pair of
identical twins from two unrelated parents. Our pair of twins share their maternal and
paternal allele identical by descent (X1M = X2M and X1P = X2P ). As their maternal and
paternal alleles are not correlated draws from the population, i.e. have no probability of
being IBD as we’ve said the parents are unrelated, the covariance between their effects on
the phenotype is zero (i.e. Cov(X1P , X2M) = Cov(X1M , X2P ) = 0). In that case eqn. 80 is

Cov(X1, X2) = Cov((X1M , X2M) + Cov(X1P , X2P ) = 2V ar(X1M) = VA (81)

Now in general identical twins are not going to be super helpful for us in estimating h2

as under models with non-additive effects identical twins have higher covariance than we’d
expect as they resemble each other also because of the dominance effects as they don’t just
share alleles they share their entire genotype.

The covariance in phenotype between mother and child . If the mother and father
are unrelated individuals (i.e. are two random draws from the population) then the mother
and a child share one allele IBD at each locus (i.e. r1 = 1 and r0 = r2 = 0). Half the
time our mother transmits her paternal allele to the child, in which case XP1 = XM2 and
so Cov(XP1, XM2) = V ar(XP1) and all the other covariances in eqn. 80 zero, and half the
time she transmits her maternal allele to the child Cov(XM1, XM2) = V ar(XM1) and all the
other terms zero. By this argument Cov(X1, X2) = 1

2
V ar(XM1) + 1

2
V ar(XP1) = 1

2
VA.

The covariance between general pairs of relatives under an additive model The
two examples make clear that to understand the covariance between phenotypes of relatives
we simply need to think about the alleles they share IBD. Consider a pair of relatives (1
and 1) with a probability r0, r1, and r2 of sharing zero, one, or two alleles IBD respectively.
When they share zero alleles Cov((X1M + X1P ), (X2M + X2P )) = 0, when they share one
allele Cov((X1M +X1P ), (X2M +X2P )) = V ar(X1M) = 1

2
VA, and when they share two alleles

Cov((X1M + X1P ), (X2M + X2P )) = VA. Therefore, the general covariance between two
relatives is

Cov(X1, X2) = r0 × 0 + r1
1

2
VA + r2VA = 2F1,2VA (82)

So under a simple additive model of the genetic basis of a phenotype to measure the narrow
sense heritability we need to measure the covariance between a set of pairs of relatives (as-
suming that we can remove the effect of shared environmental noise). From the covariance
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between relatives we can calculate VA, we can then divide this by the total phenotypic vari-
ance to get h2.

Question 1. In polygynous blackbird populations (i.e. males mate with several
females), paternal half-sibs can be identified. Suppose that the covariance of tarsus lengths
among half-sibs is 0.25 cm2 and that the total phenotypic variance is 4 cm2. Use these data
to estimate h2 for tarsus length in this population.

Another way that we can estimate the narrow sense heritability is through the regression
of child’s phenotype on the parental mid-point phenotype. The parental mid-point phenotype
is simple the average of the mum and dad’s phenotype. Denoting the child’s phenotype by
Xkid and mid-point phenotype by Xmid so that if we take the regression Xkid ∼ Xmid this
regression has slope β = Cov(Xkid, Xmid)/V ar(Xmid). The covariance of Cov(Xkid, Xmid) =
1
2
VA, and V ar(Xmid) = 1

2
V as by taking the average of the parents we have halved the

variance, such that the slope of the regression is

β =
Cov(Xkid, Xmid)

V ar(Xmid)
=
VA
V

= h2 (83)

i.e. the regression of the child’s phenotype on the parental midpoint phenotype is an estimate
of the narrow sense heritability. This is a common way to estimate heritability, although it
doesn’t bypass the need to control for environmental correlations between relatives.

Our regression allows us to attempt to predict the phenotype of the child given the child;
how well we can do this depends on the slope. If the slope is close to zero then the parental
phenotypes hold no information about the phenotype of the child, while if the slope is close
to one then the parental mid-point is a good guess at the child’s phenotype.

More formally the expected phenotype of the child given the parental phenotypes is

E(Xkid|Xmum, Xdad) = µ+ β(Xmid − µ) = µ+ h2(Xmid − µ) (84)

this follows from the definition of linear regression. So to find the child’s predicted pheno-
type we simply take the mean phenotype and add on the difference between our parental
mid-point multiplied by our narrow sense heritability.

Estimating additive genetic variance across a variety of different relationships.
In many natural populations we may have access to individuals of a range of different rela-
tionships to each other (through monitoring of the paternity of individuals), but relatively
few individuals of a given relationship (e.g. sibs). We can try and use this information as
fully as possible in a mixed model framework. Considering equation 73 we can write an
individual’s phenotype Xi as

Xi = µ+XA,i + ei (85)
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Figure 16: Regression of parental mid-point phenotype on child’s phenotype. The three
panels show decreasing levels of environmental variance (VE) holding the additive genetic
variance constant (VA = 1). In these figures I simulate 100 loci, as described in the caption
of Figure 15. I simulate the genotypes and phenotypes of the two parents, and then simulate
the child’s genotype following mendelian transmission. The blue line shows x = y the red
line shows the best fitting linear regression line.
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where ei ∼ N(0, VE) and XA,i is normally distributed across individuals with covariance
matrix VAA where the the entries for an pair of individuals i and i are Aij = 2Fi,j and Aii1.
Given the matrix A we can estimate VA. We can also add fixed effects into this model to
account for generation effects, additional mixed effects could also be included to account for
shared environments between particular individuals (e.g. a shared nest). This is sometimes
called the “animal model”, and also goes by the name of variance components analysis.

Multiple traits. Traits often covary with each other, due to both environmentally induced
effects (e.g. due to the effects of diet on multiple traits) and due to the expression of
underlying genetic covariance between traits. In turn this genetic covariance can reflect
pleiotropy, a mechanistic effect of an allele on multiple traits (e.g. variants that effect skin
pigmentation often effect hair color) or the genetic linkage of loci independently affecting
multiple traits. If we are interested in evolution over short time-scales we can (often) ignore
the genetic basis of this correlation.

Consider two traits X1,i and X2,i in an indivdual i, these could be say the indivdual’s leg
length and nose length. As before we can write these as

X1,i = µ1 +X1,A,i +X1,E,i

X2,i = µ2 +X2,A,i +X2,E,i

(86)

As before we can talk about the total phenotypic variance (V1, V2), environmental variance
(V1,E and V2,E), and the additive variance and in trait one and two and (V1,A, V2,A). But
now we also have to consider the total covariance V1,2 = Cov(X1, X2), the environmentally
induced covariance between the traits (VE,1,2 = Cov(X1,E, X2,E)) and the additive genetic
covariance (VA,1,2 = Cov(X1,A, X2,A)) between trait one and two.

We can store these values in a matrices

V =

(
V1 V1,2
V1,2 V2

)
(87)

and

G =

(
V1,A VA,1,2
VA,1,2 V2,A

)
(88)

we can generalize this to an abitrary number of traits.
We can estimate these quantities, in a similar way to before, by studying the covariance

in different traits between relatives:

Cov(X1,i, X2,j) = 2Fi,jVA,1,2 (89)

3.0.3 The response to selection

Evolution by natural selection requires:
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1. Variation in a phenotype

2. That survival is non-random with respect to this phenotypic variation.

3. That this variation is heritable.

Points 1 and 2 encapsulate our idea of Natural Selection, but evolution by natural selection
will only occur if the 3rd condition is met. It is the heritable nature of variation that couples
change within a generation due to natural selection, to change across generations (evolution-
ary change).

Lets start by thinking about the change within a generation due to directional selection,
where selection acts to change the mean phenotype within a generation. For example, a
decrease in mean height within a generation, due to taller organisms having a lower chance
of surviving to reproduction than shorter organisms. Specifically, we’ll denote our mean
phenotype at reproduction by µS, i.e. after selection has acted, and our mean phenotype
before selection acts by µBS. This second quantity may be hard to measure, as obviously
selection acts throughout the life-cycle, so it might be easier to think of this as the mean
phenotype if selection hadn’t acted. So the mean phenotype changes within a generation is
µS − µBS = S.

We are interested in predicting the distribution of phenotypes in next generation, in
particular we are interested in the mean phenotype in the next generation to understand
how directional selection has contributed to evolutionary change. We’ll denote the mean
phenotype in offspring, i.e. the mean phenotype in the next generation before selection acts,
as µNG. The change across generations we’ll call the response to selection R and put this
equal to µNG − µBS.

The mean phenotype in the next generation is

µNG = E (E(Xkid|Xmum, Xdad)) (90)

where the outer expectation is over the randomly mating of individuals who survive to
reproduce. We can use eqn. 84 to obtain an expression for this

µNG = µBS + β(E(Xmid)− µBS) (91)

so to obtain µNG we need to compute E(Xmid) the expected mid-point phenotype of pairs
of individuals who survive to reproduce. Well this is just the expected phenotype in the
individuals who survived to reproduce (µS), so

µNG = µBS + h2(µS − µBS) (92)

So we can write our response to selection as

R = µNG − µBS = h2(µS − µBS) = h2S (93)
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So our response to selection is proportional to our selection differential, and the constant
of proportionality is the narrow sense heritability. This equation is sometimes termed the
Breeders equation. It is a statement that the evolutionary change across generations (R)
is proportional to the change caused by directional selection within a generation, and the
strength of this relationship is determined by the narrow sense heritability.

Using the fact that h2 = VA/V we can rewrite this in a different form as

R = VA
S

V
(94)

i.e. our response to selection is the additive genetic variance of our trait (VA) multiplied by
the change within a generation as a fraction of the total phenotypic variance (S/V , some-
times called the the selection gradient β).

If our selection pressure is sustained over many generations we can use our breeders
equation to predict the response. If we are willing to assume that our heritability does not
change and we maintain a constant selection gradient, then after n generations our phenotype
mean will have shifted

nh2S (95)

i.e. our population will keep up a linear response to selection.
A change in mean phenotype within a generation occurs because of the differential fitness

of our organisms. To think more carefully about this change within a generation lets think
about a simple fitness model where our phenotype affects the viability of our organisms
(i.e. the probability they survive to reproduce). The probability that an individual has a
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phenotype X before selection is p(X), so that the mean phenotype before selection is

µBS = E[X] =

∫ ∞
−∞

xp(x)dx (96)

The probability that an organism with a phenotype X survives to reproduce is w(X), and
we’ll think about this as the fitness of our organism. The probability distribution of pheno-
types in those who do reproduce is

P(X|survive) =
p(x)w(x)∫∞

−∞ p(x)w(x)dx
. (97)

where the denominator is a normalization constant which ensures that our phenotypic dis-
tribution integrates to one. The denominator also has the interpretation of being the mean
fitness of the population, which we’ll call w, i.e.

w =

∫ ∞
−∞

p(x)w(x)dx. (98)

Therefore, we can write the mean phenotype in those who survive to reproduce as

µS =
1

w

∫ ∞
−∞

xp(x)w(x)dx (99)

If we mean center our population, i.e. set the phenotype before selection to zero, then

S =
1

w

∫ ∞
−∞

xp(x)w(x)dx (100)

if µS = 0. Inspecting this more closely we can see that S has the form of a covariance
between our phenotype X and our fitness w(X) (Cov(X,w(X))). Thus our change in mean
phenotype is directly a measure of the covariance of our phenotype and our fitness. Rewriting
our breeder’s equation using this observation we see

R =
VA
V
Cov(X,w(X)) (101)

we see that the response to selection is due to the fact that our fitness (viability) of our
organisms/parents covaries with our phenotype, and that our child’s phenotype is correlated
with the parent phenotype.

Question 2. A population of red deer were trapped on Jersey (an island off of England)
during the last inter-glacial period. From the fossil record we can see that the population
rapidly adapted to their new surroundings, presumably due to reduced predation and limited
food. Within 6,000 years they evolved from an estimated mean weight of the population
of 200kg to an estimated mean weight of 36kg (a 6 fold reduction! True story see: Lister,
A.M. Nature 1989). Using a current day population on the mainland you estimate that the
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generation time of red deer is 5 years and that the narrow sense heritability of the phenotype
is 0.5. (Assuming discrete generations).
A) Estimate the mean change per generation in the mean body weight.

B) Estimate the change in mean body weight caused by selection within a generation.

C) What do you have to assume to perform the calculations in B. Assuming we only have
fossils from the founding population and the population after 6000 years, should we assume
that the calculations accurately reflect what actually occurred within our population?

The response of multiple traits to selection, the multivariate breeder’s equation.
We can generalize these results for multiple traits, to ask how selection on multiple pheno-
types plays out over short time intervals. We’ll write our change in the mean our multiple
phenotypes within a generation as the vector S and our response across multiple generations
as the vector R. These two quantities are related by

R = GV−1S = Gβ (102)

where V and G are our matrices of the variance-covariance of phenotypes and additive
genetic values (eqn. (88) (87)) and β is a vector of selection gradients (i.e. the change
within a generation as a fraction of the total phenotypic variance). To make this a bit more
intuitive, consider two traits we are writing

R1 = VA,1β1 + VA,1,2β2

R2 = VA,2β2 + VA,1,2β1

(103)

where the 1 and 2 index our two different traits. This is a statement that our response in
any one phenotype is modified by selection on other traits that covary with that trait. This
offers a good way to think about how genetic trade offs play out over evolution over short
time-scales.
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4 One-locus models of selection

4.1 Fitness

As we have seen, natural selection occurs when there are differences between individuals in
fitness. We may define fitness in various ways. Most commonly, it is defined with respect to
the contribution of a phenotype or genotype to the next generation. Differences in fitness
can arise at any point during the life cycle. For instance, different genotypes or phenotypes
may have different survival probabilities from one stage in their life to the stage of reproduc-
tion (viability), or they may differ in the number of offspring produced (fertility), or both.
Here, we define the absolute fitness of a genotype as the expected number of offspring of an
individual of that genotype.

4.2 Haploid selection model

We start out by modelling selection in a haploid model, as this is mathematically relatively
simple. Let the number of individuals carrying alleles A1 and A2 in generation t be Pt and
Qt. Then, the relative frequencies at time t of alleles A1 and A2 are pt = Pt/(Pt + Qt)
and qt = Qt/(Pt +Qt) = 1− pt. Further, assume that individuals of type A1 and A2 on av-
erage produce W1 and W2 offspring individuals, respectively. We call Wi the absolute fitness.

Therefore, in the next generation, the absolute number of carriers of A1 and A2 are
Pt+1 = W1Pt and Qt+1 = W2Qt, respectively. The mean absolute fitness of the population
at time t is

W t = W1
Pt

Pt +Qt

+W2
Qt

Pt +Qt

= W1pt +W2qt, (104)

i.e. the sum of the fitness of the two types weighted by their relative frequencies. Note that
the mean fitness depends on time, as it is a function of the allele frequencies, which are
themselves time dependent.

The frequency of allele A1 in the next generation is then given by

pt+1 =
Pt+1

Pt+1 +Qt+1

=
W1Pt

W1Pt +W2Qt

=
W1pt

W1pt +W2qt
=
W1

W t

pt. (105)

Importantly, eqn. (105) tells us that the change in p only depends on a ratio of fitnesses.
Therefore, we need to specify fitness only up to an arbitrary constant. As long as we multiply
all fitnesses by the same value, that constant will cancel out and eqn. (105) will hold. Based
on this argument, it is very common to scale absolute fitnesses by the absolute fitness of one
of the genotypes, e.g. the most or the least fit genotype, to obtain relative fitnesses. Here,
we will use wi for the relative fitness of genotype i. If we choose to scale by the absolute
fitness of genotype A1, we obtain the relative fitnesses w1 = W1/W1 = 1 and w2 = W2/W1.
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Without loss of generality, we can therefore rewrite eqn. (105) as

pt+1 =
w1

w
pt, (106)

dropping the dependence of the mean fitness on time in our notation, but remembering it.
The change in frequency from one generation to the next is then given by

∆pt = pt+1 − pt =
w1pt
w
− pt =

w1pt − wpt
w

=
w1pt − (w1pt + w2qt)pt

w
=
w1 − w2

w
ptqt, (107)

recalling that qt = 1− pt.

Assuming that the fitnesses of the two alleles are constant over time, the number of
the two allelic types τ generations after time t are Pt+τ = (W1)

τPt and Qt+τ = (W2)
τQt,

respectively. Therefore, the relative frequency of allele A1 after τ generations past t is

pt+τ =
(W1)

τPt
(W1)τPt + (W2)τQt

=
(w1)

τPt
(w1)τPt + (w2)τQt

=
pt

pt + (w2/w1)τqt
, (108)

where the last step includes dividing the whole term by (w1)
τ and switching from absolute

to relative allele frequencies.

Rearranging eqn. (108) and setting t = 0, we can work out the time τ for the frequency
of A1 to change from p0 to pτ . First, we write

pτ =
p0

p0 + (w2/w1)τq0
(109)

and rearrange this to obtain
pτ
qτ

=
p0
q0

(
w1

w2

)τ
. (110)

Solving this for τ yields

τ = log

(
pτq0
qτp0

)
/ log

(
w1

w2

)
. (111)

In practice, it is often helpful to parametrize the relative fitnesses wi in a specific way.
For example, we may set w1 = 1 and w2 = 1− s, where s is called the selection coefficient.
Using this parametrization, s is simply the difference in relative fitnesses between the two
alleles. Equation (108) becomes

pt+τ =
pt

pt + qt(1− s)τ
, (112)

as w2/w1 = 1 − s. Then, if s � 1, we can approximate (1 − s)τ in the denominator by
exp(−sτ) to obtain

pt+τ ≈
pt

pt + qte−sτ
. (113)
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This equation takes the form of a logistic function. That is because we are looking at the
relative frequencies of two ‘populations’ (of alleles A1 and A2) that are growing (or declining)
exponentially, under the constraint that p and q always sum to 1.

Moreover, eqn. (110) for the time τ it takes for a certain change in frequency to occur
becomes

τ = − log

(
pτq0
qτp0

)
/ log (1− s) . (114)

Assuming again that s� 1, this simplifies to

τ ≈ 1

s
log

(
pτq0
qτp0

)
. (115)

One particular case of interest is the time it takes to go from an absolute frequency of 1
to near fixation in a population of size N . In this case, we have p0 = 1/N , and we may set
pτ = 1 − 1/N , which is very close to fixation. Of course, we then have q0 = 1 − 1/N and
qτ = 1/N . If N is sufficiently large, we may for mathematical convenience approximate q0
by q0 = 1. Plugging these values into eqn. (115), we obtain

τ ≈ 1

s
log

(
1− 1/N

(1− 1/N) 1/N

)
=

1

s
log(N) (116)

as an approximation for the time to fixation.

Haploid model with fluctuating selection We can now consider the case where the
fitnesses depend on time, and say that w1,t and w2,t are the fitnesses of the two types in
generation t. The frequency of allele A1 in generation t+ 1 is

pt+1 =
w1,t

wt
pt, (117)

which simply follows from eqn. (106). The ratio of the frequency of allele A1 to that of allele
A2 in generation t+ 1 is

pt+1

qt+1

=
w1,t

w2,t

pt
qt
. (118)

Therefore, if we think of the two alleles starting in generation t at frequencies pt and qt, then
τ generations later,

pt+τ
qt+τ

=

(
τ−1∏
i=t

w1,i

w2,i

)
pt
qt
. (119)

The question of which allele is increasing or decreasing in frequency comes down to

whether
(∏τ−1

i=t
w1,i

w2,i

)
is > 1 or < 1. As it is a little hard to think about this ratio, we can
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instead take the τ th root of it and consider

τ

√√√√(τ−1∏
i=t

w1,i

w2,i

)
=

τ

√∏τ−1
i=t w1,i

τ

√∏τ−1
i=t w2,i

. (120)

The term τ

√∏τ−1
i=t w1,i is the geometric mean fitness of allele A1 over the τ generations past

generation t. Therefore, allele A1 will only increase in frequency if it has a higher geometric
mean fitness than allele A2 (at least in our simple deterministic model).

4.3 Diploid model

We will now move on to a diploid model of a single locus with two segregating alleles. We will
assume that the difference in fitness between the three genotypes comes from differences in
viability, i.e. differential survival of individuals from the formation of zygotes to reproduction.
We denote the absolute fitnesses of genotypes A1A1, A1A2, and A2A2 by W11, W12, and W22.
Specifically, Wij is the probability that a zygote of genotype AiAj survives to reproduction.
Assuming that individuals mate at random, the number of zygotes that are of the three
genotypes and form generation t are

Np2t , N2ptqt, Nq2t . (121)

The mean fitness of the population of zygotes is then

W t = W11p
2
t +W122ptqt +W22q

2
t . (122)

Again, this is simply the weighted mean of the genotypic fitnesses.

How many zygotes of each of the three genotypes survive to reproduce? An individual
of genotype A1A1 has a probability of W11 of surviving to reproduce, and similarly for
other genotypes. Therefore, the expected number of A1A1, A1A2, and A2A2 individuals who
survive to reproduce is

NW11p
2
t , NW122ptqt, NW22q

2
t . (123)

It then follows that the total number of individuals who survive to reproduce is

N
(
W11p

2
t +W122ptqt +W22q

2
t

)
. (124)

This is simply the mean fitness of the population multiplied by the population size (i.e. Nw).

The relative frequency of A1A1 individuals at reproduction is simply the number of A1A1

genotype individuals at reproduction (NW11p
2
t ) divided by the total number of individuals
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A1A1 A1A2 A2A2

Absolute no. at birth Np2t N2ptqt Nq2t
Fitnesses W11 W12 W22

Absolute no. at reproduction NW11p
2
t NW122ptqt NW22q

2
t

Relative freq. at reproduction
NW11p2t
NW

= W11

W
p2t

NW122ptqt
NW

= W12

W
2ptqt

NW22q2t
NW

= W22

W
q2t

Table 3: Relative genotype frequencies after one episode of viability selection.

who survive to reproduce (NW ), and likewise for the other two genotypes. Therefore, the
relative frequency of individuals with the three different genotypes at reproduction is

NW11p
2
t

NW
,

NW122ptqt

NW
,

NW22q
2
t

NW
(125)

(see Table 3).

As there is no difference in the fecundity of the three genotypes, the allele frequencies
in the zygotes forming the next generation are simply the allele frequency among the repro-
ducing individuals of the previous generation. Hence, the frequency of A1 in generation t+1
is

pt+1 =
W11p

2
t +W12ptqt

W
. (126)

Note that, again, the absolute value of the fitnesses is irrelevant to the frequency of the
allele. Therefore, we can just as easily replace the absolute fitnesses with the relative fit-
nesses. That is, we may replace Wij by wij = Wij/W11, for instance.
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Question 1. You have been studying an annual wildflower for many generations
with two color morphs orange and white. You have discovered that a single bi-allelic
locus controls flower color, with the white allele being recessive. The pollinator of these
plants is an almost blind bat, so individuals are pollinated at random with respect to
flower color. Your population census of 200 individuals showed that the population
consisted of 168 orange-flowered individuals, and 32 white-flowered individuals.
Heavy February rainfall creates optimal growing conditions for an exotic herbivorous
beetle with a preference for orange-flowered individuals. This year it arrives at your
study site with a ravenous appetite. Only 50% of orange-flowered individuals survive
its wrath, while 90% of white-flowered individuals survive until the end of the grow-
ing season. Additionally, surviving orange flowered individuals produce 80 seeds on
average, while surviving white-flowered individuals produce 100 seeds on average. A
What is the initial frequency of the white allele, and what do you have to assume to
obtain this?
B What is the frequency of the white allele in the seeds forming the next generation?

The change in frequency from generation t to t+ 1 is

∆pt = pt+1 − pt =
w11p

2
t + w12ptqt
w

− pt. (127)

To simplify this equation, we will first define two variables w1 and w2 as

w1 = w11pt + w12qt, (128)

w2 = w12pt + w22qt. (129)

These are called the marginal fitnesses of allele A1 and A2, respectively. They are so called
as w1 is the average fitness of an allele A1, i.e. the fitness of A1 in a homozygote weighted by
the probability it is in a homozygote (pt) plus the fitness of A1 in a heterozygote weighted
by the probability it is in a heterozygote (qt). We further note that the mean relative fitness
can be expressed in terms of the marginal fitnesses as

w = w1pt + w2qt, (130)

where, for notational simplicity, we have omitted the dependence of mean and marginal fit-
nesses on time.

We can then rewrite eqn. (127) using w1 and w2 as

∆pt =
(w1 − w2)

w
ptqt. (131)

The sign of ∆pt, i.e. whether allele A1 increases of decreases in frequency, depends only on
the sign of (w1 −w2). The frequency of A1 will keep increasing over the generations so long
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as its marginal fitness is higher than that of A2, i.e. w1 > w2, while if w1 < w2, the frequency
of A1 will decrease. Note the similarity between eqn. (131) and the respective expression for
the haploid model in eqn. (107). (We will return to the special case where w1 = w2 shortly).

We can also rewrite (127) as

∆pt =
1

2

ptqt
w

dw

dp
, (132)

the demonstration of this we leave to the reader. This form shows that the frequency of
A1 will increase (∆pt > 0) if the mean fitness is an increasing function of the frequency of
A1 (i.e. if dw

dp
> 0). On the other hand, the frequency of A1 will decrease (∆pt < 0) if the

mean fitness is a decreasing function of the frequency of A1 (i.e. if dw
dp
< 0). Thus, although

selection acts on individuals, under this simple model, selection is acting to increase the
mean fitness of the population. The rate of this increase is proportional to the variance in
allele frequencies within the population (ptqt).

Question 2. Show that eqns. (132) and (131) are equivalent.

So far, our treatment of the diploid model of selection has been in terms of generic
fitnesses wij. In the following, we will use particular parametrizations to gain insight about
two specific modes of selection: directional selection and heterozygote advantage.

4.3.1 Diploid directional selection

Directional selection means that one of the two alleles always has higher marginal fitness
than the other one. Let us assume that A1 is the fitter allele, so that w11 ≥ w12 ≥ w22,
and hence w1 > w2Ȧs we are interested in changes in allele frequencies, we may use relative
fitnesses. We parameterize the reduction in relative fitness in terms of a selection coefficient,
similar to the one we met in the haploid selection section, as follows:

genotype A1A1 A1A2 A2A2

absolute fitness W11 ≥ W12 ≥ W22

relative fitness (generic) w11 = W11/W11 w12 = W12/W11 w22 = W22/W11

relative fitness (specific) 1 1− sh 1− s.

Here, the selection coefficient s is the difference in relative fitness between the two homozy-
gotes, and h is the dominance coefficient. For selection to be directional, we require that
0 ≤ h ≤ 1 holds. The dominance coefficient allows us to move between two extremes. One
is when h = 0, such that allele A1 is fully dominant and A2 fully recessive. In this case,
the heterozygote A1A2 is as fit as the A1A1 homozgyote genotype. The inverse holds when
h = 1, such that allele A1 is fully recessive and A2 fully dominant.
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We can then rewrite eqn. (131) as

∆pt =
pths+ qts(1− h)

w
ptqt, (133)

where
wt = 1− 2ptqtsh− q2t s. (134)

Question 3. Comparing the red (h = 0) and black (h = 0.5) trajectories in Figure
17, provide an explanation for why A1 increases faster initially if h = 0, but then
approaches fixation more slowly compared to the case of h = 0.5.

A special case is when h = 0.5. This case is the case of no dominance, as the interaction
among alleles with respect to fitness is strictly additive. Then, eqn. (133) simplifies to

∆pt =
1

2

s

w
ptqt. (135)

If selection is very weak, i.e. s� 1, the denominator (w) is close to 1 and we have

∆pt =
1

2
sptqt. (136)

It is instructive to compare eqn. (136) to the respective expression under the haploid model.
To this purpose, start from the generic term for ∆pt under the haploid model in eqn. (107)
and set w1 = 1 and w2 = 1 − s. Again, assume that s is small, so that eqn. (107) becomes
∆pt = sptqt. Hence, if s is small, the diploid model of directional selection without dom-
inance is identical to the haploid model, up to a factor of 1/2. That factor is due to the
choice of the parametrisation; we could have set w11 = 1, w12 = 1− s, and w22 = 1− 2s in
diploid model instead, in which case the agreement with the haploid model would be perfect.

From this analogy, we can borrow some insight we gained for the haploid model. Specif-
ically, the trajectory of the frequency of allele A1 in the diploid model without dominance
follows a logistic growth curve similar to (113). Similarly, eqn. (116) for the haploid model
suggests that in the diploid model without dominance it takes

τ ≈ 2

s
log(2N) (137)

generations for the favourable allele (A1) to transit from its entry into the population
(p0 = 1/(2N)) to close to fixation (pτ = 1 − 1/(2N)). Note again the difference by a
factor of 2 due to the choice of parametrization. Also, the total number of alleles is 2N in
the diploid model, rather than N , which explains another factor of 2 in the argument of the
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Figure 17: The trajectory of the frequency of allele A1, starting from p0 = 0.01, for a selection
coefficient s = 0.01 and three different dominance coefficients.

logarithm. More generally we can use this correspondance of the trajectory additive diploid
model to the haploid model to understand how quickly allele frequencies should change given
a selection coefficient between arbitrary frequencies.

Question 4. An autosomal pesticide resistance allele is at 50% frequency in a species
of flies. We stop using the pesticide, and within 20 years the frequency of the allele
is 5% in the new-born flies. There are two fly generations per year. Assuming that
the allele affects fitness in an additive fashion, estimate the selection coefficient acting
against homozygotes for the resistance allele.

4.3.2 Heterozygote advantage

What if the heterozygotes are fitter than either of the homozygotes? In this case, it is useful
to parameterize the relative fitnesses as follows:

genotype A1A1 A1A2 A2A2

absolute fitness w11 < w12 > w22

relative fitness (generic) w11 = W11/W12 w12 = W12/W12 w22 = W22/W12

relative fitness (specific) 1− s1 1 1− s2
Here, s1 and s2 are the differences between the relative fitnesses of the two homozygotes

and the heterozygote. Note that to obtain relative fitnesses we have divided absolute fitness
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by the heterozygote fitness. We could use the same parameterization as in the model of di-
rectional selection, but the reparameterization we have chosen here makes the math prettier.

In this case, when allele A1 is rare, it is often found in a heterozygous state and so it in-
creases in frequency. However, when allele A1 is common, it is often found in the homozygote
state, while the allele A2 is often found in the heterozygote state; it is now A2 that increases
in frequency at the expense of allele 1. Thus, at least in the deterministic model, neither
allele can reach fixation and both alleles will be maintained as a balanced polymorphism in
the population at an equilibrium frequency.

We can solve for this equilibrium frequency by setting ∆pt = 0 in eqn. (131), i.e. ptqt(w1−
w2) = 0. Doing so, we find that there are three equilibria, all of which are stable. Two of them
are not very interesting (p = 0 or q = 0), but the third one is the polymorphic equilibrium,
where w1−w2 holds. Using the parametrization above, we see that the marginal fitnesses of
the two alleles are formally equivalent. Insertion of the selection coefficients s1 and s2 yields

pe =
s2

s1 + s2
(138)

for the equilibrium frequency of interest. This is also the frequency of A1 at which the mean
fitness of the population is maximised.

Underdominance. Another case that is of potential interest is the case of fitness under-
dominance, where the heterozygote is less fit than either of the homozygotes. This can be
parametrized as follows:

genotype A1A1 A1A2 A2A2

absolute fitness w11 < w12 > w22

relative fitness (generic) w11 = W11/W12 w12 = W12/W12 w22 = W22/W12

relative fitness (specific) 1 + s1 1 1 + s2

This case also permits three equilibria, p = 0, p = 1, and a polymorphic equilibrium
p = pU . However, now only the first two equilibria are stable, while the polymorphic equi-
librium is unstable. If p < pU then ∆pt is negative and allele A1 will be lost, while if p > pU ,
allele A1 will become fixed.

While such alleles might not spread within populations (if pU � 0 and selection is rea-
sonably strong), they are of interest in the study of speciation and hybrid zones. That is
because alleles A1 and A2 may have arisen in a stepwise fashion, i.e. not by a single muta-
tion, in separate subpopulations. Now, heterozygote disadvantage will play a potential role
in species maintenance, if isolation of the subpopulations is not complete.

58



Question 5. You are studying the polymorphism that affects flight speed in butter-
flies. The polymorphism does not appear to affect fecundity. Homozygotes for the B
allele are slow in flight and so only 40% of them survive to have offspring. Heterozy-
gotes for the polymorphism (Bb) fly quickly and have a 70% probability of surviving
to reproduce. The homozygotes for the alternative allele (bb) fly very quickly indeed,
but often die of exhaustion, with only 10% of them making it to reproduction.
A) What is the equilibrium frequency of the B allele?
B) Calculate the marginal fitnesses of the B and the b allele at the equilbrium fre-
quency.

Diploid fluctuating fitness We would like to think about the case where the diploid
absolute fitnesses are time-dependent. The three genotypes then have fitnesses w11,t, w12,t,
and w22,t in generation t. However, this case is much less tractable than the haploid case,
as segregation makes it tricky to keep track of the genotype frequencies. We can make some
progress and gain some intuition by thinking about how the frequency of allele A1 changes
when it is rare.

When A1 is rare, i.e. pt � 1, its frequency in the next generation (126) can be approxi-
mated as

pt+1 ≈
w12

w
pt. (139)

To obtain this, we have ignored the p2t term and assumed that qt ≈ 1 in the numerator.
Following a similar argument to approximate qt+1, we can write

pt+1

qt+1

=
w12,t

w22,t

pt
qt
. (140)

Then, starting from out from p0 and q0 in generation 0, t+ 1 generations later, we have

pt+1

qt+1

=

(
t−1∏
i=0

w12,i

w22,i

)
p0
q0
. (141)

From this, we can see, following our haploid argument from above, that the frequency of
allele A1 will increase when rare only if

t

√∏t−1
i=0 w12,i

t

√∏t−1
i=0 w22,i

> 1, (142)

i.e. if the heterozygote has higher geometric mean fitness than the A2A2 homozygote.
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The question now is, whether allele A1 will approach fixation in the population, or
whether there are cases in which we can obtain a balanced polymorphism. To investigate
that, we can simply repeat our analysis for q � 1, and see that in that case

pt+1

qt+1

=

(
t−1∏
i=0

w11,i

w12,i

)
p0
q0
. (143)

Now, for allele A1 to carry on increasing in frequency and to approach fixation, the A1A1

genotype has to be out-competing the heterozygotes. For allele A1 to approach fixation, we
need the geometric mean of w11,i to be greater than the geometric mean fitness of heterozy-
gotes (w12,i). At the same time, if heterozygotes have higher geometric mean fitness than the
A1A1 homozygotes, then the A2 allele will increase in frequency when it is rare. Therefore, a
balanced polymorphism can result when the heterozygote has higher geometric fitness than
either of the homozygotes.

Intriguingly, we can have a balanced polymorphism even if the heterozygote is never the
fittest genotype in any generation. To see this, consider the simple example, where there are
two environments alternate from generation to generation:
genotype A1A1 A1A2 A2A2

relative fitness in environment A w11,A > w12,A > w22,A

relative fitness in environment B w11,B < w12,B < w22,B

Geometric mean fitness w11,B < w12,B > w22

In this case, the polymorphism will remain balanced in the population, despite the fact
that the heterozygote is never the fitest genotype.

Question 6. Imagine a randomly-mating population of hermaphrodites. In this
population a derived allele (D) segregates that distorts transmission in its favour over
the ancestral allele (d) in the production of all the gametes of heterozygotes. The
drive leads to a fraction r of the gametes of heterozygotes (D/d) to carry the D allele
(r > 0.5). The D allele causes viability problems in the homozygote state such that
the relative fitnesses are wdd = 1, wDd = 1, wDD = 1 − e. The allele is currently at
frequency p in the population at birth. Assuming that the population is very large
and no mutation occurs:
A) What is the frequency of the D allele in the next generation, before selection has
had a chance to act?
B) What conditions do you need for a polymorphic equilibrium to be maintained? At
what is the equilibrium frequency of this balanced polymorphism?
C) Imagine the cost of the driver were additive wdd = 1, wDd = 1− e, wDD = 1− 2e.
Under what conditions can the driver invade the population? Can a polymorphic
equilibrium be maintained?
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4.4 Mutation–selection balance

Mutation is constantly introducing new alleles into the population. Therefore, variation can
be maintained within a population not only if selection is balancing (e.g. through heterozy-
gote advantage or fluctuating selection over time, as we have seen in the previous section),
but also due to a balance between mutation and selection. A case of particular interest is
when mutation introduces deleterious alleles and selection acts against these alleles. To study
this balance, we return to the model of directional selection, where allele A1 is advantageous,
i.e.

genotype A1A1 A1A2 A2A2

absolute fitness W11 ≥ W12 ≥ W22

relative fitness w11 = 1 w12 = 1− sh w22 = 1− s.

For a start, we consider the case where allele A2 is not completely recessive (h > 0),
so that the heterozygotes suffer at least some disadvantage. We denote by µ = µ1→2 the
mutation rate per generation from A1 to the deleterious allele A2, and assume that there is
no reverse mutation (µ2→1 = 0). Let us assume that selection against A2 is relatively strong
compared to the mutation rate, so that it is justified to assume that A2 is always rare, i.e.
qt = 1 − pt � 1. Compared to previous sections, for mathematical clarity, we also switch
from following the frequency pt of A1 to following the frequency qt of A2. Of course, this is
without loss of generality. The change in frequency of A2 due to selection can be written as

∆Sqt =
w2 − w1

w
ptqt ≈ −hsqt. (144)

This approximation can be found by assuming that q2 ≈ 0, p ≈ 1, and that w ≈ w1. All
of these assumptions make sense if q � 1. From eqn. (144) we see that selection acts to
reduce the frequency of A2 (as both h and s are positive), and it does so geometrically across
the generations. That is, if the initial frequency of A2 is q0, then its frequency at time t is
approximately

qt = q0(1− hs)t. (145)

We will now consider the change in frequency induced by mutation. Recalling that µ is
the mutation rate from A1 to A2 per generation, the frequency of A2 after mutation

q′ = µpt + qt = µ(1− qt) + qt. (146)

Assuming that µ � 1 and that q � 1, the change in the frequency of allele A2 due to
mutation (∆Mqt) can be approximated by

∆Mqt = q′ − qt = µ. (147)

Hence, when A2 is rare and the mutation rate is low, mutation acts to linearly increase the
frequency of the deleterious allele A2.
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If selection is to balance deleterious mutation, their combined effect over one generation
has to be zero. Therefore, to find the mutation–selection equilibrium, we set

∆Mqt + ∆Sqt = 0, (148)

insert eqns. (144) and (147), and solve for q to obtain

qe = qt =
µ

hs
. (149)

We see that the frequency of the deleterious allele A2 is balanced at the mutation rate (µ)
divided by the reduction in relative fitness in the heterozygote (hs).

It is worth pointing out that the fitness of the A2A2 homozygote has not entered this
calculation, as A2 is so rare that it is hardly ever found in the homozygous state. Therefore,
if A2 has any deleterious effect in a heterozygous state (i.e. if h > 0) it is this effect that
determines the frequency at which A2 is maintained in the population. Also, note that by
writing the total change in allele frequency as ∆Mqt + ∆Sqt we have implicitly assumed that
we can ignore terms of order µ × s. That is, we have assumed that there is no interaction
between mutation and selection. We can do so as we assumed that both µ and s are small.

What effect do such deleterious mutations at mutation–selection balance have on the
population? It is common to express this effect in terms of a reduction of the mean relative
fitness of the population. For a single site at which a deleterious mutation is segregating at
qe = µ/(hs), the mean relative fitness is reduced to

w = 1− 2peqehs− q2es ≈ 1− 2µ. (150)

Somewhat remarkably, the drop in mean fitness due to a site segregating at mutation–
selection balance is independent of the selection coefficient against the heterozygote; it de-
pends only the mutation rate. Note that this applies only if the mutation is not totally
recessive, i.e. if h > 0.

A reduction of 1 − 2µ is very small, given that the mutation rate of a gene is likely
< 10−5. However, if there are many loci segregating at mutation–selection balance, this
can accumulate to a substantial so-called genetic load, and a major cause of variation in
fitness-related traits among individuals.

As an aside, if an allele was truly recessive (although few likely are), we have h = 0, and
so eqn. (149) is not valid. However, we can make an argument similar to the one above to
show that, for truly recessive alleles,

qe =

√
µ

s
. (151)
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Question 7. You are studying an outbred population of mice living in a farmers
field. Mutations occur at a gene called nurseryrhyme that cause a totally recessive
form of blindness. These blind mice do not survive to reproduce as the farmers wife
cuts off their tail (and other bits) with a carving knife. Surveying the field for baby
mice you find that 3 in ten thousand mice are blind.
A Assuming that the population mates at random, what is the mutation rate of
blindness causing alleles?
B Following more careful study you now find that there is actually a 20% reduction
in the viability of heterozygotes for these mutations. What would you now estimate
as the mutation rate for this gene? C) Explain how and why your answers differ?

4.4.1 Inbreeding depression

All else being equal, eqn. (149) suggests that mutations that have a smaller effect in the
heterozygote can segregate at higher frequency under mutation–selection balance. As a con-
sequence, alleles that have strongly deleterious effects in the homozygous state can segregate
at low frequencies in the population, as long as they do not have a strong effect in heterozy-
gotes. Thus, outbred populations may have many alleles with recessive deleterious effects
segregating within them.

One consequence of this is that inbred individuals from usually outbred populations may
have dramatically lower fitnesses than outbred individuals. This is a consequence of being
homozygous at many loci for alleles with recessive deleterious effects. Indeed, this seems to
be a common observation, dating back to systematic surveys by Darwin. In typically outbred
populations, the mean fitness of individuals decreases with the inbreeding coefficient, i.e. this
so-called inbreeding depression is a common observation.

Purging the inbreeding load. Populations that regularly inbreed over sustained periods
of time are expected to partially purge this load of deleterious alleles. This is because such
populations have exposed many of these alleles in a homozygous state, and so selection can
more readily remove these alleles from the population.
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4.5 Migration–selection balance

Another reason for the persistence of deleterious alleles in a population is that there is a
constant influx of maladaptive alleles from other populations where these alleles are locally
adapted. This seems unlikely to be as broad an explanation for the persistence of deleterious
alleles genome-wide as mutation-selection balance. However, a brief discussion of such alleles
is worthwhile as it helps to inform our ideas about local adaptation.

As a first pass at this lets consider a haploid two allele model with two different popula-
tions, where the relative fitnesses of our alleles are as follows

allele 1 2
population 1 1 1-s
population 2 1-s 1

As a simple model of migration lets suppose within a population a fraction of m individuals
are migrants from the other population, and 1−m individuals are from the same deme.

To quickly sketch a solution to this, we’ll set up a situation analogous to our mutation-
selection balance model. To do this let’s assume that selection is strong compared to migra-
tion (s � m) then allele 1 will be almost fixed in population 1 and allele 2 will be almost
fixed in population 2. If that is the case, migration changes the frequency of allele 2 in
population 1 (q1) by

∆Mig.q1 ≈ m (152)

while as noted above ∆Sq1 = −sq1, so that migration and selection are at an equilibrium
when 0 = ∆Sq1 + ∆Mig.q1, i.e. an equilibrium frequency of allele 2 in population 1 of

qe,1 =
m

s
(153)

so that migration is playing the role of mutation and so migration-selection balance (at least
under strong selection) is analogous to mutation selection balance.

We can use this same model by analogy for the case of migration-selection balance in a
diploid model, in that case we replace our haploid s by the cost to heterozygotes hs.
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Question 8. You are investigating a small river population of sticklebacks, which
receives infrequent migrants from a very large marine population. At a set of (puta-
tively) neutral biallelic markers the freshwater population has frequencies: 0.2, 0.7,
0.8 at the same markers the marine population has frequencies: 0.4, 0.5 and 0.7. From
studying patterns of heterozygosity at a large collection of markers, you have estimated
the long term effective size of your freshwater population is 2000 individuals.
A) What is FST across these neutral markers in the freshwater population, with re-
spect to the large marine population (i.e. treat the marine population as the total)?
B) You are also studying an unlinked locus involved in the regulation of salt uptake.
In the marine population the ancestral allele is at close to fixation, but in your river
population the derived allele is at 0.99 frequency. Estimate the selective disadvan-
tage of the ancestral allele in your river population. [Hint how can you use neutral
differentiation to estimate the migration rate?]

4.5.1 Some theory of the spatial distribution of allele frequencies under deter-
ministic models of selection

Imagine a continuous haploid population spread out along a line. Individuals disperse a
random distance ∆x from its birthplace to the location where it reproduces, where ∆x is
drawn from the probability density g( ). To make life simple we will assume that g(∆x) is
normally distributed with mean zero and standard deviation σ, i.e. migration is unbiased
an individuals migrate an average distance of σ.

Our frequency of allele 2 at time t in the population at spatial location x is q(x, t).
Assuming that only dispersal occurs, how does our allele frequency change in the next
generation? Our allele frequency in the next generation at location x reflects the migration
from different locations in the proceeding generation. Our population at location x receives
a contribution g(∆x)q(x + ∆x, t) of allele 2 from the population at location x + ∆x, such
that the frequency of our allele at x in the next generation is

q(x, t+ 1) =

∫ ∞
−∞

g(∆x)q(x+ ∆x, t)d∆x. (154)

To obtain q(x+ ∆x, t), lets take a Taylor series expansion of q(x, t)

q(x+ ∆x, t) = q(x, t) + ∆x
dq(x, t)

dx
+ 1

2
(∆x)2

d2q(x, t)

dx2
+ · · · (155)

then

q(x, t+1) = q(x, t)+

(∫ ∞
−∞

∆xg(∆x)d∆x

)
dq(x, t)

dx
+ 1

2

(∫ ∞
−∞

(∆x)2g(∆x)d∆x

)
d2q(x, t)

dx2
+· · ·

(156)
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g( ) has a mean of zero so
∫∞
−∞∆xg(∆x)d∆x = 0 and has variance σ2 so

∫∞
−∞(∆x)2g(∆x)d∆x =

σ2 and all higher terms are zero (as all high moments of the normal are zero). Looking at
the change in frequency ∆q(x, t) = q(x, t+ 1)− q(x, t) then

∆q(x, t) =
σ2

2

d2q(x, t)

dx2
(157)

This is a diffusion equation, so that migration is acting to smooth out allele frequency
differences with a diffusion constant of σ2

2
. This is exactly analogous to the equation describ-

ing how a gas diffuses out to equal density, as both particles in a gas and our individuals of
type 2 are performing Brownian motion (blurring our eyes and seeing time as continuous).

We will now introduce fitness differences into our model and set the relative fitnesses of
allele 1 and 2 at location x to be 1 and 1 + sγ(x). To make progress in this model we’ll have
to assume that selection isn’t too strong i.e. sγ(x) � 1 for all x. The change in frequency
of allele 2 obtained within a generation due to selection is

q′(x, t)− q(x, t) ≈ sγ(x)q(x, t)
(
1− q(x, t)

)
(158)

i.e. logistic growth of our favoured allele at location x. Putting our selection and migra-
tion terms together we find

q(x, t+ 1)− q(x, t) = sγ(x)q(x, t)
(
1− q(x, t)

)
+
σ2

2

d2q(x, t)

dx2
(159)

in deriving this we have essentially assumed that migration acted upon our original frequen-
cies before selection and in doing so have ignored terms of the order of σs.

The cline in allele frequency associated with a sharp environmental transition.
To make progress lets consider a simple model of location adaptation where the environment
abruptly changes. Specifically we assume that γ(x) = 1 for x < 0 and γ(x) = −1 for x ≥ 0,
i.e. our allele 2 has a selective advantage at locations to the left of zero, while this allele is
at a disadvantage to the right of zero. In this case we can get an equilibrium distribution of
our two alleles were to the left of zero our allele 2 is at higher frequency, while to the right
of zero allele 1 predominates. As we cross from the left to the right side of our range the
frequency of our allele 2 decreases in a smooth cline.

Our equilibrium spatial distribution of allele frequencies can be found by setting the LHS
of eqn. (159) to zero to arrive at

sγ(x)q(x) (1− q(x)) = −σ
2

2

d2q(x)

dx2
(160)

We then could solve this differential equation with appropriate boundary conditions (q(−∞) =
1 and q(∞) = 0) to arrive at the appropriate functional form to our cline. While we won’t
go into the solution of this equation here, we can note that by dividing our distance x by
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Figure 18: An equilibrium cline in allele frequency. Our individuals dispersal an average
distance of σ = 1km per generation, and our allele 2 has a relative fitness of 1 + s and 1− s
on either side of the environmental change at x = 0.

` = σ/
√
s we can remove the effect of our parameters from the above equation. This com-

pound parameter ` is the characteristic length of our cline, and it is this parameter which
determines over what geographic scale we change from allele 2 predominating to allele 1
predominating as we move across our environmental shift.

The width of our cline, i.e. over what distance do we make this shift from allele 2 predom-
inating to allele 1, can be defined in a number of different ways. One simple way to define the
cline width, which is easy to define but perhaps hard to measure accurately, is the slope (i.e.
the tangent) of q(x) at x = 0. Under this definition the cline width is approximately 0.6σ/

√
s.

The rate of spatial spread of a beneficial allele. Consider a beneficial mutation that
has arisen in a specific spatial location and has begun to spread geographically.

67



5 Stochasticity and Genetic Drift in allele frequencies

5.1 Stochastic loss of strongly selected alleles

Even strongly selected alleles can be lost from the population when they are sufficiently
rare. This is because the number of offspring left by individuals to the next generation is
fundamentally stochastic. A selection coefficient of s=1% is a strong selection coefficient,
which can drive an allele through the population in a few hundred generations once the
allele is established. However, if individuals have on average a small number of offspring per
generation the first individual to carry our allele who has on average 1% more children could
easily have zero offspring, leading to the loss of our allele before it ever get a chance to spread.

To take a first stab at this problem lets think of a very large haploid population, and
in order for this population to stay constant in size we’ll assume that individuals without
the selected mutation have on average one offspring per generation. While individuals with
our selected allele have on average 1 + s offspring per generation. We’ll assume that the
distribution of offspring number of an individual is Poisson distributed with this mean, i.e.
the probability that an individual with the selected allele has i children is

Pi =
(1 + s)ie−(1+s)

i!
(161)

Consider starting from a single individual with the selected allele, and ask about the
probability of eventual loss of our selected allele starting from this single copy (pL). To
derive this we’ll make use of a simple argument (derived from branching processes). Our
selected allele will be eventually lost from the population if every individual with the allele
fails to leave descendants.

1. In our first generation with probability P0 our individual leaves no copies of itself to
the next generation, in which case our allele is lost (Figure 19A).

2. Alternatively it could leave one copy of itself to the next generation (with probability
P1), in which case with probability pL this copy eventually goes extinct (Figure 19B).

3. It could leave two copies of itself to the next generation (with probability P2), in which
case with probability p2L both of these copies eventually goes extinct (Figure 19C).

4. More generally it could leave could leave k copies (k > 0) of itself to the next generation
(with probability Pk), in which case with probability pkL all of these copies eventually
go extinct (e.g. Figure 19D).

summing over these probabilities we see that

pL =
∑∞

k=0 Pkp
k
L

=
∑∞

k=0
(1+s)ke−(1+s)

k!
pkL

= e−(1+s)
(∑∞

k=0
(pL(1+s))

k

k!

)
(162)

68



Figure 19:

well the term in the brackets is itself an exponential expansion, so we can rewrite this as

pL = e(1+s)(pL−1) (163)

solving this would give us our probability of loss for any selection coefficient. Lets rewrite
this in terms of the the probability of escaping loss pF = 1− pL. We can rewrite eqn (163)
as

1− pF = e−pF (1+s) (164)

to gain an approximation to this lets consider a small selection coefficient s � 1 such that
pF � 1 and then expanded out the exponential on the right hand side (ignoring terms of
higher order than s2 and p2F ) then

1− pF ≈ 1− pF (1 + s) + p2F (1 + s)2/2 (165)

solving this we find that
pF = 2s. (166)

Thus even an allele with a 1% selection coefficient has a 98% probability of being lost when
it is first introduced into the population by mutation.

We can also adapt this result to a diploid setting. Assuming that heterozygotes for the 1
allele have 1 + (1− h)s children, the probability of allele 1 is not lost, starting from a single
copy in the population, is

pF = 2(1− h)s (167)

for h > 0. Note this is a slightly different parameterization from our diploid model above.
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Question 1. Melanic squirrels suffer a higher rate of predation (due to hawks) than
normally pigmented squirrels. Melanism is due to a dominant, autosomal mutation.
The frequency of melanic squirrels at birth is 4× 10−5.

A) If the mutation rate to new melanic alleles is 10−6, assuming the melanic allele is
at mutation-selection equilibrium, what is the reduction in fitness of the heterozygote?
B) Suddenly levels of pollution increase dramatically in our population, and predation
by hawks now offers an equal (and opposite) advantage to the dark individuals as it
once offered to the normally pigmented individuals. If the population size of our
squirrels is a million individuals, what is the probability that the population adapts
from the standing pool of melanic alleles?

5.2 The interaction between genetic drift and weak selection.

For strongly selected alleles, once the allele has escaped initial loss at low frequencies, their
path will be determined deterministically by their selection coefficients. However, if selection
is weak the stochasticity of reproduction can play a role in the trajectory an allele takes even
when it is common in the population.

To see this lets think of our simple Wright-Fisher model (see R exercise). Each genera-
tion we allow a deterministic change in our allele frequency, and then binomially sample two
alleles for each of our offspring to construct our next generation.

So the expected change in our allele frequency within a generation is given just by our
deterministic formula. To make things easy on our self lets assume an additive model, i.e.
h = 1/2, and that s� 1 so that w ≈ 1. This gives us

E(∆p) =
s

2
p(1− p) (168)

our variance in our allele frequency change is given by

V ar(p′ − p) = V ar(p′) =
p′(1− p′)

2N
(169)

this variance in our allele frequency follows from the fact that we are binomially sampling
2N new alleles in the next generation from a frequency p′. Denoting our count of allele 1 by
i our

V ar(p′ − p) = V ar(
i

2N
− p) = V ar(

i

2N
) =

V ar(i)

(2N)2
(170)

and from binomial sampling V ar(i) = 2Np′(1−p′) and so we arrive at our answer. Assuming
that s� 1, p′ ≈ p, then in practice we can use

V ar(∆p) = V ar(p′ − p) ≈ p(1− p)
2N

. (171)
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Figure 20: The probability of the fixation of a new mutation with selection coefficient s
(h = 1/2) in a diploid population of effective size Ne. The dashed line gives the infinite
population solution. The dots give the solution for s→ 0, i.e. 1/(2Ne)

To get our first look at the relative effects of selection vs drift we can simply look at when our
change in allele frequency caused selection within a generate is reasonably faithfully passed
across the generations. In particular if our expected change in frequency is much great than
the variance around this change, genetic drift will play little role in the fate of our selected
allele (once the allele is not too rare within the population). When does selected dominant
genetic drift? This will happen if E(∆p) � V ar(∆p) when Ns � 1. Conversely any hope
of our selected allele following its deterministic path will be quickly undone if our change
in allele frequencies due to selection is much less than the variance induced by drift. So if
Ns� 1 then drift will dominate the fate of our allele.

To make further progress on understanding the fate of alleles with selection coefficients of
the order 1/N requires more careful modeling. However, we can obtain the probability that
under our diploid model, with an additive selection coefficient s, the probability of allele 1
fixing within the population starting from a frequency p is given by

π(p) =
1− e−2Nsp

1− e−2Ns
(172)

the proof of this is sketched out below (see Section 5.2.2). A new allele will arrive in the
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population at frequency p = 1/(2N), then its probability of reaching fixation is

π

(
1

2N

)
=

1− e−s

1− e−2Ns
(173)

if s� 1 but Ns� 1 then π( 1
2N

) ≈ s, which nicely gives us back our result that we obtained
above (eqn. (167)). Our probability of fixation (eqn. (173)) is plotted as a function of s and
N in Figure 20. To recover our neutral result we can take the limit s → 0 to obtain our
neutral fixation probability 1/(2N).

In the case where Ns close to 1 then

π

(
1

2N

)
≈ s

1− e−2Ns
(174)

this is greater than our result pF = s from the branching process argument (using our
additive model of h = 1/2), increasingly so for smaller N . Why is this? The reason why
is that pF is really the probability of never being lost in an infinitely large population. So
to persist indefinitely the allele has to escape loss permanently, by never being absorbed by
the zero state. When the population size is finite, to fix we only need to reach a size 2N
individuals. Weakly beneficial mutations (Ns 1) are slightly more likely to fix than the s
probability, as they only have to reach 2N to never be lost.

5.2.1 The fixation of slightly deleterious alleles.

From Figure 20 we can see that weakly deleterious alleles can fix, especially in small pop-
ulations. To understand how likely it is that deleterious alleles accidently reach fixation by
genetic drift, lets assume a diploid model with additive selection (with a selection coefficient
of −s against our allele 2). If Ns� 1 then our deleterious allele (allele 2) can not possibly
reach fixation. However, if Ns is not large then

π

(
1

2N

)
≈ s

e2Ns − 1
(175)

for our deleterious allele. So deleterious alleles can fix within populations (albeit at a low
rate) if Ns is not too large. As above this is because while deleterious mutations will never
escape loss in infinite population, but they can become fixed in finite population by reach 2N
copies. This is captured by the denominator of the fixation probability under the diffusion
model, which that this increases the fixation prob. of alleles with —Ns— 1. The absorption
of alleles at 2N copies can also be modeled in finite individual models (i.e. not the diffusion
limit), but we will not go into that here.
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Question 2. ‘Haldane’s sieve is the name for the idea that the mutations that
contribute to adaptation are likely to be dominant or at least co-dominant.
A) Briefly explain this argument with a verbal model relating to the results weve
developed in the last two chapters.
B) Haldanes sieve is thought to be less important for adaptation from previously
deleterious standing variation, than adaptation from new mutation. Can you explain
the intuition behind of this idea?
C) Haldanes sieve is likely to be less important in inbred, e.g. selfing, populations.
Why is this?

5.2.2 A Sketch Proof of the probability of fixation of weakly selected alleles

We’ll let P (∆p) be the probability that our allele frequency shifts by ∆p in the next gener-
ation. Using this we can write our probability π(p) in terms of the probability of achieving
fixation averaged over the frequency in the next generation

π(p) =

∫
π(p+ ∆p)P (∆p)d(∆p) (176)

This is very similar to the technique that we used deriving our probability of escaping loss
in a very large population above.

So we need an expression for π(p+∆p). To obtain this we’ll do a Taylor series expansion
of π(p) assuming that ∆p is small

π(p+ ∆p) ≈ π(p) + ∆p
dπ(p)

dp
+ (∆p)2

d2π(p)

dp2
(p) (177)

ignoring higher order terms.

Taking the expectation over ∆p on both sides, as in eqn. 176, we obtain

π(p) = π(p) + E(∆p)
dπ(p)

dp
+ E((∆p)2)

d2π(p)

dp2
(178)

Well E(∆p) = s
2
p(1−p) and V ar(∆p) = E((∆p)2)−E2(∆p), so if s� 1 then E2(∆p) ≈ 0,

and E(∆p)2 = p(1−p)
2N

. This leaves us with

0 =
s

2
p(1− p)dπ(p)

dp
+
p(1− p)

2N

d2π(p)

dp2
(179)
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and we can specify the boundary conditions to be π(1) = 1 and π(0) = 0. Solving this
differential equation is somewhat involved process but in doing so we find that

π(p) =
1− e−2Nsp

1− e−2Ns
(180)

This proof can be extended to alleles with arbitrary dominance, however, this does not lead
to a analytically tractable expression so we do not pursue this here.
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6 The effect of linked selection on patterns of neutral

diversity

A newly derived allele with an additive selection coefficient s will take a time τ ≈ 2 log(2N)/s
generations to reach to fixation within our population. This short time window offers very
little time for recombination between the selected site and linked neutral sites.

First lets imagine examining variation at a locus fully linked to our selected locus, just
after our sweep reached fixation. A pair of neutral alleles sampled at this locus must both
trace their ancestral lineages back through to the neutral allele on whose background the
selected allele initially arose. As that neutral allele, which existed τ generations ago is the
ancestor of the entire population at this locus. Our individuals who carry the beneficial allele
are, from the perspective of these two alleles, exactly like a rapidly expanding population.
Therefore, our pair of neutral alleles sampled at our locus will be forced to coalesce ≈ τ
generations ago. This is a very short-time scale compared to the average neutral coalescent
tie of 2N generations of a pair of alleles.

If we now allow recombination into our model we can think about a pair of alleles sampled
at a neutral locus a recombination distance r away from our selected site. Our pair of alleles
will be forced to coalesce ≈ τ generations if neither of them reside on haplotypes that the
selected allele recombined onto during the sweep. This is equivalent to saying that neither
of our neutral alleles recombine off of the beneficial allele’s background moving backward in
time.

The probability that our lineage fail recombines off our beneficial allele’s background and
onto the ancestral background in the jth generation back is

r(1−X(j)) (181)

so the probability (pNR) that our lineage fails to recombine off in the τ generations it takes
our selected allele to move through the population is

pNR =
τ∏
j=1

(
1− r(1−X(j))

)
(182)

assuming that r is small then (1− r(1−X(j))) ≈ e−r(1−X(j)), such that

pNR =
τ∏
j=1

(1− r(1−X(j))) ≈ exp

(
−r

τ∑
j=1

1−X(j)

)
= exp

(
−rτ(1− X̂)

)
(183)

where X̂ is the average frequency of the derived allele across the trajectory X̂ = 1
τ

∑τ
j=1X(j).

As our allele is additive its trajectory for frequencies< 0.5 is the mirror image of its trajectory
for frequency > 0.5, therefore it average frequency X̂ = 0.5. So

pNR = e−rτ/2. (184)
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The probability that both of our lineages fail to recombine off the sweep and hence are forced
to coalesce is p2NR, assuming that they coalesce at a time close to τ so that they recombine
independently of each other for times < τ .

If one or other of our lineages recombine off the sweep it will take them on average ≈ 2N
generations to find a common ancestor as we are back our neutral coalescent. Thus the
expected time till our pair of lineages find a common ancestor is

E(T2) = τ × p2NR + (1− p2NR)(τ + 2N) ≈
(
1− p2NR

)
2N (185)

where this last approximation assumes that τ � 2N . So the expected pairwise diversity for
neutral alleles at a recombination distance r away from the selected sweep (πr) is

E(πr) = 2µE(T2) ≈ θ
(
1− e−rτ

)
(186)

so diversity increases as we move away from the selected site, slowly exponentially plauteuing
to its neutral expectation θ = 4Nµ.

To get a sense of the physical scale over which diversity is reduced consider a region
where recombination occurs at a rate rBP per base pair per generation, and our locus is `
base pairs away from the selected site r = rBP ` (where rBP `� 1 so we don’t need to worry
about more than one recombination event occurring per generation). Typical recombination
rates are on the order of rBP = 10−8, in Figure 21 we show the reduction in diversity, given
by eqn. (186), for two different selection coefficients.

For our expected diversity levels to recover to 50% of its neutral expectation E(πr)/θ =
0.5, requires a physical distance `∗ such that log(0.5) = −rBP `∗τ as using our expression for
τ then `∗ = s

rBP log(2N)
. The width of our trough of reduced diversity depends on s/rBP , so

else being equal we expect stronger sweeps or sweeps in regions of low recombination to have
a larger hitchhiking effect. So that a selection coefficient of s = 0.1% would reduce diversity
over 10’s of kb, while a sweep of s = 1% would affect ∼100kb.

6.1 A simple recurrent model of selective sweeps

We sample a pair of neutral alleles at a locus a genetic distance r away from a locus where
sweeps are initiated within the population at some very low rate ν per generation. The wait-
ing time between sweeps at our locus is exponential ∼ Exp(ν). Each sweep rapidly transits
through the population in τ generations, such that each sweep is finished long before the
next sweep (τ � 1/ν).

As before our chance that our neutral lineage fails to recombine off the sweep is pNR,
such that the probability that our pair of lineages are forced to coalesce by a sweep e−rτ .
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Figure 21: Reduction in diversity compared to its neutral expectation as a function of the
distance away from a site where a selected allele has just gone to fixation. The recombination
rate is rBP = 1× 10−8.

Our lineages therefore have a very low probability

νe−rτ (187)

of being forced to coalesce by a sweep per generation. In addition of lineages can coalesce
at a neutral rate of 1/(2N). Thus the average waiting time till a coalescent event between
our neutral pair of lineages due to either a sweep or a neutral coalescent event is

E(T2) =
1

νe−rτ + 1/(2N)
(188)

Now imagine that the sweeps don’t occur at a fixed location with respect to our locus of
interest, but now occur uniformly at random across our sequence. The sweeps are initiated
at a very low rate of νBP per basepair per generation. The rate of coalescent due to sweeps
at a locus ` basepairs away from our neutral loci is νBP e

−rBP `τ . If our neutral locus is in
the middle of a chromosome that stretches L basepairs in either direction the total rate of
sweeps per generation that force our pair of lineages to coalesce is

2

∫ L

0

νBP e
−rBP `τd` =

2νBP
rBP τ

(
1− e−rBP τL

)
(189)

so that if L is very large (rBP τL � 1) the rate of coalesce per generation due to sweeps is
2νBP
rBP τ

. The total rate of coalescence for a pair of lineages per generation is then

2νBP
rBP τ

+
1

2N
(190)

So our average time till a pair of lineages coalesce is

E(T2) =
1

2νBP
rBP τ

+ 1
2N

=
rBP2N

4NνBP
τ

+ rBP
(191)
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Figure 22: The relationship between (sex-averaged) recombination rate and synonymous site
pairwise diversity (π) in Drosophila melanogaster using the data of Shapiro et al. 07 (kindly
provided by Peter Andolfatto, see Sella et al. 09 for details). The curve is the predicted
relationship between π and recombination rate obtained by fitting equation (192) to this
data using non-linear least squares via the nls() function in R.

such that our expected pairwise diversity (π = 2µE(T2)) in a region of recombination rate
rBP that experiences sweeps at rate νBP is

E(π) = θ
rBP

4NνBP
τ

+ rBP
(192)

78


	Allele and genotype frequencies
	Allele frequencies
	Hardy–Weinberg proportions
	Coefficient of kinship
	Inbreeding
	Calculating inbreeding coefficients from data
	Summarizing population structure
	Other approaches to population structure
	Assignment Methods
	Principal components analysis

	Correlations between loci, linkage disequilibrium, and recombination

	Genetic Drift and Neutral Diversity
	Loss of heterozygosity due to drift.
	Levels of diversity maintained by a balance between mutation and drift
	The effective population size.
	The Coalescent and patterns of neutral diversity
	The coalescent process of a sample of alleles.
	The fixation of neutral alleles
	Neutral diversity and population structure

	The phenotypic resemblance between relatives
	Additive genetic variance and heritability
	The covariance between relatives
	The response to selection


	One-locus models of selection
	Fitness
	Haploid selection model
	Diploid model
	Diploid directional selection
	Heterozygote advantage

	Mutation–selection balance
	Inbreeding depression

	Migration–selection balance
	Some theory of the spatial distribution of allele frequencies under deterministic models of selection


	Stochasticity and Genetic Drift in allele frequencies
	Stochastic loss of strongly selected alleles
	The interaction between genetic drift and weak selection.
	The fixation of slightly deleterious alleles.
	A Sketch Proof of the probability of fixation of weakly selected alleles


	The effect of linked selection on patterns of neutral diversity
	A simple recurrent model of selective sweeps


