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PREFACE

These are chapters I-XI of a set of notes which serve as a text for Genome Sciences 562 (Population
Genetics). The material omitted will complete chapter VIII on the interaction of linkage and selec-
tion and cover some additional topics in chapters X and XI, with more on quantitative characters in
natural populations and material on the population genetics of transposons and tandemly repeated
sequences.

Each chapter ends with two sets of problems. Those labeled Exercises are intended to be
relatively straightforward application of principles given in the text. They usually involve numerical
calculation or simple algebra. The set labeled Problems/Complements are more algebraic, and often
involve extension or re-examination of the material in the text.

The level of mathematics required to read this text is not high, although the volume of algebra
is sometimes heavy. It is probably sufficient to know elementary calculus, and parts of elementary
statistics and probability. Matrix algebra is used in several places, but these can be skipped
without much loss. The most relevant mathematical technique for population genetics is probably
factorization of simple polynomial expressions, which most people are taught in high school.

These notes have been developed over the last 30 years. They were not finished rapidly and
published primarily because I got interested in phylogenies and was less interested in theoretical
population genetics. Nevertheless I needed these to teach my theoretical population genetics course,
and so they were gradually expanded. At first they were on magnetic cards for an IBM word
processor. Later we had them transferred to magnetic tape, and hand-edited that into text for
the Runoff family of text-formatting programs. They finally became a LaTeX file with Postscript
figures.

Many of the references are from the 1970s and earlier. There are two reasons for this. First,
population genetics theory had its major development in the 1920s-1940s (at the hands of Fisher,
Wright, and Haldane) and was finally rigorized in the 1960s and 1970s under the influence of people
like Richard Lewontin, James Crow, Motoo Kimura, Sam Karlin, Geoff Watterson, and Warren
Ewens. Second, I simply have not had the time to update the references and include much later
work. You may find citation searches successful in finding later work that follows up on the work
cited here.

Many people have contributed to the production of these notes, particularly students in earlier
years of the course who caught many errors in earlier versions. The presentations were heavily
influenced by lecture notes and courses on this subject by J. F. Crow and R. C. Lewontin. The
cover illustration is adapted from an original by Helen Leung. Sean Lamont wrote the plotting
program that produced the majority of the figures. I am indebted to many people for suggestions
and corrections, particularly to Jarle Tufto and his students, and to Eric Anderson, Max Robinson,
Weiva Sieh, Tim Reluga, Marissa La Madrid, Norman Ehrentreich, Rich Neapolitan, Phil Hedrick,

XV



Eric Rynes, Pui Yee Fong, Fred Allendorf, Sterling Sawaya, Alirio Rosales, and to Jeff Thorne
and his students. But most of all, I must thank Nancy Gamble and Martha Katz for doing the
enormous job of typing out most of these notes, and Nancy Gamble for drawing some of the figures
for earlier editions.
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Chapter 1

RANDOM MATING
POPULATIONS

Theoretical population genetics (or theoretical evolutionary genetics) is arguably the area of biology
in which mathematics has been most successfully applied. Other areas such as theoretical ecology
model phenomena which are intrinsically more important to human welfare, and which have a
much larger base of observations to work with, but are nevertheless not as successfully modeled.
The major reason why theory is more readily applied to population genetics is that there is a
framework — Mendelian segregation — on which to hang it. The Mendelian mechanism is a highly
regular process with strong geometric and algebraic overtones.

The other reason why Mendelian segregation is particularly important to population genetics is
that it occurs whether or not natural selection is present, whether or not mutation is present, and
whether or not migration is present. In this chapter we examine the consequences of Mendelian
segregation for the genetic composition of a population. That there can be consequences that are
not intuitively obvious follows from one property of Mendelian segregation — that the composition
of offspring for some matings differs from the composition of the parents. For example, a cross of
AA x aayields, not half AA and half aa, but instead Aa.

“Normal” Mendelian segregation is diploid and sexual. To understand it we must start with an
examination of the simpler cases in which populations are asexual or haploid. In doing so we hope
to make the results of this chapter intuitively obvious — after the fact.

I.1 Asexual inheritance.

TWO GENOTYPES. The first case we cover is one so simple that there is virtually nothing to
report. Consider a mixed population of two strains which reproduce asexually (as do many bacteria,
dandelions, and maybe bdelloid rotifers). The offspring of this form of uniparental inheritance have
genotypes which are exact copies of their parents’ genotypes (we are deliberately ignoring the
possibility of mutation). Suppose that the population is undergoing synchronous reproduction
with nonoverlapping generations. Let the two strains be numbered 1 and 2, and suppose that
the number of strain ¢ in some generation ¢t is N;, for ¢ = 1 or 2. Now if each individual has W;
offspring in generation t, irrespective of its genotype, and we denote the number of strain ¢ in the



next generation as N/, then
N/ = W,Ny,
and (I-1)
N, = W,No.

The number of offspring of each genotype is simply the number of parents of that genotype,
multiplied by the number of offspring each has. Note that we have assumed that the individuals of
type 1 have ezxactly the same number of offspring as the individuals of type 2. If the populations
are small this is very unlikely to be true, since random environmental circumstances will cause
some individuals to have more surviving offspring than others. If there are a very large number
of individuals, these circumstances should average out, and the average number of offspring from
each strain will be nearly equal.

Consider the fraction of all individuals that are of genotype 1. This is, in generation ¢ + 1,

N{ _ WiNy _ % N _ N
N{—i—Né N WiNy + Wi Ny N Wi N1+ No - Ny + Ny

(I-2)

This establishes the fact that when different genotypes reproduce equally well, the proportion
of any one of them does not change. We can make the same point by calculating the ratio of the
numbers of one genotype to the other:

N WM M
N, WiNy N

(I-3)

Thus, the proportions and ratios of different genotypes are not changed by asexual reproduction
in a large population.

MULTIPLE GENOTYPES. If we had not two, but k different genotypes, the picture is the
same. If we denote by p; the frequency of the i-th genotype in generation ¢, then if

N = N1+N2+---+Nk,

we find that

k k
N' = WiN1+ WiNa+ ... + WiNy, = Y _W,;N; = Wy ) N; = W,N,
i=1 i=1
and we have N7 WA N
. N, ,
P = = L= = = Di (I-4)
N WiN N
so that the frequencies of the different genotypes do not change, even though their numbers may
increase or decrease (depending on whether W; is greater or less than 1).
We will have frequent recourse to the conclusions of this section. In sexual diploids the effect
of Mendelian segregation is felt only as one moves from one generation to the next. Within a
generation the population is effectively asexual. Thus the logic of this section applies perfectly
to the genotypic composition of a single generation in which each individual has probability W;
of surviving to adulthood. From now on we will leave out the factor W, and simply assume that
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Figure 1.1: Diploid stage of a predominantly haploid organism.

genotypic compositions are not changed by random survival in infinite populations, provided that
survival is unaffected by genotype.

Similarly, when we have a set of sexual offspring and ask who their parents were, we will assume
that the composition of the parents is unaffected by differences between individuals in the amount
of reproduction they do, provided that the differences in reproduction are independent of genotype,
and provided that there are an infinite number of parents.

1.2 Haploid inheritance

There are many cases, particularly among microorganisms, of organisms which are haploid during
most of their life cycle, having only the briefest of diploid phases. Figure 1.1 shows a typical
generation in such an organism.

Suppose that we have a population of haploid organisms of two genotypes, A and a. Let the
proportions of these genotypes be p and 1 — p in generation t. If the organisms mate at random,
we can easily compute the proportions of the three resulting diploid genotypes. When mating is
random, the genotypes of the two mates are independent of one another. So an AA diploid will be
formed in p x p = p? of the matings. An aa will be formed (1 —p) x (1 — p) of the time. There will
be two ways of forming heterozygotes: Aa, with probability p x (1 — p), and aA, with probability
(1—p) x p. Since we cannot normally tell these apart, the proportions of the diploid genotypes are:

AA PP
Aa 2p(1 —p) (I-5)
aa  (1—p)>.

These are the so-called Hardy-Weinberg proportions, actually only a simple case of a binomial
expansion. To obtain the proportions of A and a in the next generation, we must consider the
results of meiosis in these diploids. It is, of course, assumed that all three genotypes are equally
likely to undergo meiosis. Then p? of the haploids in the next generation come from AA diploids.
All of these haploids must be A, since there is no mutation in this idealized case. 2p(1 — p) of the
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haploids will come from Aa diploids, and half of these will be A. All of the (1 — p)? of the gametes
which come from aa diploids will be a. The total proportions of A and a among the offspring
generation are then

A pPP+1/2x2p(l-p) = pPHpl-p) = ph+1-p) P,
a: (1=pP+1/2x2p(1—p) = (1-pQ’+p(l-p) = A-p[A-p +p = 1-p.
(1-6)
So we once again, if we denote the gene frequency in generation t by p, and the frequency in
generation t + 1 as p/,

Y= p (1-7)

so that genotype frequencies remain unchanged from their initial values. It is tempting to consider
haploids as exactly equivalent to asexuals. But this is not true when we consider recombination, as
we shall see later. We have ignored sex determination. It has been implicitly assumed that, even if
there is a mating type system as in yeast, where two alleles, a and « determine the mating types,
that the genotype frequencies are the same among both a and « haploids, so that we need not
take mating types into account. We will shortly see the consequences of relaxing this assumption.
Many of the phenomena of population genetics can be seen most clearly in haploid cases, and we
will return to the haploid case more frequently than its biological importance alone warrants.

1.3 Diploids with two alleles: Hardy-Weinberg laws.

DERIVATION. We now consider a random-mating population of diploids in which two alleles
are segregating. We assume that there is no difference in genotype proportions between the sexes.
Suppose that in generation t the population contains the three genotypes AA, Aa, and aa in
proportions Paa, Paq, Paa- These we henceforth call the genotype frequencies. Consider a haploid
gamete produced by one individual chosen at random. The individual has chance P44 of being an
AA, and Pa, of being an Aa. In the latter case, the gamete is A one half of the time. The chance
that the gamete produced by a randomly chosen individual is A is then p; and the chance that it
is a is po where
pr = Paa+ iPaa,
(1-8)
p2 = %PAa‘i‘Paa-

p1 and po will be referred to as the gene frequencies of the two alleles. (Allele frequencies would be
a more consistent term, but gene frequencies is solidly entrenched in the literature). They are not
only the frequencies of the two types of gametes, but also the proportion of all genes in generation ¢
which are each of the two alleles. We can see this by indirect argument, as follows: P44 of all copies
of this gene are in AA individuals, and all of these are A. P4, of the copies are in Aa individuals,
and half of these are A alleles. So the total fraction of all copies which are A is P4a + %PAa, which
is just the gene frequency p;. More directly, a randomly chosen haploid gamete contains a copy of
a gene chosen at random from the parental diploids. So the probability that such a gamete is A is
just the gene frequency, p;. An alternative approach to this point, involving direct counting of A
and q alleles, is given in the next section.



Table 1.1: Mating types, their frequencies, their contribution to the offspring genotype
frequencies, and the resulting genotype frequencies under random mating.

Mating Type | Contribution to Offspring Generation

Mating Frequency AA Aa aa
AAx AA  Pya x Pan P%, — —
AAx Aa Paa x Pag | 3PaaPag $PaaPag —
AA xaa  Paa X Py — PyaPeq —
Aax AA  Pag X Paa | 1PaogPas  $PaaPan —
Aax Aa  Pag X Pag, 1P, 1P, 1P3,
Aa x aa  Paq X Puq — $PAPuq $PAPuq
aa X AA Py, X Pag — PaaPas —
aa X Aa Pyu X Ppq — $PuaPag $PuaPag
aa X aa P,, x P, — — Pga

If it happened to be true that random mating of individuals gave the same results as random
combination of the pool of gametes, then the following would be true, as a consequence of the
results of the previous section:

1. The diploid genotypes in the next generation would occur in the frequencies p%, 2p1p2, pg.

2. The gametes which they produce would be in the same frequencies as the gametes of gener-

ation t. So if we use the argument (¢) to indicate which generation a gene frequency is from,

pgtﬂ) _ pgt) _ pgtfl) _ pgo).

It follows from these two principles that not only will the gene frequencies remain constant
from one generation to the next, so will the genotype frequencies, with the exception of the initial
generation. In fact, it turns out to be true that random mating is equivalent to random union of
gametes. This is simply the result of the fact that choosing a gamete at random from the pool
of gametes is equivalent to sampling a parent at random, and then having it produce a gamete
containing one of its two genes (at this locus), chosen at random by the mechanism of Mendelian
segregation. The reader who doubts that this is so can consult Table 1.1, which enumerates the
possible matings, their probabilities, and the resulting offspring genotype frequencies. The Table
makes use of the independence of the genotypes of the two mates under random mating, so that
the probability of an AA x AA mating is Paa X Paa.



The genotype frequencies from Table 1.1 are:

AA: P34+ PaaPa,+1/4P5, = (Paa+1/2Pa,)?
Aa: PaaPaq+1/2P% +2PaaPaq + PagPaa = 2(Paa+1/2Pag) (1/2Paq + Po)  (1-9)

aa:  1/4(Pag)? + PaaPaq + (Paa)? = (1/2Paq + Pw)?

MEANING. The two principles given above are often known as the Hardy-Weinberg Law. They
have two important impacts on population genetics. The first implies that genotype frequencies
can (under appropriate conditions) be predicted from gene frequencies. Together with the second,
it implies that we can carry through an analysis in terms of gene frequencies instead of genotype
frequencies. The second part of the Hardy-Weinberg Law implies that Mendelian reproduction in
a random-mating population has no inherent tendency to favor one allele or the other: it will not
tend to lose genotypic variability. This is a dramatic difference from the pre-Mendelian scheme of
blending inheritance, in which the offspring’s genotype (supposed to be contained in its blood) was a
mixture of the parents’, without any mechanism of segregation. Blending inheritance would tend to
lose half of the genotypic variability each generation, with dramatic consequences for evolution. A
Scottish professor of engineering, Fleeming Jenkin (1867), made this point in response to Darwin’s
Origin of Species. It led him to the conclusion that the response to natural selection would shortly
stall for lack of variation. Darwin was unable to convincingly rebut Jenkin. In later editions of
the Origin, he raised the origin of new variation by direct effects of the environment to a greater
importance than he had hitherto assigned it, in order to provide the continuous torrent of new
variation necessary to keep evolution operating. With the rise of Mendelian genetics, and the
realization of its consequences, the problem vanished.

HISTORY. The Hardy-Weinberg law was discovered by the famous English mathematician
G. H. Hardy (1908), and simultaneously and independently in a paper by the German obstetrician
and human geneticist Wilhelm Weinberg (1908), whose proof was more generalized. Hardy seems
to have deliberately buried his paper in an obscure American journal so that his mathematical
colleagues would not realize that he had strayed into applied mathematics. It has sometimes been
claimed that William Ernest Castle made use of it in an earlier paper (1903), but a careful reading
of that paper will show that Castle worked in terms of genotypes rather than gene frequencies. The
Hardy-Weinberg Law is as close to being trivially obvious as it can be, but it had a major impact
on the practice of population genetics. Before it, calculations of the effect of natural selection
required one to keep track of three variables, the genotype frequencies, and the algebra required
to do even simple cases was quite complicated. By focusing attention on the gene frequencies,
and establishing the constancy of gene frequencies in the absence of perturbing forces, the Hardy-
Weinberg Law greatly simplified calculations. The advances of the next two decades would come
much more slowly and tortuously if it had not been true. For a more detailed history of population
genetics during the decade of the 1900s, the reader should consult the book by Provine (1968).

EQUILIBRIUM?. The Hardy-Weinberg Law is sometimes referred to as the Hardy-Weinberg
Equilibrium. It is an equilibrium in only a restricted sense. If we change the gene frequency
of a population, there is nothing inherent in the Law which will restore the gene frequency to its
original value. It will remain indefinitely at the new gene frequency. But if we perturb the genotype
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frequencies in such a way that the gene frequency is not changed, then in the next generation Hardy-
Weinberg proportions will be restored. If we take a population in Hardy-Weinberg proportions 0.81
AA :0.18 Aa: 0.01 aa, and alter the genotype frequencies to 0.88 AA : 0.04 Aa: 0.08 aa, then the
gamete frequencies will be 0.9 A : 0.1 a, and the offspring generation will once again have genotype
frequencies 0.81 AA : 0.18 Aa : 0.01 aa. But had we altered the gene frequency, the genotype
frequencies of the offspring would be in Hardy-Weinberg proportions, but in those dictated by the
new gene frequency.

ASSUMPTIONS. To maintain the Hardy-Weinberg principles, we have made many assumptions.
Among these are:

1. Random mating.

2. No differential fertility of the genotypes, so that the contribution a mating type makes
to the next generation is simply its frequency among all mating types.

3. Equal genotype frequencies in the two sexes, which we have assumed since we use the
same three genotype frequencies for both parents.

4. No mutation, so that the offspring of any mating are simply those expected from Mendel’s
laws.

5. No immigration, so that all members of the next generation come from the present gener-
ation. It is also assumed that there is

6. No differential emigration, so that any emigration which occurs does not change the
genotype frequencies.

7. No differential viability, so that any mortality between newly fertilized zygote and adult
stages does not alter the genotype frequencies.

8. Infinite population size, so that the proportions of mating types expected from random
mating, as well as the proportions of offspring expected from Mendelian segregation are
exactly achieved.

Much of the remainder of these notes will be devoted to the consequences of relaxing one or
more of these assumptions. We will not be able to cover all possibilities, even superficially, but we
should be able to arrive at some intuitive understanding of the effects, singly and in combination,
of these various evolutionary forces.

I.4 Multiple alleles.

If, instead of 2 alleles, a population contains n alleles, the principles stated in the previous section
either apply or generalize naturally. In a haploid population, we have n different haploid genotypes
Aq, Ag, ..., Ay, whose frequencies in generation ¢t we call py, ps,...p,. When diploids are formed by
random mating, the frequencies of the diploid genotypes are simply the products of the respective
haploid frequencies. Thus the frequency of the A; A; diploid genotypes is p? since each of the two
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haploid genotypes independently has probability p; of being A;. In general (if we count genotype
A;A;j as being distinct from genotype A;A; for i # j),

AZAZ : Pzz:p? 1= 1,2,...,?7,

AiAj : Pij = PiDj 1= 1,2, ey T (1—10)
7=12,...,n,
(@ #J)-

To keep the notation straight, you must keep in mind that, although we cannot tell 4;A4; and
AjA; genotypes apart, we count their genotype frequencies P;; and Pj; separately, as if we could
distinguish them in practice. Thus, the total genotype frequency of A;A; and A;A; heterozygotes
is

pipj +pjpi = 2p;ip;j. (I-11)

If we had a population of diploid genotypes, in which we knew the numbers N;; of A; A; homozy-
gotes, and the numbers N;; + Nj; of A;A; or A;A; heterozygotes, we could compute the genotype
frequencies directly, by counting A; genes. There are two A; genes in each A;A; homozygote and
one in each A;A; heterozygote. If we have IV individuals in all, there are 2NV copies of the A gene,
so that the fraction of them which are A; is

p;i = [2Nj+ (N +Nog + ...+ Ni—1 + Nigri + ... + Nyg)
+(Nzl + Npp+ ...+ Ni,ifl + Ni,iJrl + ...+ Nzn)] /(QN) (1—12)

= [(Nh + Noj + ... + Nm) + (Nil + Nijg + ... + Nm)] /(2]\7)
Dividing each term of the numerator by 2N, and noticing that N;;/N = P;;,
pi = 1/2(Pii+ ..+ Pu) + 1/2 (P1+ ...+ Py)

n (1-13)
Pij;.
=1

n
= 123 Py + 1/2
2 ;

J
In producing the next generation of haploids from a diploid generation with genotype frequencies
P;;, the proportion of haploid offspring of genotype A; is just the gene frequency of A; in the diploids

of the previous generation:
n

P, = pf = 1/2 Y (Pji+ Py). (1-14)
=1
If generation ¢ was itself formed by random mating, then P;; = p;p;, so if we denote by p; the
gene frequency in the next generation,
n
P = 1/2 3 (2pip;)
=1

= i Pi Dj (I-15)
j=1

= pip1 + . + Pipn = pPi(P1+Dp2+ ...+ Dn)
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which clearly equals p;, since the sum of all of the haploid genotype frequencies is 1. So if p;” is

the gene frequency in generation t,
t+1 t 0
pz(Jr) = pz(‘) = e = pE ), (I-16)

for all n values of . Thus the gene frequencies of all n alleles remain constant through time and,
by equations (I-10), the diploid genotype frequencies can be predicted from the gene frequencies.

All of the above has been for a haploid organism. The results for diploids are identical. All we
need to do is note that the principle that random mating is equivalent to random union of gametes
is still valid, unaffected by the number of alleles present. Therefore, under the assumptions of the
Hardy-Weinberg Law (random mating, no differential fertilities, no sex differences, no mutation, no
migration, no differential viabilities, infinite population size), the Hardy-Weinberg Laws still hold.
In fact, Weinberg (1908) made his derivation in terms of multiple alleles at the outset.

At least part of the results of this section can be seen intuitively. If we classify alleles into two
classes, one containing the A; allele and the other containing all other alleles, we can consider the
resulting population as having two-alleles. The gene frequency of A; cannot depend on whether
or not the geneticist can perceive differences among the other alleles. Neither can the frequency of
A1A; homozygotes. It follows immediately that the gene frequency of A; (or of any other allele we
choose) must remain constant through time, and that the genotype frequency of A; A} must become
the square of the frequency of the A; allele. Only the genotype frequencies of the heterozygotes
are not predicted by this analogy between two and many alleles.

I.5 Overlapping generations.

So far, the generations have been discrete. One generation gives rise to another, whereupon the
parents do not reproduce again, and are no longer counted as part of the population. In that
case, the population moves into Hardy-Weinberg proportions in one generation. This life cycle
is reasonable only for organisms which breed synchronously and only once in their lifetime (such
as annual plants). If there is repeated reproduction and overlapping generations it is not a good
representation of the life cycle. A realistic model for continuous reproduction and/or overlapping
generations would be quite complex. As a start towards considering such cases, in this section we
consider a very simple continuous-time model.

We assume overlapping generations, continuous time, but not age-dependent reproduction. The
discrete-generation model is one with perfect memory: organisms “remember” exactly when they
were born, and reproduce exactly on schedule. But the present model is the opposite: in each
small interval of time, a small fraction of the population, chosen irrespective of age, dies. These
individuals are replaced by newborns formed by random mating among all existing individuals,
again irrespective of age. Since we wish to consider a case parallel to the Hardy-Weinberg situation,
we here assume that deaths and births occur irrespective of genotype, that there is no difference
in genotype frequencies between sexes, no mutation, no migration, and an infinite population size.
The relationship between clock time and generation time is set once we know what fraction of
individuals die in a given amount of time, and therefore how rapidly the population turns over.
To equate one unit of time with one generation, we assume that during an amount 6t of time
(assumed to be short), a fraction 0t of the population dies and is replaced. This scales the situation
so that the probability that an organism survives ¢ units of time is (1 — §¢)"/% which as 0t is made
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small approaches e~!. (You may remember from a calculus course that (1 + 1/n)" approaches e as
n — 0o, and this is a variant on that result). So lifespan has an exponential distribution, which
turns out to have a mean (average) of 1. The process of allowing dt to approach zero is justified
by the fact that if the process of death and replacement occurs continuously with constant death
rates the probability of survival for §¢ units of time is 1 — §t only approximately, the approximation
improving as dt becomes small.

The newborns who replace the deaths constitute a fraction 6t of the population (again ap-
proximately: exactly if we let 6¢ — 0). They are the result of random mating in the population
under Hardy-Weinberg assumptions, so if the current population gene frequency of A is p4(t), the
newborns are of genotype AA with probability [pa(t)]?. The AA individuals after §¢ units of time
are a mixture of a fraction ¢t of newborns and 1 — dt of survivors, so if P44(t) is the frequency of
genotype AA at time t:

Paa(t+6t) = Paa(t) (1—4t) + 0t [pa(t))? (I-17)

and (rearranging)
PAA(t +5t) — PAA(t)

5 = [pA(t)]2 — Paa(t). (I-18)
Taking the limit as §t — 0, the left side of (I-18) is simply the derivative of P44 (t):
dPaa(t
%() = [pA(t)]2 — Paa(t). (I-19)

Similarly, it is easy to show that if P, () is the frequency of heterozygotes Aa (and aA)

dPAa(t)
dt

= 2pa(t) pa(t) — Paa(t). (1-20)

Before attempting to solve these equations to find the way Pa4(t) changes through time, it will
be instructive to look at the gene frequency pa(t). This is equal to Paa(t) + 3Paq(t). We can add
together equations (I-19) and (I-20), after multiplying (I-20) by one-half. We get

d(Paa(t) + 5 Paa(t))

= = AP + pat) palt) — Paalt) — 1/2 Pa(t),  (121)

SO
DA 1) Ipa(t) + palt)] — palt) = 0. (122)

So pa(t) = pa(0) = pa: the gene frequency does not change, just as we might have expected.
Knowing that p4 remains constant, as does p,, means that we can solve equations (I-19) and (I-20)
by treating p4(t) as a constant.

Before going through any algebraic details, we can see from (I-17) and (I-19) what the result
will be. Equation (I-17) shows what is happening: as the initial generation of individuals dies out,
it is replaced by newborns who are in Hardy-Weinberg proportions at the constant gene frequency
p4. Ultimately, when the last of the original individuals has died, the population will be in Hardy-
Weinberg proportions. Equation (I-19) verifies this conclusion. If Pa4(t) > p%, then we have more
AA individuals than Hardy-Weinberg proportions would predict. Then the right side of (I-19)
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is negative, so that Ps4(t) decreases. Likewise, when Pya(t) < p?, it will increase. Ultimately
Paa(t) = p124, and Ps4 will not change further.
We can solve (I-19) by elementary separation of variables and integration. It first becomes

dPaa(t)
[pa(t)]? — Paa(?)

Then (remembering that p(t) = pa is constant) we can integrate both sides:

/ m dPaa(t) = / dt, (1-24)

—log.[p% — Paa(t)] = t+C. (I-25)

We can determine the value of the unknown constant C by setting ¢ = 0. Then

= dt. (I-23)

which yields

C = —log.(p% — Paa(0)). (1-26)

So
log,(p% — Paa(t)) = —t + log.(p4 — Paa(0)). (1-27)

Taking the exponential function (e*) of both sides of this equation:
i — Paa(t) = [p4 — Paa(0)] e (1-28)

which shows that the deviation of P44(t) from the Hardy-Weinberg proportion p124 decays expo-
nentially with time. Solving for Pa4(t):

Paa(t) = Paa(0) (™) + ph (L—e™). (1-29)

This confirms precisely the explanation already given. As time passes, a fraction e~ of the
population consists of survivors of the original population. A fraction P44(0) of these are AA. All
individuals born later are in Hardy-Weinberg, proportions, so that a fraction p124 of them are AA.
Analogous equations hold for P4, and P,,. While P44(t) approaches its limiting value exponen-
tially, and never quite reaches it, all newborns are in Hardy-Weinberg proportions. In that sense,
Hardy-Weinberg proportions are reached in one generation.

In the remainder of this book we will rarely make use of the overlapping-generations models,
but you should keep in mind that there are overlapping-generations versions of some of the mod-
els treated here. However, overlapping-generations models are generally far less tractable than
discrete-generations models. This is mostly because Hardy-Weinberg proportions cannot be as-
sumed. As we have seen, they are approached only asymptotically even with random mating. If
there is any evolutionary force, such as natural selection, making the population continually depart
from Hardy-Weinberg proportions, we will have to follow genotype frequencies rather than gene fre-
quencies, which makes life harder. In discrete-generations models one is usually in Hardy-Weinberg
proportions once per generation, when the new generation of zygotes is produced.

The monograph by Charlesworth (1980) should be consulted for a clear review of the problems
involved in extending overlapping-generations models to cases in which birth and death rates are
age-dependent.
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Table 1.2: Genotype frequencies when gene frequencies differ in the sexes.

Female Gametes:

A a
Male Gametes: Dy 1 —py
A Pm PmPyf pm(l - pf)
a L—pm | pr(L—pm) (1—pp)(l—pm)

I.6 Different Gene Frequencies in the Two Sexes

We have been assuming that the genotype frequencies are the same in both sexes. We now relax
that assumption, in a discrete generations model which otherwise obeys all of the Hardy-Weinberg
assumptions. We follow a population in which two alleles segregate. Suppose that in the initial
generation the gene frequencies of A in females and in males are, respectively py and p,,. Random
mating is equivalent to the combination of a random female gamete with a random male gamete.
Table 1.2 shows the resulting genotypes:

which give the genotype frequencies:

AA PfDPm
Aa by (1 - pm) + DPm (1 - pf) (1'30)
aa (I =pp)( —pm)

We are assuming that the gene A is unlinked to the sex chromosome or sex-determining locus.
Thus in the offspring generation the genotypes AA, Aa, and aa are distributed independently of the
sex of the offspring. So in that generation, although the genotypes may not be in Hardy-Weinberg
proportions, they are the same in both sexes. Therefore the next offspring generation is produced
by parents with equal gene frequencies in both sexes, and it will therefore be in Hardy-Weinberg
proportions, as will all subsequent generations. Putting primes on the ps’s and p;,’s to denote the
next generation, the gene frequency in the gametes forming the offspring generation is

P = Py = Pipm + 30r(1—=pm) + pm(l = py)]
= prpm + P; — EPiPm + 3Pm — iD5Dm (I-31)
= 3pf T 3Pm-

It is entirely intuitively obvious why this must be so. The gametes produced by the first
generation contain in half of them genes coming from the initial female generation, and in half of
them genes coming from the initial males. This is true even if there is a great inequality of the sex
ratio: even if there are very few females (say), the symmetry of mating - the fact that each mating
consists of one male and one female - ensures that (I-30) will hold. The totality of male genes is
copied into the next generation as many times as the totality of female genes.
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The picture we get from all this is that after starting with unequal male and female gene
frequencies, we do not reach Hardy-Weinberg proportions in the offspring. But we do achieve
equal gene frequencies in the two sexes of the offspring. In the second generation Hardy-Weinberg
proportions are achieved. So the effect of unequal gene frequencies in the two sexes is to delay
achievement of Hardy-Weinberg proportions by one generation. We can still say that the overall
gene frequency of the population does not change. But we can only say this if we define it as
p = %pf =+ %pm, irrespective of the actual numbers of the two sexes. In other words, we must
count the aggregate of all females as contributing as much to the population gene frequency as the
aggregate of all males. Any other weighting system - such as counting each individual as equivalent
- will lead to the population gene frequency changing during the first generation.

In this presentation, p has been the frequency of an allele A, and 1 — p of a. But we could
as easily have designated 1 — p as being the frequency of all other alleles than A. So the above
argument applies to the frequency of an allele A irrespective of how many other alleles there are.
Having multiple alleles in a population will not alter the conclusions.

GENOTYPE FREQUENCIES. Finally, we verify the direction of departure of genotype
frequencies from Hardy-Weinberg proportions. Suppose that we measure the gene frequency in
each sex as the average gene frequency plus (or minus) a deviation from that quantity, so that

pf = p+o
Pm = p—0. (I-32)

Then the genotype frequencies in the next generation are:

AA - (p+9)(p—9)
Ao (p+8)(1—p+0) + (p—0)(1—-p—9) (I-33)
aac (1—p—=29)(1—p+9).
or (collecting terms)
AA p? — 2
Aa 2p(1—p) + 262 (I-34)
aa (1—p)? — &2

This demonstrates that in the two allele case, if there is any difference between gene frequencies
in the sexes, if  # 0, there will be a departure from Hardy-Weinberg proportions in the next
generation. Furthermore, whether ¢§ is positive or negative, the result is the same: there are fewer
homozygotes and more heterozygotes than we would expect from Hardy-Weinberg proportions.

With multiple alleles, there must also be a deficit of each homozygote class, and also an average
excess of heterozygotes compensating for this. But specific heterozygote classes can be in deficit,
despite the fact that there is an overall excess of heterozygotes.

Biologically, the main implication of the results of this section is that for autosomal loci, we
would not expect to see gene frequency differences between the sexes unless some evolutionary force
continually created such differences. This has an interesting implication for differentiation of the
sexes: it will be difficult to explain it by genotypic differences at loci that are not linked to the
sex-determining loci.

13
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Figure 1.2: Segregation of an allele completely linked to a sex-determining locus in a
haploid organism

I.7 Sex linkage.

HAPLOIDS. We get quite different results when the locus in question is on the sex chromosome.
In the haploid case, the results are a bit trivial. If the system resembles yeast, we may have two sex-
determining alleles (say S and s). Each mating must be between an S and an s haploid, producing
heterozygous diploids. The “sexes” of the offspring are determined by which of the two alleles the
haploid receives in the segregation of the diploid. If we follow another allele which is completely
linked to the sex-determining locus, the results are rather obvious. If we have an allele (4) which
has gene frequency pg among the S haploids, and ps; among the s haploids, neither of these gene
frequencies will change. The allele linked to the S haploid in any mating will show up only in the
S haploid offspring. The same, of course, holds for s. Figure 1.2 may help you see this.

DIPLOIDS. When the organism is diploid, with an X-Y chromosome sex-determination, the
situation is both more complex and more interesting. Now we assume that a sex-linked locus
is carried on the X chromosome, with no counterpart on the Y. Suppose that allele A has gene
frequency py among X-bearing gametes from females, and frequency p,, among X-bearing gametes
from males. Since female offspring contain one X from their male parent, and one from their female
parent, then under Hardy-Weinberg conditions the genotype frequencies in the female offspring are

AA Df Pm
Aa pr(1=pm) + pm(l—py) (I-35)
aa (1 =pg)(1 =pm),
which are exactly the same as these genotype frequencies would be for an autosomal locus in which
gene frequencies differ between the sexes. But we cannot expect to see Hardy-Weinberg proportions

in only two generations. After the first generation we do not have equal gene frequencies in both
sexes in this case, because the locus is linked to the sex-determining chromosome. In male offspring,
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Figure 1.3: Gene frequency changes resulting from initial sex differences of gene fre-
quencies in the two sexes at a sex-linked locus (with initial gene frequencies p,, = 1,

py=0).

the genotype frequencies are:

AY :
Pf (1-36)

aY : 1—p;y.

We can easily calculate the gene frequency of A among the gametes coming from these offspring.
In males there is no algebra to do. In females the algebra is identical to that in Equation (I-31) of
the previous section. Placing primes on the p’s to indicate the next generation, the results are:

Py = 3ps+3pm
(1-37)
Pm = Py

LONG-TERM BEHAVIOR. It is not immediately obvious what are the long term implications
of these relations. Figure 1.3 shows the results if we start with p,, = 1 and p; = 0. Clearly the
gene frequencies do not settle down immediately, but oscillate to an equilibrium.

There are methods available for the complete solution of simultaneous difference equations such
as (I-37). But here we will take a short cut which we can only do once we know the answer in
advance. Suppose that we arbitrarily decided to look at the quantity %p r+ %pm = p. Then from
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(1_37)7

po= 30+ ip, = 3(3p5+ 50m) + 505
(1-38)
_ 2 1 _

so this quantity does not change through time. It is a weighted average of the gene frequencies in
females and in males. The weighting assigns twice as much weight to females as to males. This
may seem to be straightforward: that each X chromosome is being counted once. But notice that it
is irrespective of the sex ratio: the males as a whole are given half as much weight as the aggregate
of all females. As in the previous section, if there are very few males, this is compensated for by
the fact that each male will then mate more times than each female (on average). This is a simple
consequence of the fact that each mating involves one male and one female.

If the gene frequencies of the two sexes converge to the same value, then since at that point
Pf = Pm, from (I-37) if the initial gene frequencies are p(0) and p,(0)

2 1

Pf = DPm = P = gpf(o) + 5 Pm(0). (1-39)

But will this equilibrium value always be approached? We can examine this by computing the
difference between the female and male gene frequencies, and seeing how this changes in successive
generations:

Py =P = (5pf+ 5Pm) — Py

= $Pm — 3Pf (I-40)
= (=3)(ps —pm)-
So the magnitude of the differences between the gene frequencies in the two sexes decreases by

half every generation, and it changes sign every generation. Convergence of the male and female
gene frequency is certain, irrespective of their initial values.

GENOTYPE FREQUENCIES. When both gene frequencies are equal, (I-35) and (I-36) are:

Females Males
AA 2 AY
b b (I-41)
Aa 2p(1—p) aY 1-p
aa (1 —p)2

When p is small, this has the interesting property that male hemizygotes for A will be much
more common than female homozygotes: if p = 0.01, then p? = 0.0001. This is of course reasonable:
to get a hemizygote for A we need only one copy of the rare allele, but to have an AA female two
rare alleles must be present in the same individual.

If we have multiple alleles, the results are the same: the frequency of each allele oscillates to
an equilibrium value which is %pf(O) + %pm(O), the oscillations being reduced in magnitude by
one-half in each generation. But if we have a model of continuous overlapping generations without
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age effects (analogous to Section I. 5), there are no oscillations! Nagylaki (1975b) has demonstrated
that in such cases the gene frequencies in the two sexes approach each other smoothly from their
initial values, reaching the same equilibrium values as calculated above.

Although our calculations have been stated in terms of an X-Y system, we may make the
following comments about other systems of sex determination:

1. An XX-XO system will behave like an XX-XY system in this respect.

2. A ZW-ZZ system (as in birds or lepidoptera, where the female is the heterogametic sex) will
behave like an XX-XY system with sex labeling reversed.

3. A haplo-diploid sex determination system, as in Hymenoptera (males coming from unfertilized
haploids and females from fertilized eggs) will have every locus in the organism segregating
as if sex-linked.

The oscillating approach to equilibrium genotype frequencies was first shown by H. S. Jennings,
a pioneer protozoan geneticist, in 1916.

I.8 Linkage.

INDEPENDENCE OF GENOTYPES AT TWO LOCI. Let us consider two linked loci,
each with two alleles. The gene frequency of allele A will be pa, the frequency of a being 1 — p4.
Likewise, the gene frequency of B will be pp, and of b, 1 —pp. It is a basic property of the Mendelian
system that the segregation of one locus is not affected by the genotypes of neighboring loci. So
each locus will individually follow the Hardy-Weinberg laws if the assumptions underlying those
laws apply, as we now assume. Then py and pp will each remain constant through time. The
genotype frequency of AA will be p?4 after the first generation, and similarly the frequency of BB
will be p%. But what about the frequency of AABB ? Can we assume that the genotypes at the
two loci are independent, and compute the genotype frequency of AA BB as pip%, ? If so, is this
situation reached after one, two or many generations of random mating?

A RETROSPECTIVE DERIVATION. To investigate this we must compute gamete frequen-
cies. An AA BB individual is the product of the fusion of two AB-bearing gametes. In thinking
about gamete frequencies, we discover that they cannot simply be computed from gene frequencies.
They have a life of their own. Consider two populations, each having p4 = % and pp = % The first
consists of half AA BB individuals and half aa bb. There are only two gamete types produced by
this population: AB and ab, in equal frequencies. On the other hand, the population might consist
of half AB/ab and half Ab/aB individuals (it is necessary in this case for us to know the phase of
the double heterozygotes). Then whatever the recombination fraction between the loci, one-quarter
of all gametes will be AB. So we must consider gamete frequencies as well as gene frequencies.
Let Pap be the frequency of AB among the gametes that formed generation t. We want to
compute P’ 5, the frequency in the next generation. There are two ways in which this could be
done. One is to enumerate all possible matings. The other makes use of a shortcut. Consider
a gamete of the next generation, and let r be the recombination fraction between these two loci.
We need not restrict ourselves to the case where the two loci are on the same chromosome: if
they are not, r = % In the next generation, 1 — r of the gametes will not have suffered any fresh
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Figure 1.4: A two-locus haplotype in a gamete is derived either from a single haplotype
one generation earlier or from the different loci in the two haplotypes of the parent,
depending on whether there has been a recombination between those loci.

recombination between these two loci. The gamete frequency of AB in these gametes will be the
same as in the previous generation. But r of the time, there will have been a recombination. Then
the gamete will be AB only if one gamete coming into the parent carried an A, and the other a B.
But we have assumed random mating, so that the two gametes which go to make up an individual
are chosen randomly and independently of one another. Then the chance that one is A, and the
other B, is simply papp. We do not need to inquire about the other gene copy at either of these
two loci, since we are not concerned with the genes which are not copied into the gamete. Putting
all of this together,

Pig = (1—7)Pag + rpaps. (I-42)

The result in the long run can be seen by subtracting papp from both sides of (I.8). Then

Pip—pape = (1—r)Psp + 7 papB — PAPB
(1-43)
= (1—7r)(Pap — pADB)-

A MEASURE OF NONINDEPENDENCE. The quantity P4p—papp measures the difference
between the actual gamete frequency of AB and the hypothetical frequency which would obtain if
the presence of A in a gamete (an event with probability p4) were independent of the presence of
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B. Let us call this difference D4p(t) in generation t. Then

DAB(t) = (1—T)DAB(t—1)
(I-44)
— (1—r) Dap(0).

Provided there is any recombination between the two loci (1 — r) is less than unity, so that as
t — 00, Dap approaches zero. When D 4p is zero, not only does

Pisp = paps, (I-45)

but the genotype frequency of AA BB, being P35, is then p% p%. So ultimately we end up in a state
where each locus is in Hardy-Weinberg proportions and the occurrence of genotypes at the two loci
is independent of each other. This latter state is usually called linkage equilibrium, and the measure
D 2p is the amount of linkage disequilibrium. The name is somewhat misleading. It seems to imply
that there will be no linkage disequilibrium if there is no linkage. But equations (I-43) and (I-44)
show that this is not so. If there is no linkage r = % Then D 4p declines by half each generation. It
will rapidly become quite small, but will not be exactly zero if it is initially nonzero. In fact, there
is little difference between two loci being far apart on the same chromosome, or being unlinked.
Some authors have preferred “gametic phase imbalance” instead of “linkage disequilibrium,” but
the latter phrase seems impossible to dislodge from the literature.

The decline of Dap at the rate (1 — ) has a straightforward interpretation. Note that we can
give a general expression for the chromosome frequency Pap(t):

Psp(t) = paps + (Pap(0) — papp) (1 —r)t
(1-46)
= Pap(0)(1=7)" + 1= (1 —=7)"]paps.

Note that (1 — ) is the probability that a gamete passes through ¢ generations without suf-
fering a recombination. The first term on the right side represents the contribution to the gamete
frequency of AB from those gametes which have never suffered recombination between these loci
since the initial generation. The persistence of part these unrecombined gametes is the reason
for the persistence of part of the initial linkage disequilibrium. Note that the right-hand term on
the right side of (I-46) implies that any gamete which has ever suffered a recombination has an
expected frequency of papp for AB, irrespective of the initial gamete frequency Pap(0). It is the
fact of random mating each generation which allows us to reach this conclusion. In particular,
for (I-43) and hence (I-44) to hold, the initial generation must itself have been formed by random
mating. Otherwise we could only write Dap(t) = (1 —7)!"1Dap(1). In either case, D tends to
zero. Recombination gradually scrambles the initial associations of alleles at different loci, until a
state of complete randomness is obtained, in which each chromosome is a patchwork of segments
derived from different ancestors.

The implications of linkage equilibrium go unnoticed by many geneticists. Suppose the popu-
lation is in linkage equilibrium. Then if a plague carries off all but the AA individuals, what will
happen to the gene and genotype frequencies at the unselected B locus? Precisely nothing! Among
the A-bearing gametes, the fraction which are B is simply pp. And among AA individuals, the
fraction which are BB is simply pQB. This illustrates a general principle, that if linkage equilibrium
is maintained, natural selection at one locus will not affect another.
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Table 1.3: Genotype frequencies of genotypes giving rise to AB gametes, and the fre-
quencies with which they do so.

Genotype Fr?quency ' Proportion of AB
(assuming random mating) (among gametes)
AB/AB Py 1
ABJAb or AbJAB 2Pp Pay 3
AB/aB or aB/AB 2Pap Pup 3
AB/ab or ab/AB 2Pap Py 3(1—7)
AbJaB or aB/Ab 2Py, Pup 37

SIMPLIFYING POPULATION GENETICS: THE GENE POOL. It should not go
unmentioned that linkage equilibrium among all combinations of loci allows a vast reduction in
the number of variables required to describe genotype frequencies. Consider a genotype at twenty
loci, each of which can have two alleles. There are 220 different gametes possible, so that there are
220220 — 240 possible genotypes. Of course, we usually cannot tell coupling from repulsion double
heterozygotes, or which alleles came from the maternal and which from the paternal gamete. Since
we can observe at each locus only three distinct genotypes, there are merely 32° distinguishable
genotypes. But this is still 3,486,784,401 genotypes! We can predict the genotype frequencies from
the gamete frequencies, of which there are 1,048,576. We can discard one of these as an independent
quantity, since the sum of all gamete frequencies must be unity. This does not help much. But
linkage equilibrium does. At one stroke, it allows us to compute all genotype and gamete frequencies
from only 20 quantities, the gene frequencies! It is this simplification which allows us to speak of
the evolving population in terms of changes in its “gene pool,” the collection of its gene frequencies.
If linkage equilibrium does not hold, the best we could do would be to consider it as a “gamete
pool”.

A MORE DIRECT DERIVATION. Now let us briefly consider the other, more exhaustive
proof of the approach to linkage equilibrium. We consider the four types of gametes: AB, Ab, aB,
and ab, designating their frequencies Pap, Pap, Pup, and P,,. Consider all of the parents from which
a AB gamete might emerge. These are given in Table 1.3, along with their genotype frequencies
and the proportion of their gametes which are AB.

The resulting frequency of AB is

Pl = (Pap)* + (PapPay) + (PapPup) + (PapPw) — 7(Pap Puy — Pap Pun)
= Pap[Pap + Pap + Pup + Pup| — 7(PapPap — ParPap) (1-47)
= Pap — 7(PaBPw — Pay PuB).
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This does not look familiar, until we consider the quantity in parentheses on the last line of the
equation. Note that

Pap+Pa = pa,
Pap+ Pup = pg, (I-48)
Py = 1—Pap— Pa,— PyB.

Substituting (I-49¢) into (I-47),

Pig = Pap—r[Pap — Pap Pap — Pap Pay — Pap Pup — Pay PuB]

= Pap—71 [Pap — (Pap+ Pap) (Pap + P.p)]

(1-49)
= Pap—r1 [Pap — paps]
= (1—7) Pap + 7paps,
which is simply (1.8). The quantity in brackets in (I-49) demonstrates an interesting fact:
Pap Pop — Pay Pap = Pap — paipsp. (I-50)

This implies that the linkage disequilibrium D 4p is half the difference between the frequencies of
coupling and repulsion double heterozygote genotype frequencies.

HAPLOTYPE FREQUENCIES IN TERMS OF D. Since Dyp is defined as Pag —pa pB,
by simple rearrangement we can write Pap in terms of ps pp and Dyp. We can do the same for
the other three haplotypes:

Pap = papp + Dap
Pay = papy + Day

I-51
P.p = PaPB + Dyp ( )
Pw = papmy + Da

For this case with two alleles at each locus, we might think that we need two gene frequencies and
four linkage disequilibrium parameters to predict four the haplotype frequencies. That seems like
too many. In fact if we add the first two equations, we get

Pap + Papy = pa(p + b)) + Dap + Dap (I-52)

But the quantity in parentheses is the sum of the frequencies of all alleles at the B locus, and so it
must be 1. Making that substitution we recognize that in view of equation (I-49) we must the have

Dap = —Dap. (I-53)
A similar derivation using the first and third equations shows that
Dap = —Dgp. (I-54)

I leave it to you to persuade yourself that, since the frequencies of the four haplotypes sum to 1, it
is also true that
Dap = Dap. (I-55)
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Then we can write the four haplotype frequencies in terms of only three quantities (as we know
that p, = 1 —ps and pp = 1 —pp):

Psp = paps + D
Py, = pa(l—pp) - D

1-56
P, = (1—pa)pB - D (1-56)
Py = (1—-pa)(l-pp) + D

This is more comforting: we knew that we had four quantities that must add to 1. Now we
have predicted them from three variables: two gene frequencies and one linkage disequilibrium
parameter.

All of the above proofs have been for the case of two alleles at each locus. The first proof did
not refer to a or b at all. It would not have altered things at all had there been several alternatives
instead of just @ and b. The principle of approach to linkage equilibrium proportions at a rate
(1 — )t holds for any number of alleles, and for each gamete type (say AgBs) we can compute a
linkage disequilibrium measure Da,p, = Pas, — PAsPB,, Which will gradually decline to zero (or,
if initially negative, will rise to zero).

HISTORY. Although Weinberg (1909) was aware that with linkage, random association would be
approached only gradually, the algebraic treatment for two loci was first given by Jennings (1917).
The linkage disequilibrium quantity was first used by Robbins (1918), though that name was not
given it until the paper of Lewontin and Kojima (1960). Hilda Geiringer (1944, 1948) was the first
to prove convergence to random association for multiple loci; a more abstract proof was given by
Reiersgl (1962), who used incomprehensible genetic algebras.

I.9 Other Measures of Linkage Disequilibrium

Linkage disequilibrium, usually simply referred to as “LD”, is has become more widely computed
as population-level studies have become more common in genomics. But using the quantity D to
describe the extent of linkage disequilibrium between two alleles at different loci, such as A and
B, can be misleading, because there is less possibility of large values of D the nearer the gene
frequencies are to 0 or to 1. This has led to two alternative measures that try to rescale it, D" and
r2,

The first of these was invented by Lewontin (1964a). It computes the largest value that D could
have, and divides it by the absolute value of that value. If D is positive, it cannot exceed (1—pa)ps,
and also cannot exceed p4(1 — pp), because past those values one or more of the frequencies of
haplotypes Ab or aB would be negative, which is impossible. Likewise, if D is negative, it cannot
be more negative than either —p4 pp or —(1 — p4)(1 — pp), for beyond those values one or more
of the frequencies of haplotypes AB or ab would be negative. Lewontin suggested scaling D by
dividing by the absolute value of the relevant limit, so that the scaled value could not be above 1
or below -1: b

A (T=ps), (—p2p) it D=0
D = (I-57)
it D<0

D
min(papp, (1-pa)(1—pB))

Although D’ is widely used as a descriptive statistic, it has what appears to be a disadvantage.
If pg = 0.1 and pp = 0.2, then a value of (say) D = 0.01 is to be scaled by dividing by the
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largest possible positive value of D, which will be 0.08, to give D’ = 0.125. But if instead we had
D = —0.01, it should instead be scaled by dividing by 0.02, which gives D’ = —0.5. The sudden
change of the scaling factor as D passes through 0 seems arbitrary and unnatural.

An alternative that does not have this problem is the r measure of Hill and Robertson (1968).
In effect, this codes the two alleles at each locus as 0 and 1, and computes the correlation coefficient
of these two numbers. The result is

_ D
VPa(l = pa)ps(l —pp)

This measure is often used by giving its square, 72. As r cannot lie outside the interval between -1
and 1, 72 cannot lie outside of [0,1]. This would seem to solve the problem, but alas, it too has a
seeming limitation. If gene frequencies at one locus are less extreme than at the other, the value
of » may not be able to reach 1 or -1. Thus in our example, if p4 = 0.1 and pp = 0.2, it turns out
that the value of r cannot be greater than 2/3 or less than —1/6. Only when the gene frequencies
of the two alleles are equal at the two loci will r be able to get as small as —1 or as large as 1.

Thus, as useful as these are as descriptive measures, each seems to have distinct limitations.
But the problem is that we have not formulated the problem in terms of estimating or testing
anything — instead we relied on intuitive feel as to which properties were “natural”. When we try
to formulate a well-posed statistical problem that these measures solve, we are in fact led away
from using any of them, and into the wonderland of coalescent methods, which we visit in Chapter
X.

r

(1-58)

[.10 Estimating Gene Frequencies

If we draw a sample of n diploid individuals from a random-mating population, and wish to estimate
the gene frequency p4 in the population, there would seem to be several courses of action possible.
Suppose that we sampled 100 individuals, and found 49 AA, 26 Aa, and 25 aa. We could estimate
the gene frequency in the population by simply taking the gene frequency in the sample. This
gives p4 = (98 4+ 26)/200 = 0.62. But we could also consider that we expect the proportion of AA
individuals in the sample to be (on the average) the same as the population genotype frequency p124.
So we could take the observed frequency of AA, 0.49, and take its square root to get an estimate of
the gene frequency, 0.7. We could also take the square root of the observed frequency (0.25) of aa,
which gives an estimate of 0.5 for the frequency of a, and hence 0.5 for the frequency of A. Now we
have three different estimates (0.5, 0.62, and 0.7) for the same quantity. All share one justification:
as the sample size increases, the observed genotype frequencies in the sample will approach those
in the population. Thus all three of these methods will give a gene frequency close to that in the
population, if the sample size is large. But which estimate is to be preferred when it is not?

MAXIMUM LIKELIHOOD. To get an answer to this problem, we must pose the problem as
a statistical one, and use a standard statistical approach. There are a variety of these (e.g., mini-
mum variance unbiased estimates, minimum mean square error methods, Bayesian and empirical
Bayesian approaches). But one method exceeds the others in general applicability and widespread
acceptance by statisticians. This is R. A. Fisher’s method of maximum likelihood. Suppose that we
want to estimate a parameter, 6, and are given some data. If we have a probabilistic model for the
generation of the data, we could compute for a given value of 6, the probability Prob(Data | )
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that the observed set of data would have arisen. This is not to be confused with Prob(f | Data),
which would be the probability of a particular value of 8, given the data. We usually do not have
enough information to find that. (For more on this distinction, consult a text of mathematical
statistics concerning the distinction between Bayesian and maximum likelihood methods).

The method of maximum likelihood is to vary € until we find that value which maximizes
Prob(Data | ), the probability of the data, given 6. Prob(Data | 0) is referred to as the likelihood
of 0. Considered as a function of the data, it is a probability. But for a fixed set of data, as a
function of 0, it is called a likelihood. This is an example of the way two terms (probability and
likelihood) which are barely different in English usage, become distinct and specific in statistical
use. The maximum likelihood method has a number of desirable properties. As the sample size
increases, the estimate will approach the true value of 6. For a given sample size (provided it is
large), the variance of the estimate of 6 around the true value is less under the ML method than
under any other. The estimate is not necessarily unbiased (that is, the average estimate of 6 on
repeated sampling may not be exactly #), but the amount of bias declines as sample size increases.

In this case, the data are the numbers of the genotypes observed in the sample. Suppose that
these are m44, nAq, Naa- The role of 8 is played by the unknown gene frequency p. We need to
know how to compute Prob(nsa,naq,Naq | ). We have a sample of n individuals, drawn from a
population in which the true genotype frequencies are p?, 2p(1 — p), (1 — p)2. The probability of
the observed numbers n.44,n 44, Mg is the multinomial probability

n
Prob (naa,naq,Naa | P) = ( > (p*)"44 [2p(1 — p)]™4e [(1 — p)?]™ee. (I-59)
NAA NAg Naa
This can be rewritten as
Prob (naa,maq,Naa | p) = C pAraatnia (1-— p)”A“+2”““, (1-60)

where C' incorporates the constant terms and the factorials which depend on the n’s but not on
p. We want to vary p to maximize the likelihood. It will turn out to be easier to work in terms of
the natural logarithm of the likelihood. Since the logarithm of a quantity increases as the quantity
increases, the value of p which maximizes one maximizes the other.

The logarithm of the likelihood is:

log. L = log.C + (2n44 +n4q) logep + (naa + 2n4a) log.(1 —p). (I-61)

If we plot log, L as a function of p, when it reaches the maximum, the slope of the curve will
be zero. Trying to find the value of p at this point, we take the derivative of (I-61) and equate it

to zero:
dlog, L _ 2na4 +naq _ MAa+ 2Nga _ 0 (1-62)
dp P 1-p
The value of p which solves this equation is, after a few straightforward algebraic rearrange-
ments,

2n44 + naq

2na4 + 2n44 + 2144
(1-63)
2nA44 + NAg
2n '
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The numerator is simply the number of A genes observed in the sample. The denominator is
the total number of genes. So the estimate is the observed fraction of A genes. In the example just
given, this was 0.62, so that the maximum likelihood method selects one of the three methods as
preferable. This selection is not arbitrary: R. A. Fisher showed that maximum likelihood estimates
make more efficient use of data than do others. For large amounts of data, they have at least as
small a variance as do other estimators.

CONFIDENCE INTERVALS. The maximum likelihood estimate is a point estimate; it gives
you a single number, but we really want an interval estimate giving upper and lower bounds on p.
If we want to put confidence limits on p, there are several possible approaches:

Using the curvature of the log-likelihood surface. If we can compute the second
derivative of the likelihood, and evaluate it at the point p, there is a well-known formula which
estimates the variance of p, from the second derivative of the likelihood:

2lo
Var (p) = —1/[%7%11] o (I-64)

The 95% confidence limits on p will be approximately found by taking the standard deviation
o = [Var (ﬁ)]l/ 2 with the limits being +1.960. The logic of this formula, derived by Fisher, involves
approximating the binomial distribution by a normal distribution. It will be inaccurate when p is
near 0 or 1, since then the confidence limits it calculates on p can exceed 0 or 1.

Using the distribution of p. A second, and simpler approach looks directly at the formula for
the estimate p, and finds its variance from the multinomial distribution (I-59) of n 44, n4q, and ng,.
Here we are helped by a simplification: p is simply the fraction of the 2n genes in the sample which
are A. If the population is in Hardy-Weinberg proportions (which we assume) each gene sampled
independently has probability p of being A. In estimating p we are simply estimating the parameter
of a Binomial distribution, based on a sample of 2n genes. If we are willing to approximate the
binomial distribution by a normal distribution, we can obtain 95% confidence limits from p+1.960,
where ¢ is the standard deviation of the underlying binomial distribution. This is obtained from:
2 _ p(1—p)
o = —— (1-65)
Of course, this can only be calculated once we know the true underlying value of p. But this is
precisely what we are trying to estimate! We can use our estimate p in (I-65) to get an approximate
confidence interval of p. The interval will sometimes exceed 0 or 1. If the observed p is zero, we
estimate ¢ = 0 from (I-65), and find that (apparently) p is not an estimate, but is exact! This
cannot really be so: we are being betrayed by the inaccuracy of the normal approximation, and by
the fact that we are using an estimate p rather than the true p in (I-65). An improved approximation
is S
sin? | (sin™t\/p) £ 1.95996\/ 8% ] : (1-66)

with the quantity in brackets being kept confined to the interval (0,7/4). (Note that the angles
in (I-66) are expressed in radians rather than degrees). This is still an approximation. For a
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truly correct confidence interval, we can either make use of published tables of confidence limits
in statistical tables (using 2n as the sample size) or can use tables of the binomial distribution, as
follows. For the upper confidence limit, we find a value of p such that only 2.5% of the binomial
distribution will lie at or below the observed sample gene frequency p. The lower limit will be
the value of p such that only 2.5% of the binomial distribution is at or above the observed p. No
approximation is then involved.

The exact confidence interval. A more exact confidence statement can be made using
the binomial distribution. Suppose that we can exactly compute tail probabilities for the binomial,
using a computer program. Given the observed numbers of A and a alleles sampled, we can calculate
the smallest value of p such that the probability of getting less than this number of A alleles in a
sample of that size is less than or equal to 2.5%. We can also calculate the largest value of p such
that the probability of getting more than the observed number of A alleles is less than or equal to
2.5%. These are the bounds of a confidence interval on p.

For example, if we sample 100 copies at a locus and find that 96 of them are A, these exact
confidence limits are 0.914824 and 0.983568. We can contrast this to the normal approximation,
which gives limits of 0.93284 and 0.98716. The arc sine approximation (I-66) comes closer, giving
0.928518 and 0.982661. The exact and arc sine approximations cannot get outside the allowable
range [0, 1]; the normal approximation can.

This is only one of the ways to construct an exact confidence interval. One other one tries to
find the shortest such interval, by allowing a probability of slightly more than 2.5% in one tail and
slightly less than 2.5% in the other. We will not go further into that here.

If more than two alleles are involved, the situation is more complex. When all genotypes can be
identified, as above, the procedures parallel the above ones. The estimate of each allele is simply
its fraction among the 2n genes in the sample. The estimated variance of allele A is simply

2 pa(l —pa)

oh = g (1-67)

Its covariance with allele A’ is

Cov (pa,par) = —papar/(2n). (1-68)

It is also possible to compute joint confidence intervals on the frequencies of two or more alleles,
but we will not consider that further here.

GENE COUNTING (EM ALGORITHM). When not all genotypes can be distinguished,
we can use a general technique known as gene-counting. This can be illustrated by using the ABO
blood group alleles as examples. The relationship between genotypes and phenotypes is (if we
ignore the two types of A alleles):

Genotypes Blood Type Number Phenotype Frequency

AAAO A na  p4+2papo

BB,BO B npg pZB + 2pBPoO (1-69)
AB AB NAB 2pAPB

00 0 no pZO
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If we somehow knew how many of the n 4 individuals in our sample of blood type A were AA and
how many AO, our estimate of p4 would be the observed frequency of A

2na4 +nao +nap

2n ’
But we do not know na4 and n4o separately: we cannot tell these genotypes apart. If we knew
pa and po, then we expect, from the relative Hardy-Weinberg frequencies that on the average
%/ (P4 + 2papo) of all type A individuals are really AA, and the remainder, 2papo/(p% + 2papo),
will be AO. These are only expectations, and will not necessarily apply in any given sample. In any
case we do not know p4 and pp. Note that we can remove a factor of p4 from the numerator and
denominator of these fractions, which simplify to pa/(pa + 2po) and 2po/(pa + 2po). The gene-
counting method takes the seemingly senseless approach of using these expectations, themselves
based on the gene frequencies that we do not know and are trying to estimate, to divide the type A
individuals into AA and AO according to the above expressions, and doing the same for BB and BO.
Having done so, we then pretend that these numbers (such as the number of type A individuals
that are inferred to really be AA) are observed numbers, and estimate the gene frequencies by
counting of alleles. The estimates are

pa = (I-70)

pa = |22 )na+nag /(2n),
e = [2(2242) np + nas /(2n), (1-71)
po = _(pAIj—%po) na + (pBi)’OQPO) np + no] /n.

These equations have one major problem: we cannot compute p4, pg, and po (on the left side of
the equations) until we know them (to use on the right side)! One way to resolve this difficulty
would be to consider (I-71) as a set of equations whose unknowns are p4, pp, and po, and solve
them. An easier (and equivalent) technique is to start with a set of guesses at pa, pp, and po, then
use them on the right side of (I-71) to compute new estimates of p4, pp, and po. These are then
used to compute newer estimates, and so on until the process converges. This is a relatively easy
process, which can be carried out on a small computer.

This procedure seems to be merely another exercise in ad-hocery, of equating variables with
their expectations. Normally, such techniques are recipes for confusion, uninformed by valid sta-
tistical principles. In this case, and in analogous ones, it turns out that the estimates of pa, pp,
and po obtained are actually the maximum likelihood estimates! In fact, the more general gene-
counting technique usually has this property. This technique consists of using estimates of the gene
frequencies to divide up phenotype classes into their underlying genotypes, according to expected
fractions computed using the guesses of the gene frequencies. These reconstructed genotype num-
bers are then used as if they were observed data to count genes and obtain thereby new estimates
of the gene frequencies. The process is then repeated until it converges.

This technique was introduced by C. A. B. Smith (Ceppelini, Siniscalco, and Smith, 1955).
For a general treatment see the paper of Smith (1957). Dempster, Laird, and Rubin (1977) have
introduced a more general version of gene counting called the “EM Algorithm” which has become
widely-used in statistics. The gene counting technique often converges slowly, but is much less
vulnerable to bad choices of initial guesses than are other iterative methods of finding maximum
likelihood estimates. It is a good way of starting the search for the maximum likelihood estimate.
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I[.11 Testing Hypotheses about Frequencies

The preceding section considered the estimation of gene frequencies. The natural statistical coun-
terpart of estimation is testing. Some of the hypotheses we may be most interested in testing
include Hardy-Weinberg proportions, linkage equilibrium, and equality of gene frequencies in dif-
ferent populations. This section will briefly cover the first two of these. The third will be covered
in a later chapter when we consider the effects of migration.

In testing for departure from Hardy-Weinberg proportions, we have a sample of individuals
from a population and have scored their phenotypes. We have a genetic model which generates
expected phenotype frequencies from gene frequencies under the assumption of Hardy-Weinberg
proportions. The problem reduces to comparing observed and expected frequencies in a sample
from a multinomial distribution (such as I-59), where the gene frequencies are not known but must
be estimated. Two closely related methods, which should give nearly the same result, are the
chi-square test of goodness of fit and the likelihood ratio test. The chi-square test can in fact be
shown to be an approximation to the likelihood ratio test.

CHI-SQUARE GOODNESS-OF-FIT TEST. To do a chi-square test of goodness of fit we first
estimate gene frequencies, then use them to generate expected numbers of the different observed
phenotypes. We then compute the chi-square statistic:

X o= Z(n;\[iN)Z (1-72)

- i
where the observed number in class ¢ is n;, the expected number is N;, and summation is over all
classes i. If the number of classes is k and the number of independent gene frequencies estimated
is m, this chi-square statistic should have (to good approximation) a Chi-Square distribution with
k —1 — m degrees of freedom. We can use standard tables of this distribution to test whether the
value of x? is too large to be the result of sampling error. In doing so we are, of course, doing a
one-tailed test. It is unfortunate that the statistic and the distribution with which we compare it
have both come to be known as “chi-square”. It is important to distinguish between them. Here
the one will be called the “chi-square statistic” and the other the “Chi-Square distribution.”

THE LIKELIHOOD RATIO TEST. This proceeds similarly, starting with the estimation
of the gene frequencies and the computation of the expected numbers N;. In principle, what it
computes is the ratio of the likelihood of the sample allowing the expected genotype frequencies
to be completely arbitrary (and to be estimated directly from the sample), L1, and the likelihood
Ly when the expected genotype frequencies are constrained to be in Hardy-Weinberg proportions.
The likelihood ratio test, which you will find described in mathematical statistics textbooks, but
in all too few introductory statistical “cookbooks”, tests whether the likelihood is significantly
higher under the hypothesis of no constraint than under the null hypothesis of Hardy-Weinberg
proportions. To do it one calculates the the statistic 2log,(L1/Lg). This should approximately
have a Chi-Square distribution, the number of degrees of freedom being the difference between the
number of parameters estimated under the alternative and the null hypotheses.

In practice, this turns out to be rather easy to do. If there are k observed classes then there
are k — 1 parameters being estimated under the alternative hypothesis; these are the k — 1 for the
genotype frequencies. We do not have k parameters because they must sum to 1. Under the null
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hypothesis we have m parameters being estimated. The difference between these is £k — 1 — m,
which is the same number of degrees of freedom we used when we computed the chi-square statistic
(I-72). Twice the log of the likelihood ratio turns out to be simply

G = 2 log,(L1/Lo) = =2 Y n; log.(ni/Ny), (I-73)

2

which is just as easy to compute as the chi-square statistic (I-72). We compare its value with
the significance levels of the Chi-Square distribution in a one-tailed test. Thus both statistics, the
chi-square statistic and the likelihood ratio test statistic, are expected to have approximately the
same distribution.

One difficulty that arises is that if expected numbers in some of the classes are small, the
approximation starts to break down. The usual rule of thumb is that it cannot be trusted if the
expected number in any class is less than 5. This seems to be an overly conservative value; both tests
usually do not break down until expected numbers approach 1. If you encounter small expected
numbers in any class, you can combine that class (adding up the observed numbers and also the
expected numbers) with some other class. This reduces the number of observed classes k.

Here is a sample data set and an example of both tests. Suppose that we had observed genotypes
AA, Aa, and aa in a sample of 1000 individuals in numbers 520, 426, and 54. Our best estimate
of the gene frequency of A is the observed frequency 0.733. With that gene frequency the expected
Hardy-Weinberg frequencies are 0.537, 0.391, and 0.066. The observed and expected numbers are

Genotype Observed number FExpected number

AA 520 537.29

Aa 426 391.42

aa 54 71.29
Total : 1000 1000.00

The chi-squared statistic is x? = (520—537.29)2 /537.29+4(426—391.42)2 /391.42+(54—71.29)2 /71.29
= 0.556 + 3.055 + 4.193 = 7.804. The number of degrees of freedom is 3 —1—1 = 1. The 95%
significance level of the Chi-Square distribution for a one-tailed test with one degree of freedom
is 3.841, so that we can reject the null hypothesis of Hardy-Weinberg proportions; the observed
excess of heterozygotes is significant.

The likelihood ratio test uses the same observed and expected numbers, computing instead
—2 % [5201og,(520/537.29) + 426 log . (426/391.42) + 54 log . (54/71.29)] = —[—17.01 + 36.06 — 15.00]
= 8.11. The number of degrees of freedom is again 3 —1 — 1 = 1. The one-tailed 95% value 3.841
is again exceeded. The two tests give very similar numbers in this case, and they reach the same
conclusion, that the excess of heterozygotes is significant.

TESTING LINKAGE DISEQUILIBRIUM. When we test linkage disequilibrium, there are
a number of cases that have to be considered. If we can observe haploid gametes, the test is quite
simple. For the two-allele case, we have four observed numbers, nap,nap, nan, and ng,. We can
estimate the gene frequencies of A and a by direct counting, and generate expected values for
the numbers of the four gametes. As in the case of a single locus, the data is assumed to be a
sample from an infinite population, so that the observed numbers follow a multinomial distribution
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with some expectations. Computing the four expectations under the null hypothesis of no linkage
disequilibrium, we have four observeds and four expecteds, and can compute either the chi-square
statistic or the likelihood ratio statistic. The number of degrees of freedom is 4 — 1 — 2 = 1, since
we have estimated two parameters, the gene frequencies.

Alternatively, we could imagine ourselves making a 2 x 2 table, placing each gamete in a row
according to whether or not is has the A allele, and in a column according to whether or not it has

the B allele:
B b

Al nap nap (I-74)
a | NgB MNap

If we employ a standard chi-square heterogeneity test on this table, it will in fact be exactly the
same test as the chi-square test for linkage disequilibrium! If we compute the statistic G (e.g. Sokal
and Rohlf, 1969, Chap. 16) instead of x?, we will simply be using the likelihood ratio statistic
instead of the chi-square statistic.

Often we will not observe the gametes directly, but instead will have to infer their identities
from diploid zygotes in which we cannot tell an AB/ab double heterozygote from an Ab/aB. If we
could distinguish these, then we could reconstruct the gametes from which each individual arose.
For example, an AABB arose from two AB gametes, and an AaBB from one AB and one aB. Each
sample of n diploid individuals is then exactly equivalent to a sample of 2n haploid gametes, and
we can test those to see whether there is evidence for D # 0. If we cannot divide the double
heterozygotes into the coupling and repulsion classes we have nine observable phenotypes, which
we can regard as being arranged in a 3 x 3 table:

BB Bb bb

AA | nAABB TMAABb TAAbb (1-75)
Aa | NAaBB  MAaBb M Aabb
aaq NaaBB NaaBb Naabb

On seeing this arrangement, it is tempting to test linkage disequilibrium by testing independence
of rows and columns in this table. In doing so we would in effect be assuming arbitrary genotype
frequencies at both loci, while testing linkage disequilibrium. However, we would be testing more
than we intended. For example, if heterozygosity at locus A were not independent of heterozygosity
at locus B (for example, if locus A were heterozygous only when locus B was not), the test could
be significant.

The matter is complex; there are many possible hypotheses that could be tested with these
data. The reader is referred to the papers by Hill (1974) and Weir (1979). A solid grasp of the
theory of likelihood ratio tests will be helpful to anyone setting out to test for the presence of
linkage disequilibrium.

Exercises

1. Suppose that at a two-allele locus in a random-mating diploid population we find 32% of the
individuals to be of the aa phenotype. What fraction of the individuals are Aa ?

2. In a population where the frequency of a is 0.4, what proportion of aa individuals have neither
parent aa? One parent aa? Both parents aa ? Assume that both parents and offspring were
produced by random mating.
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3. An obtuse researcher is investigating a locus with two alleles in a random-mating population,
with no selection, migration, etc. (i.e., Hardy-Weinberg proportions are expected). The
researcher finds in a population 44% heterozygotes and 56% homozygotes, but forgets to
distinguish between the two kinds of homozygote. What can the researcher say about the
gene frequency of allele A?

4. Suppose there are two populations that have genotype frequencies

‘ AA  Aa aa
Pop. 1] 0.64 0.32 0.04
Pop. 2|1 0.09 042 0.49

If a researcher draws a very large sample, thinking it is coming from a single population,
but it is actually composed of individuals two-thirds of whom came from population 1, and
one-third from population 2,

(i) Are the two original populations each in Hardy-Weinberg proportions?

(ii) If these individuals are simply collected together, but have no time to interbreed, what
will the genotype frequencies in the sample expected to be?

(iii) What will the gene frequencies be in that sample?

(iv) If we mistakenly assume that the sample is from a single random-mating population,
assume that it is in Hardy-Weinberg proportions, and use the sample gene frequency,
what proportion of heterozygotes will we expect to see?

5. A locus has three alleles, B’, B, and b. B’ is completely dominant to B, and both of these are
completely dominant to b. What are the frequencies of the three alleles in a random-mating
population which has these phenotype frequencies: 50% B’-, 30% B-, and 20% bb ?

6. In a sample of 200 individuals from a population which is expected to be at Hardy-Weinberg
equilibrium for a locus with 3 alleles, the numbers of the 6 possible genotypes found are
Genotype Number

AL Ay 76
Ay Ay 54
A A, 33
Ay Ay 18
Ay A, 16
A3 A, 3

Calculate the gene frequencies of the three alleles, and what numbers of the six genotypes
you would have expected from those frequencies. Without doing a formal statistical test, can
you see any apparent discrepancies between the numbers in the sample and Hardy-Weinberg
proportions? Where?

7. Suppose that at a sex-linked locus, the frequency of a hemizygotes among males is 0.2 and
the frequency of aa homozygotes among females is 0.1. Assuming that random mating with
different gene frequencies in the two sexes produced the current generation, figure out what
the gene frequencies were in those two sexes. What will the genotype frequencies be in the
next generation if it too is produced by random mating?
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8.

10.

11.

Suppose that a sex-linked locus has two alleles, A and a. We look at a population and find
among females:

AA  Aa aa
0.95 0.04 0.01

while among males:

A a
0.94 0.06

Note that we have not said that the gene frequencies in the parents of these individuals were
the same in both sexes.
(i) Does the population appear to be the result of at least one generation of random mating?

(ii) If it reproduces for one more generation by random mating of these females with these
males, what genotype frequencies do we expect to see?

. Suppose that we have two populations, each at linkage equilibrium for two unlinked loci.

Suppose that the gene frequencies are:

Allele
Population| A a B b
1 0.6 04103 0.7
2 ‘ 0.3 0.7 ‘ 0.5 0.5

Suppose we produce an Fj population by crossing the two populations (mating males from
one population with females from the other), and an F by mating at random among the
offspring of all of the F} individuals. What will the linkage disequilibrium value D sp be in
gametes produced by the F; individuals and in gametes produced by the F5 individuals?

Suppose that in a population produced by random mating, we have two alleles at each of two
loci, with pa = pp = 0.5, and Dap = 0.2. Let half of the individuals be females and half
males. The recombination fraction between the loci is 0.3 in females and 0.1 in males. What
will Dyap be in the offspring generation in terms of Dgp in the current generation? What
will be the frequency of genotype AA BB in the offspring generation?

Suppose that we have a large diploid population at linkage equilibrium at two loci, each
with two alleles. At the first locus the frequency of allele A is 0.1, and of allele a 0.9. At
the second locus the frequencies of alleles B and b are respectively 0.2 and 0.8. A strongly
favorable mutation at a nearby locus occurs in an AB haplotype, and natural selection brings
its descendants rapidly up to a haplotype frequency of 0.5. Suppose that there has been no
recombination among these haplotypes during this rise.

(i) What will the haplotype frequencies in the population be at that point? (Hint: simply
make an equally-weighted average of the haplotype frequencies in a population that is
all AB, and the original population which had gene frequencies 0.1 and 0.2, and had no
linkage disequilibrium).
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(ii) In this population, what is the value of D for alleles A and B?
(iii) What is the value of D' ?

(iv) Now suppose that this “selective sweep” continues until we reach the point where the
favorable mutation is now at frequency 0.9, still with no recombination having occurred.
What are the haplotype frequencies? (Hint: now it’s a weighted average with weights
0.9 : 0.1). What is D ? Has it increased? What is D’ ? Has it increased?

12. When we sample 100 individuals from a random mating population, we observe 63 AA, 27
Aa, and 10 aa. Put 95% confidence limits on the frequency of A. What have you had to
assume?

13. Among 100 individuals, we observe 10 aa’s. Assuming random mating, how do you place 95%
confidence limits on the frequency of A7

14. We sample 200 individuals from a diploid population and find 89 AA, 57 Aa, and 54 aa
individuals. Test the hypothesis that this is a sample from a population that is Hardy-
Weinberg proportions.

15. We sample 100 individuals from a diploid population and find the following numbers of
genotypes at two two-allele loci:

BB Bb bb

AA 0 25 0
Aa | 25 0 25
aa 0 25 0

Use a 3 x 3 heterogeneity chi-square test to test whether the genotypes at these two loci are
distributed independently of each other. See if you can also make an estimate of the linkage
disequilibrium D 4p between these loci. Is there a discrepancy between these two conclusions?
Why or why not?

Complements/Problems

1. Imagine a multiple-allele locus with gene frequencies p1, p2, ..., pn- In terms of these quantities,
after random mating, what fraction of copies of allele A; occur in heterozygotes? What is
the overall fraction of all copies that occur in heterozygotes? (Be sure to consider what is
supposed to be in the denominator when answering each of these questions).

2. Suppose that there are n equally-frequent alleles. In terms of n, what will be the proportion
of individuals in the population that are homozygotes? Heterozygotes?

3. Suppose that we have a locus with two alleles, linked to the sex-determining locus in a
haploid organism with random mating. (The sex-determining locus has two alleles, a female-
determining allele and a male-determining allele, and each generation females and males mate,
form a diploid, and then the sex-determining alleles segregate out in the resulting haploids).
The recombination fraction between our locus and the sex locus is r. If the initial gene
frequency of A in one sex is p; and in the other po,

33



(a) What will be the value of p; and ps in the next generation?

(b) What will the value of the average of p; and py be? How does it change from generation
to generation?

(¢) What will the value of the difference between p; and ps be? How will it change from
generation to generation?

(d) From these, work out what will be the values of p; and ps, t generations from now.
(e) What will be the ultimate values of p; and py in terms of their initial values.
. Suppose we have a haploid population with two alleles, A and a, whose frequencies are p

and 1 — p. If a fraction s of the gametes mate only with others having the same allele, the
remaining 1 — s combining at random

(i) What will be the genotype frequencies in the diploid stage?

(ii) What will be the gene frequencies in the next haploid stage?

. If we have two populations, with a three-allele locus, find two sets of gene frequencies such
that if we cross males from one population randomly with females of the other, there will be
fewer A1As heterozygotes in the first-generation cross than in a simple mixture of the two
populations.

. In a population with overlapping generations, in which the males are initially in Hardy-
Weinberg proportions at gene frequency p.,, and females are in Hardy-Weinberg proportions
at gene frequency py,

(i) What are the equations for change in p,, and p;?

(ii) What will be the departure from Hardy-Weinberg proportions in the whole population at
time t7

. If we have a two-allele locus and two populations, one at Hardy-Weinberg proportions with
gene frequency p; and the other at Hardy-Weinberg proportions at gene frequency ps,

What is the frequency of Aa heterozygotes
(i) in a simple 50:50 mixture of individuals from population 1 and population 27
(ii) in a offspring of a cross between males of population 1 and females of population 27

(iii) in offspring produced by random mating of those offspring?

What is the algebraic relationship between these three quantities (i.e., can one of them be
predicted given only the other two and not the gene frequencies)?

. Suppose that a chromosome has been duplicated so that where there was once one locus,
there are now two unlinked loci, each with two alleles A and a. We cannot distinguish which
locus contributed an A or an a to a genotype. The two loci are each diploid and they are in
linkage equilibrium with each other. At the first locus the gene frequency of A is p1, and at
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10.

11.

12.

13.

14.

15.

16.

17.

the second locus the gene frequency of A is py. In terms of those two quantities, what are
the expected frequencies of genotypes with 4, 3, 2, 1 and 0 A’s? Note that we cannot tell
the difference between, for example, AAaa and AaAa, so that they both contribute to the
genotypes that have 2 A’s.

. Suppose that we have partial sex-linkage in a diploid organism, with a sex locus with two

alleles (X and Y), and a nearby locus with two alleles (A and a) which has recombination
fraction r with the sex locus (gene copies at this locus are present on both the X and the Y),
what will be the equation of change of frequencies from one generation to the next? (Hint:
you will need to follow two gene frequencies). Do you need to assume random mating for this
calculation?

With a recessive sex-linked gene (in an ordinary XX-XY system) with gene frequency p, what
fraction of affected individuals (homozygous A A females or hemizygous AY males) are female?
(Assume random mating, and that the population has reached an equilibrium genetic state
and has 1:1 sex ratio).

In an autosomal locus with an allele a whose frequency is p, what fraction of all extant copies
of the a allele in a random mating population are located in aa homozygotes?

For an autosomal locus in a random-mating population, where aa individuals are affected and
the gene frequency is p, what fraction of aa individuals have both of their parents affected?
One affected? Neither affected?

Suppose that we have two unlinked autosomal loci with two alleles each, and that the initial
population consists entirely of AB/ab double heterozygotes and thereafter reproduces by
random mating.

What will Dap be in the initial population? In its offspring?” How does this compare with
what we expect from the formula Dap(t) = (1 —7)!Dap(0)? Why the discrepancy?

With three loci, each with two alleles, see if you can find a set of gamete frequencies (there
are 8 possible gametes) which has Dap = 0, Dgc = 0, and D¢ = 0, but where the gametes
are not in linkage equilibrium, in that, for example, Papc # papppc. Can we completely
determine the gamete frequencies by specifying pa, pp, pc, Dap, Dpc, and Dc? Show by
examples whether or not this is possible.

Suppose that we have two autosomal loci, with no gene or gamete frequency differences
between the sexes, but with different recombination fractions r; and r;,, in the two sexes.
Assuming random mating, how will D4p change with ¢?

(Harder) What are the equations for the decline of linkage disequilibrium at a sex-linked
locus, if we have the same initial gamete frequencies in all X-bearing gametes, whether male
or female (assume that there is no crossing-over between X and Y chromosomes, and that the
genes are not present on the Y chromosome)?

If we have two populations each at linkage equilibrium with gene frequencies (respectively)
of pa, p, and pa/, ppr, what will Dapg be in the gametes arising from cross between males
from one population and females from another, in terms of the recombination fraction?
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18.

19.

20.

21.

22.

23.

Take a population of gametes segregating for two alleles at each of two loci. For each gamete
compute two numbers, z and y, where

x = 0 if the gamete is a, 1 if it is A.
y = 0 if the gamete is b, 1 if it is B.

In terms of p4, pp, and Dap, what is the variance (over gametes) of x?7 of y? What is the
covariance of x and y? The correlation between x and y?

If we have two loci, one with nq alleles and the other with ny alleles, there are nq ny different
pairs of alleles, and there will be a linkage disequilibrium parameter for each such pair. In
view of the fact that the frequencies of the haplotypes containing each allele must sum to the
frequency of the allele, and in view of the fact that the frequencies of all haplotypes must
sum to 1, how many of these nj no linkage disequilibrium parameters can really be varied
independently. (Hint: make sure your logic works for the two-locus case).

For three loci, each with two alleles possible, can we find a set of three (out of the eight
possible) haplotypes, such that when these four are equally frequent all three pairwise values
of D (namely Dap, Dac and Dpc) are zero. Compare this to the case where all eight
haplotypes are equally frequent. Do these differ in gene frequencies? In values of D? In view
of the answers to these, is it possible to write a formula for a haplotype frequency in terms
of the gene frequencies at the three loci, together with the values of D for the three pairs of
loci?

In a case with 10 two-allele loci, there are 1024 different possible haplotypes. If

e the frequencies of all of these sum to 1, and

e for each of the ten loci, we can add up the frequencies of all haplotypes that contain one
allele (at that locus) and it will sum to the gene frequency, and

e For each of the 45 pairs of two loci, we can add up the frequencies of all of the haplotypes
that have the one given allele at each of the two loci (such as A and g), and this will be
predicted by an equation analogous to (I-56).

How many quantities does that give us to predict the 1024 haplotype frequencies? By counting
“degrees of freedom”, how many more quantities (in fact, higher-order linkage disequilibrium
parameters) will we need to predict them all? How does this compare to the sum of the
number of triples of 10 loci, plus the number of quadruples, plus the number of quintuples,
and so on up to 10-tuples?

Suppose we take a sample from a random-mating population, where we can detect a recessive
phenotype, and find ng,, individuals with the aa phenotype, and n4_ individuals of the A-
phenotype. What is the maximum likelihood estimate of p,? What are the equations we
would use to estimate p, by the gene counting technique? Do they lead to the maximum
likelihood estimate?

Show that the likelihood ratio test of the hypothesis that the genotypes at a two-allele locus
are in Hardy-Weinberg proportions is in fact identical to the G statistic of goodness of fit
(I-73).
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24. How would we construct a likelihood ratio test of Hardy-Weinberg proportions at the ABO

25.

blood group locus? How many degrees of freedom would the test have?

Given the numbers of the nine genotypes in a sample from a diploid population with two
two-allele loci, and assuming that the two loci are unlinked, what are the frequencies of the
four gamete types among the haploid gametes produced by this sample? Compute D 4p for
these gametes in terms of the nine genotype numbers. If the genotypes were sampled from
a population produced by random mating, with an unknown true value of D 4p, what is the
expectation of this estimate of Dp in terms of the true unknown value? If we assume that
D sp in the gamete population is estimated by doubling the D 4p in the gametic output of
our sample, will we be making a biased or an unbiased estimate?
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Chapter 11

NATURAL SELECTION

II.1  Introduction

Natural selection can be viewed either narrowly or broadly. Narrowly conceived, it is simply one
class of violations of the assumptions of the Hardy-Weinberg Laws, namely the cases in which
viability or fertility depends on genotype. Broadly conceived, it is the primary force which causes
evolution to be adaptive, the creative and progressive element in the evolutionary process. A
comprehensive theory of evolution, one which does not yet exist, would integrate ecological pro-
cesses (which determine the range of environments and the fitnesses of phenotypes), developmental
processes (which determine the effect of genotype on phenotype), and population genetics (which
tells us the changes in genetic composition of a population when the fitnesses of the genotypes are
known). Lacking the other elements of this future theory, we concentrate here on the population
genetics.

We first examine the mathematics of gene frequency change, to see how much change of gene
frequency is caused by a given pattern of differential viability and fertility, to see what the pattern
of gene frequency change through time will be, and to see how selection acting on diploid genotypes
affects gene frequencies. There are nontrivial evolutionary questions which are addressed by this
part of the chapter. It is not obvious in advance how to quantitate fitness, nor how effective
small differences in fitness can be. Diploidy is a major complication whose effects are also not
obvious, and much of the effort in this part of the chapter is devoted to explaining its effects. The
second part of the chapter discusses situations in which selection with constant fitnesses causes an
equilibrium genetic composition to be maintained. The third part concerns the effect of natural
selection on the mean fitness of individuals in the population. It is a central tenet of Darwinism
that natural selection has an average tendency to increase adaptedness, and it is a nontrivial matter
to investigate whether or not it actually does so in simple model situations.

All of this development takes place under the assumption that fitnesses are constants which do
not change either as a function of time or of the composition of the population. The final part
of the chapter examines frequency-dependent selection (including cases of fitnesses based on social
interaction among genotypes), temporally-varying fitnesses, and fitnesses depending on population
density. These cause interesting alterations to the rules concerning the adaptive effects of natural
selection.

Some important situations are deferred until later in this book. The effects of spatial variation
in fitness are covered in the chapter on migration, the effect of mutation on fitness in the chapter
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on mutation, and the effects of linkage on selection are given a separate chapter. The more realistic
situation in which the phenotype under selection is controlled by many loci is covered in a very
rough and approximate fashion in the final chapter.

I1.2 Selection in Asexuals - Discrete Generations

Let us consider a population consisting of two asexual strains, A and a. The numbers of the two
strains in generation t are N4(t) and N, (t). We are interested in computing the numbers of the
two strains in the next generation. For this we need to know how many offspring individuals of
each genotype will have. If an individual of strain A has probability v4 of surviving to adulthood,
and if each survivor has an average of f4 offspring, then the expected number of offspring left by a
newborn A individual is v4 f4. This quantity, a composite of viability (v4) and fertility (fa4), is the
absolute fitness (or Darwinian fitness) of genotype A. We call it Wy, and its counterpart for ais Wj,.
Throughout this chapter, we will assume that the numbers of individuals N4(t) and N,(t), and their
counterparts in other cases, are sufficiently large that we can ignore the random fluctuations which
will arise from the randomness of birth and death. Thus we will have a completely deterministic
mathematical system, in which N4(t) newborn individuals of genotype A are assumed to leave
exactly WaN4(t) offspring.
In the next generation, the numbers of newborn A and a individuals are given by

Na(t+1) = Wa Na(t)
Ny(t+1) = W, Na(t). (1-1)

We will also be interested in the relative frequencies of the two genotypes. These are defined in
straightforward fashion to be
) _ Na(t)
Pa = Na0+N.()
and (11-2)
) _ N (t)
Pa" = N O+Na@)

the fractions of all individuals who are A (or a). Taking the definitions II-2 in generation ¢ + 1,
and substituting from II-1 for the quantities N4 (¢t + 1) and N,4(t + 1), we find that

p(t+1) _ Na(t+1) _ Na(t) Wy (11-3)
A Na(t+1) + Ny(t +1) NA(t) Wa + Ny(t) W,

The total number of individuals in the population is N(t) = N4 (t) + N, (t). Dividing each of
the N’s in the fraction on the right-hand side of (II-3) by N(¢), and using (II-2), we find that

(®)
Py Wa
pf4t+1) = @) 4 @) ) (11_4)
pa Wa+pa” W
and correspondingly
()
Do’ Wy
P = 1—pf§+1) = — (11-5)

Pa Wa+ pt(lt) W,
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The denominator of both of these fractions is pf‘? Wa + pgt)Wa. This is the weighted average

Nst)Wa+ Ny(t) W  N(t+1)
Na(t)+No(t) — N(t)

(11-6)

the average absolute fitness of all newborn individuals at the beginning of generation ¢. Thus this
mean absolute fitness, which we denote W, also tells us the factor by which the population increases
from this generation to the next. W is dependent on t through the numbers N4(t) and Ng(t), but
from here on we will not indicate this explicitly.

Equation (II-4) can therefore be rewritten as

P Py Wa

o Vo II-7
4 W (I1-7)
and there is a similar equation for pgﬂ),
OR? Y
R (11-8)

w

Taking the ratio of these equations (or alternatively taking the ratio of the two equations in
(I1-1),

t+1 t

P _ @pg)

= zAa 11-9
D Wa p0 (I1-9)
The ratio of pa to p, gives us the same information as does p4 alone, for we can obtain the one
from the other. © ) ©
), (t
O _ Py (o 1) 1
PA T T, m (T-10)

(p(ﬁ) /pgf)) +1

We will frequently pass back and forth between equations which compute frequency, such as (II-7),
and those which compute frequency ratios.

Dy + Pa

FITNESS AND POPULATION DENSITY. We can make use of the frequency ratio equation
(II-9) to reveal an important property of natural selection. If we are interested in population
composition, as reflected by pg) and p((f) (or by their ratio), and if we are not interested in population
size or population density, as reflected by N4(t) and N,(t), then (II-9) shows that the changes in
composition of the population depend on W4 and W, only through their ratio. This is also true
in equations (II-7) and (II-8), though it is less transparent from the way they are written. This
dependence on W4 /W, can have dramatic implications.

The effects of selection in changing population composition depend on the relative sizes of the
fitnesses of different genotypes, not on their absolute sizes. For instance, if W4 = 1.01 and W, = 1,
then equation (I1-9) is

i 1o1pf) _—
AT @

so that the ratio of A to a is multiplied by 1.01 every generation. In this example, the A population
is growing very slowly (by 1% per generation), while the a population is remaining constant in size.
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Now consider another case: W4 = 101 and W, = 100. In that case both A and a populations
are growing very rapidly, with the A population growing 1% more each generation than the a
population. Equation (II-9) becomes

P4 101 pY

= - Pa (IL-12)
L0 T 100 0

which is exactly the same as (II-11), the ratio of A to a being multiplied by 1.01 per generation. Of
course, in the latter case, the numbers of A and a individuals around will be growing very rapidly,
and if we concentrate on population numbers the two cases will look very different. But as long as
we are interested only in population composition rather than population size, we will find that the
genetic composition of the two populations undergoes the same changes in both cases. In general,
if we take W, and W, and multiply them by the same number, we will obtain a case which will
still show the same sequence of changes in pg) and p((,t). This should be clear from (II-9), where
W4 and W, enter only through their ratio.

The same property can be seen in (II-4), though less easily. If we (say) double both W4 and
W,, we will double W, doubling both terms in the denominator. So both the numerators (involving
W4) and the denominator (involving W, and W,,) are doubled, and the fraction is left unchanged.
There is then no effect on pgﬂ). We have the same property whether we consider the effects of
selection on the frequency p4 or on the ratio of p4 to p,, so all is as it should be.

Relative and abolute fitness. Since we will only be interested in the ratios of the absolute
fitnesses, we can pick some particular genotype as our standard, and measure the ratios of the
fitnesses of other genotypes to the fitness of the standard. These ratios we call the relative fitnesses
of the genotypes. Hereafter when the word “fitness” is used, it will mean relative fitness. We denote
the relative fitnesses by wa and w,. If we take a to be the standard, then w, = 1. If W, = 101
and W, = 100, then wy = 1.01 and w, = 1. In both numerical examples given above, w4 = 1.01.

The biologically relevant aspect of relative fitnesses is that an extra source of mortality or
fertility may change absolute fitnesses, but may leave relative fitnesses unaltered, provided that it
falls on all genotypes equally. If it does not change the relative fitnesses, it will not change the ratio
of W4 to W,. Thus it will have an effect on population size without in any way affecting population
composition. This is particularly important when we consider population size regulation. Suppose
that the population’s size is regulated naturally by a drop in fertility under crowded conditions.
When population density (or equivalently, size) was low we might have:

Genotype A a
Viability as larva 0.5 04
Fertility as adult 6 6
Absolute fitness (viability x fertility) 3 2.4
Relative fitness 1.25 1
while when the population has reached a high density and is crowded:
Genotype A a
Viability as larva 0.5 04
Fertility as adult 2.2 22
Absolute fitness (viability x fertility) 1.1  0.88
Relative fitness 1.25 1
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The drop in fertility affected both genotypes equally, and the relative fitnesses are unaffected
by the population density regulation. This is enormously convenient for the algebraic treatment
of the consequences of natural selection: even though the density regulation means that absolute
fitnesses will not remain constant through time, in this case the relative fitnesses will, so that we
can simply ignore all considerations of population density in our treatment.

The same phenomenon appears if we were instead to have genotypes which differed in fertility,
and had viability be affected by population density:

Low Density | High Density
Genotype A a A a
Viability 0.5 0.5 0.1 0.1
Fertility 6 5 6 5
Absolute Fitness | 3.0 2.5 0.6 0.5
Relative Fitness | 1.2 1 1.2 1

Things are not quite so simple when the population density affects the same life stage as the
selection. Suppose that at low population density the situation is

Genotype A a
Viability 0.5 04
Fertility 6 6

Absolute Fitness 3.0 24
Relative Fitness 1.25 1

If high population density imposes an extra mortality on the population, we must specify how the
viabilities (0.5 and 0.4) are affected. A natural, but hardly inevitable, assumption is to specify that
after the individuals have passed the life stage at which they are at risk of dying as a consequence
of their genotype, a completely independent source of mortality occurs. This mortality does not
depend on genotype, so that the organisms have a probability (say) 0.25 of surviving this mortality
irrespective of genotype. There is an overall chance 0.5 x 0.25 that an A survives to adulthood,
and 0.4 x 0.25 for an a. The resulting fitness table is then at high population density:

Genotype A a
Viability 0.125 0.1
Fertility 6 6

Absolute Fitness 0.75 0.6
Relative Fitness 1.25 1

You may wish to draw up the corresponding tables for the case where both genotype and
population density affect fertility. The conclusion is similar: the relative fitnesses remain constant
provided that population density multiplies all the fertilities by the same factor. In general, if
population density multiplies both viabilities by a factor X, and both fertilities by a factor Y, then
the absolute fitnesses will be multiplied by XY and the relative fitnesses will be unaffected.

Multiplicative combination of forces affecting fertility is not as reasonable a null hypothesis as is
multiplication of viabilities. It is not obvious why having a high population density must decrease
the number of offspring per adult by 20% instead of decreasing it by a fixed amount (say 2). This
latter will not keep relative fitnesses constant, but will reduce the relative fitness of genotypes whose
relative fitness is low to start with. Even with viabilities, physiologically independent forces may
act nonmultiplicatively. If the survivors of a genotype which has viability 0.4 are weaker and less
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vigorous than survivors of a genotype whose viability is 0.5, then the population-density-dependent
effects would be expected to take a greater toll of the weaker genotype. Such models are not by
any means irrelevant. For the moment, we assume that relative fitnesses remain constant, but it
should be kept in mind that this may not be the case at all.

SELECTION COEFFICIENTS. Rather than representing relative fitnesses as w4 : w,, it is
frequently convenient to write them as 1 + s : 1. The quantity s will be zero when there is no
natural selection, and is referred to as the selection coefficient favoring A. It can take any value
from -1 to co. Equation (II-9) becomes

(t+1) ()

Pa _ Pa .
S (1+s) N0 (11-13)

Alternatively, we could take the relative fitnesses w4 : wg to be 1: 1 — s, so that the standard
genotype is A. Then s would be the selection coefficient against a. It can take any value from —oo
to 1. The exact meaning of s will thus depend on which genotype is taken as the standard, and
whether the selection coefficient measures selection for or against the genotype. Note particularly
that the ratio 1 4+ s : 1 is not the same as 1 : 1 — s unless s is zero. A selection coefficient of 0.01 in
favor of A is not exactly the same as a selection coefficient of 0.01 against a. In fact, it is equivalent
to a selection coefficient of 0.00990099... against a. When s is small this is not a great difference,
but it is well to be aware of it.

Equation (II-7) can also be rewritten in terms of s. The relative fitnesses w4 and w, can be
used in place of the absolute fitnesses W4 and W, as we have seen. In the present case w4 and w,
are 1 + s and 1, so that we can replace w by

o = (1+s)p +p®. (I1-14)

If we replace pg) by p; for simplicity of notation, and note that p((f) =1 — p;, we have

w = 1+ spy, (I1-15)
so that a )
pel+s

= =~ 7 11-16

D41 T ( )

CHANGE OF GENOTYPE (OR GENE) FREQUENCY. Using relative fitnesses in place
of absolute fitnesses in equations (II-7) and (II-8), we can easily write formulas for the change in
the frequency of A. Using primes for the next generation, (II-7) and (II-8) are

py = LAatA (I1-17)
w
and Dot
Po = = (11-18)
From (II-17), if we drop the subscript A in the p’s we can calculate Ap, the change in p:
Ap = p'—p
= pwa/w—p (11-19)
= p(wg —w)/w
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Alternatively, since w = pwa + (1 — p)wg,

Ap = plwa—pwa—(1—p)w,/w
(11-20)

= p(1—p) (wa — wa)/w
We will use close analogues of these equations for Ap when we consider diploids.

HAPLOIDS. We have been discussing cases of asexual inheritance. The results are no different
if we consider sexual haploids. Suppose that selection precedes meiosis. Selection will change
the proportions of genotypes (and in this case, of genes) from pg) and pgt) to pgﬂ) and pff'“) in
exactly the same way as in asexuals, following equations (II-7) or (II-9) exactly. The subsequent
fertilization, followed by a meiosis, will not alter the gene frequencies of A and a, provided that
both genotypes are equally able to participate in meiosis and provided there is no violation of the
Mendelian rules. In this case, a sexual haploid behaves exactly like an asexual. Only when we

consider more than one locus will we find asexuals and haploids behaving differently.

HISTORY. The basic equations of this section are due to J. B. S. Haldane (1924), in the first of
his classic series of papers which outlined the deterministic theory of gene frequency changes due
to selection. Despite early numerical computations of Castle (1903), analysis of cases of complete
selection by Warren (1917), Punnett (1917), Norton (1915, 1928), and Robbins (1922), as well as
analysis of gene frequency equilibria under selection by Fisher (1922), Haldane’s work forms the
basis of modern selection theory. His series of papers covered a great many cases of interest. His
work is summarized in the Appendix to his 1932 book, The Causes of Evolution, which has been
reprinted in paperback by two different publishers.

I1.3 Selection in Asexuals - Continuous Reproduction

When generations overlap, we must take a somewhat different route to obtain the effects of selection.
The most extreme model of continuous reproduction is the one we used in the previous chapter,
one in which the probabilities of birth and death do not depend at all on age. This model is not
only the polar opposite of the discrete-generations model, but also is mathematically simple.

Suppose that in a short time interval of length At, the probability that a particular individual
of genotype A dies is d4At, and the probability that it gives birth to a single offspring is b4 At.
The corresponding probabilities for genotype a are d,At and b,At. The number of individuals of
genotype A at time ¢ is n4(t), and the number of individuals of genotype a is ny(t). For genotype
A we obtain the number of individuals expected to exist at the end of the time interval by adding
the births and subtracting the deaths:

na(t+ At) = na(t) + na(t)baAt — na(t)daAt (I1-21)
with a similar equation for a. Equation (II-21) can be rearranged to give

na(t + At) —na(t)
At

This equation is approximate rather than exact, because in (II-21) we have ignored the effects
of births early in the interval At on the number of deaths later in that interval, and of the number

= na(t) [bA — dA]. (11-22)
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of deaths early in the interval on the number of births later in it. However this error is proportional
in size to (At)2, and as we shrink At these terms disappear faster than the terms in At and the
equation becomes more exact. As At — 0, the left side of equation (II-22) becomes a derivative
and we have (dropping the argument (¢) on ny4 to simplify the appearance of the expressions):

dn
d—t"‘ = nalba — dal. (11-23)

If we let 74 = ba — da this is the familiar exponential growth equation

dn g
—— = TANA. 11-24
dt AT (I1-24)
There is an exactly similar equation for a, with r, = b, — d,. We are interested in following the
frequency of genotype A, p =mna/(na + ny). We can simply differentiate p with respect to time:

dp  d na B dna d(ng + ng) / 9
it ~ dt [nA + na] - [(nA ) Tt g (na+na)
(11-25)
1 dna na dna  dng
= - 4 .
(na+mng) dt (na+mng)? | dt dt
We can substitute into this equation (II-24) and the analogous equation for a, and get
dp na nA NATA+Ng Tq
= = 2 g, - , 11-26
dt (na+na) (na —+nq) [ (na +nq) ] (11-26)
which can be rewritten as
dp
7 = Pra—pra+ 1-p)r)
(I1-27)

= plra — 7,

where 7 = pra+(1—p)r, is the average growth rate of the whole population. We could alternatively
rewrite (II-27), by collecting terms differently, as

dp

5 = (ra—ra)p(l=p). (I1-28)

These equations for the change of p will show an independence of population density effects
similar to that invoked in the previous section, but relative fitnesses must be defined differently. In
equation (II-28) we can see that the dependence of p on the birth and death rates ba,b,,d4, and
dg is entirely through the quantity

TA—Tq = bag—by —da—+d,. (11-29)

If density effects act by adding the same amount to d4 and to d,, and/or by subtracting equal
amounts from by and b,, they will affect the growth rate of the population without altering the
value of r4 — r4. Thus the counterpart to ratios of fitnesses in this model is differences of the
intrinsic rates of increase r4 and r,. The counterpart to standardizing w, = 1 is to set r, = 0 and
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to set 74 so that the difference r4 — 7, is the correct value. If two genotypes have growth rates
2.7 and 2.5, then the standardization makes their relative growth rates 0.2 and 0. A population
density effect which subtracted (say) 2.6 from both growth rates would leave the relative growth
rates, and the formulas for genotype frequency change, unaltered.

The analysis in this section has depended heavily on the assumption that the number of births
expected (say banaAt) is exactly the number seen. As in the case of discrete-generations model,
this implicitly assumes that n 4 and n, are such large numbers that random fluctuations of births
and deaths are averaged out. If they are not, then the phenomenon of genetic drift occurs. The
analysis of genetic drift is far more difficult, and will be taken up in a later chapter. For the time
being, we continue to treat our models as deterministic.

II.4 Selection in Diploids

The results for asexual or haploid models are inherently simple, because each genotype’s offspring
are of the same genotype (if mutation is ignored). In an outcrossing diploid population matters are
strikingly different. An AA parent may have either AA or Aa offspring, and even in the simplest
models the relative numbers of these two types of offspring will depend on the composition of
the rest of the population. Nevertheless the complexities introduced by diploidy are generally
manageable.

In this section, we obtain formulas for the change of gene frequency in simple diploid selection
models. To do so, we make a simple model of the life history of the organism. We assume a
discrete-generations model and a single locus with two alleles. All of the standard Hardy-Weinberg
assumptions apply, with two exceptions. The viabilities of individuals are assumed to depend on
their genotype, and also their fertilities depend on their genotype. With respect to fertilities a very
particular assumption is being made. Suppose that in a particular generation AA has a fertility of
2, and Aa a fertility of 1. It is reasonable to suppose from these numbers that an AA x Aa mating
has on average twice as many offspring as an Aa X Aa offspring. Since we will be considering an
effectively unisexual population, it seems reasonable to suppose that Aa x AA matings have the
same expected number of offspring as AA x Aa matings. But what about AA x AA? Does the
presence of two AA parents lead to two, three, or four times the number of offspring? In order
to have the mathematics come out simply, we will obtain the fertility of each mating from the
products of the fertilities of the genotypes of the two individuals. This requires that, in the present
case, AA x AA have a fertility four times that of Aa x Aa. Various models involving this and
other ways fertilities could combine have been examined by Bodmer (1965), who was first to call
attention to this assumption of standard diploid selection models.

If we start a generation with a population of N newly formed zygotes in Hardy-Weinberg
proportions, we will have Np? individuals of genotype AA. If the viability of individuals of genotype
AA is vas and their fertility is fa4, then the contribution of AA individuals to the gamete pool
which forms the next generation will be NV P2Uaa faa. We continue to assume that NV is sufficiently
large that stochastic effects average out, so that we can use a deterministic treatment. In letting
the contribution of AA to the gamete pool be Np?v4faa, and in assuming random mating, we are
specifying that when gametes combine at random the number of resulting zygotes which come from
two AA parents is proportional to (Np?vaafaa)?. Since there are Np*va4 adults of genotype AA
and these mate at random, the number of A4 x AA matings which occur will be proportional to the
product (Np?vas)(Np*vaa). Each of these matings must then have f44faa offspring. Thus our
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assumption that f is a factor which affects a genotype’s contribution to a gamete pool is precisely
equivalent to a product rule for the fertilities of matings. The product rule is also what allows us
to have Hardy-Weinberg proportions among the newborns, which we will assume.

If we define the absolute fitness of genotype AA as Wy = %’U Aaafaa (half because of gamete
contributed to the gamete pool is only half an offspring), then since the numbers of gametes
coming from AA, Aa, and aa parents will be (respectively) Np?vaafaa, N2p(1 — p)vaafaq, and
N(1 — p)?v44 faa, these can also be written as %NpQWAA, %NQp(l — p)Waq, and %N(l — 0)*Waa.
The A gametes will be coming from A A parents, plus half those from Aa parents. Thus (dropping
the factors of % from every term) the gene frequency of A among these gametes which form the
next generation will be:

/ Np*Waa + Np(1 —p)Waa

_ 11-30
P = Np2Waa + 2Np(1 —p) Waa + N(1—p)2 Waa (T1-30)

Note that every term in both the numerator and denominator of (II-30) has an N and a W
in it. The Ns are all the same, so that we can cancel out the Ns top and bottom. If we divide
Waa,Was, and Wy, by the same number, we will leave the fraction unchanged. This means we
can put relative fitnesses in place of the absolute fitnesses. Doing this:

2
1 —
pl _ - pP°waa + p( p) W Aq . (11_31)
P waa + 2p(1 - p) WAq + (1 - p) Waaq

The denominator is the average relative fitness of a randomly chosen individual. We will call
it w. This equation gives the frequency of A in the gametes which make up the next generation.
Since those gametes in effect combine at random (as a result of random mating), the resulting
newly formed zygotes will again be in Hardy-Weinberg proportions at the new gene frequency p'.
The full Hardy-Weinberg law will not apply, in that the new gene frequency p’ will not necessarily
be the same as the old, but the newly fertilized zygotes in each generation are in Hardy-Weinberg
proportions, except possibly for the initial population which may not have been produced by this
process.

Other forms of the equation. Three alternate forms of (II-31) will be of use. The first is
the parallel to (I1I-9):

P p " pwaa+ (1 —p)wag

1-p 1—p  pwaq+(1—p)wa

which can be obtained from (II-31) and the corresponding expression for 1 — p’. The second form
factors p out of the numerator of (II-31) to obtain:

(11-32)

1-— a 0
Y = p(pwaat+ (1 —p)waa) _ pia (11.33)

w w

where w4 is the mean relative fitness of those individuals which carry A genes, weighted by the
number of A genes they carry. That this is so is seen by computing that in a population of size IV,
there are 2Np? A genes contained in AA individuals, and 2Np(1—p) contained in Aa heterozygotes.
It follows that a fraction p of all A genes are in AA’s, and (1—p) in Aa’s. The denominator of (I1-33)
is the mean relative fitness of the population, so (I1I-33) shows p being multiplied by a factor which
is the ratio of the mean fitness of individuals carrying A to the mean fitness of all individuals in
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the population. The third form of (II-31) expresses the change in gene frequency, Ap, as a function
of p. Subtracting p from both sides of (II-31):
Ap = p'—p
= (PPwaa+p(1—plwaa — p [P*waa+2p(1 — p)waa + (1 — p)*waa) )
/ (PPwaa+2p(1 — p)waa + (1 — p)*waa)
((p* =P )waa + p(1=p)(1 = 2p)was — p(1 = p)*Waa) /W (11-34)
(P*(1 = p)waa + p(1=p)((1 =p) = p)waa — p(l = p)*Waa) /@
= p(1—p) [p(waa —waa) + (1 —p)(waq — Waa) | /@
= p(l—p)(Wa — @a) /.
Alternatively you can do it more simply as
Ap = p'—p
p?waa + p(l—p)waa — pw

W _ 11-35
p(pwaa + (1 —p)was) —pw (TT-35)

w

D (U_JAi— w) .

Note the close analogies between the diploid and the asexual (or haploid) cases. Equation (II-
35) is the analogue of (II-19), equation (II-34) of (II-20), and (II-33) of (1I-17). Equation (II-32)

can be rewritten as ,

Voo_ p ®a
1-p 1—p w,

(11-36)

in which form it is closely analogous to the relative fitness version of equation (II-9). In each case the
analogy is the same: replacing wa by wa and w, by w, converts asexual or haploid equations into
diploid equations. But note that w4 and w, are not constant — they change with gene frequency.
Thus we cannot simply take their ratio at the start and raise it to the power of the number of
generations.

We are now in a position to examine some special cases of importance:

MULTIPLICATIVE (GEOMETRIC) FITNESSES. Suppose that the fitnesses are:

AA Aa aa
(1+s)? 1+s 1

In this case when we alter a genotype by replacing one a by an A, we multiply the fitness by
1+ s. Then
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WA (1+s)°p + (1+5)(1—p)
(1+s)[p(l+s) + 1—p]
(1+s)[1+sp], (I1-37)
B, = 1+ sp. (11-38)
and
w = p*(1+5)°+2p(1 —p)(1+s)+ (1-p)?
— [p(l4s)+1—p (TT-39)
= (1+sp)2.

The equations for gene frequencies in the next generation become

y = PAAs)1+sp)
(14 sp)?
~ p(1+s)
- (11-40)
Vo p (+s5)(A+sp)
1—p 1-p 1+sp
_ P g4, (141)
1—-p
and
A p(1 —p) [(1+5)(1 + sp) — (1 + sp)]
b= (1+ sp)?
_ sp(l-p) (11-42)
14 sp

A comparison of these equations with the asexual case will show that (II-41) is precisely the
same as (II-13). This is the particular utility of the multiplicative case: it is the counterpart to the
asexual case. In both cases replacement of an a gene by an A gene multiplies fitness by 1 + s, and
in both cases the change in gene frequency is the same, provided we are willing to consider cases
with equal values of the selection coefficient s.

ADDITIVE FITNESSES. Many people have a dogmatic belief that additivity is always simpler
than multiplicativity. When fitnesses are additive:

AA Aa aa
1+2s 14+s 1
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the heterozygote fitness is the arithmetic mean of the fitnesses of the two homozygotes (in the
multiplicative case it was the geometric mean). Now

wg = p(l+2s)+(1—p)1+s
(1+25) + (1= p)(1 +5) s
= 1+ s+ sp,
we = p(Il+s)+(1—-p
o = pl+s)+(1-p) o
= 1+sp,
and
w = 1+ 2sp, (11-45)
so that )
p = btstsp) (11-46)
1+ 2sp
and )
Ap = SP1—P) (11-47)

1+2sp

This last equation has a relatively simple numerator and denominator, but unlike (I11-42) it is
not identical to the haploid case. If s is taken to be small, both additive and multiplicative cases
will behave similarly, as we will see later in this chapter. For the moment we need only note that the
numerators of the first line of equation (II-42) and of (II-47) are the same, and the denominators
1+ 2sp + s2p? and 1 + 2sp are nearly the same if s is small. But the two cases are not identical.

A RECESSIVE GENE. If the A allele is recessive, so that fitnesses are:

AA  Aa aa
14+s 1 1
then
wa = 1+ sp, (11-48)
W = 1, (11-49)
and
w = 1+ sp?. (I1-50)
The formulas for change of gene frequency are
/ p(1+sp)
= = I1-51
p I rsp? (II-51)
2
sp~(1—p)
Ap = ———= I1-52
p s (1I-52)
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and .
p p
= (1 —. I1-53
= ) T (11-53)
One can see from these formulas, especially the latter two, that selection will be relatively weak
if the recessive allele is rare. This follows from the p? term in (II-52), and (II-53) shows directly
that the effective selection coefficient of allele A is not s but sp. To see this, compare (II-53) with

(11-13).

A DOMINANT GENE. When the A allele is dominant, so that fitnesses are:

AA  Aa  aa
1+s 14+s 1
then
@Wa = 1+s, (I1-54)
w, = 1+sp (I1-55)
and
w = 1+ 2sp(1l —p)+ sp?, (I1-56)
so that (1+s)
/ pll+s
= I1-57
P 14 2sp(1 — p) + sp? ( )
and ( 2
sp(l —p
Ap = . I1-58
P 14 2sp(1 — p) + sp? ( )
The counterpart to (II-53) is:
/
1

1—p (1+sp)l—p

Again the effective selection coefficient depends on p. When p is small the selection coefficient for
A is s, but when p is nearly 1 there will be hardly any selection.

OVERDOMINANCE AND UNDERDOMINANCE. Two cases of particular interest will
be those in which the fitness of the heterozygote exceeds that of either homozygote, and in which
the fitness of the heterozygote is lower than that of either homozygote. A particularly convenient
parameterization of the fitnesses is:



For the case of overdominance s and t are both taken to be positive, so that the heterozygote
fitness is highest. For underdominance, s and t are taken to be negative.
In this case,

wqg = 1-—sp, (11-60)
w, = 1—t(1-p), (11-61)
and
w =1 — sp* — t(1-p)? (11-62)
so that
/ p(l—sp)
— 11-63
P 1 — sp? — t(1—p)?% ( )
p(1—p) [t = (s+t)p]
Ap = 11-64
P 1—sp?—t(l—p)2 "~ (I1-64)
and

/

P 1—sp P
S ) 11-65
1—p <1—t(1—p)>1—p (I1-65)

In subsequent sections of this chapter we will return to each of these cases to develop the
implications of all of the formulas just given.

I1.5 Rates of Change of Gene Frequency

When the relative fitnesses of the genotypes do not change from generation to generation, we can
use the formulas for change in gene frequency to examine the speed to gene frequency change.
Among the questions which can be answered this way is: how effective will weak selection be?

ASEXUALS AND HAPLOIDS. Gene frequency change through time is easiest to follow in
the asexual (or haploid) case Here time will always be measured in generations. Equation (II-13)

shows us immediately that
(®) (0)
e SR (1 + S)t £ (11—66)

Pt )

since the ratio of gene frequencies is multiplied by the same amount (1 4 s) in each generation.
We can take this equation and solve it for t, given the value of s and the initial and final gene
frequencies. We obtain, taking natural logarithms of both sides in (II-66):

pg) p(O)
t = ln Z@ — ln ZF /ln(l + S). (11—67)

This allows us to calculate how many generations it will take for a given gene frequency change.
For example, if a population starts at gene frequency 0.01 for A and ends at 0.99, with s = 0.01,
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Table 2.1: Time required to change gene frequency of A from 0.01 to 0.99 when the
relative fitness of 4 is 1 + s.

s time (generations)
1.0 13.26
0.5 22.67
0.2 50.41
0.1 96.42
0.05 188.36
0.02 464.09
0.01 923.61
0.001 9194.83

then we can substitute into (II-67), keeping in mind that p, = 1 — p4

t = [m(%) <88;>}/ln101

— [In99 — In(1/99)]/In(1.01) (I1-68)

= 923.6115 generations

We do not get a whole number of generations in this case, which simply means that the gene
frequency p4 will be below 0.99 after 923 generations, but above 0.99 after 924 generations.

An interesting comparison is obtained by doubling the selection coefficient s to 0.02. Then the
same gene frequency change (from 0.01 to 0.99) requires 464.09 generations, a bit more than half the
time required before. Table 2.1 shows this calculation for a variety of selection coefficients. Roughly
speaking, the time required for a given change of gene frequency is inversely proportional to the
selection coefficient. This proportionality is particularly accurate when the selection coefficients
are small. The comparison of s = 0.01 with s = 0.001 shows that with a small selection coefficient
one-tenth the size, it will take about ten times as long to make a given change of gene frequency.
In fact, if we note that (1.01)? = 1.0201, Equation (II-66) shows that two generations of change at
s = 0.01 will cause the same shift of gene frequency as one generation at s = 0.0201. This reflects
both the fact that the proportionality between time required for a change and 1/s is not exact, and
that when s is small it is nearly exact. This reflects an evolutionary principle of some significance:
in a totally deterministic system (an infinitely large population under constant selection), a very
small selection coefficient will still be effective in causing gene frequency changes. If s is reduced by
a factor of (say) 1,000, the same gene frequency changes will still occur, but will take about 1,000
times as long.

Another important kind of information we can get from this calculation is about the time course
of gene frequency changes, the amount of time necessary to change through different gene frequency

ranges. We can obtain the gene frequency in any given generation by noting that p((f) =1- pg),
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Figure 2.1: Course of gene frequency change in haploid selection with initial gene fre-
quency po = 0.01 and relative fitness 1.2 of the A genotype.

substituting this into (II-66), and solving it for pfj). We find that

© p(f?)(l +5)*
Pa = )
Py

(11-69)
(1+s) +pt)

which gives the full course of gene frequency change when pf‘?) = 0.01 and s = 0.25. Note that
when it is plotted (in Figure 2.1) the curve is symmetrical about the point where it passes through
pa = 0.5

The same phenomenon can be seen using Equation (II-67) to compute the time needed to change
the gene frequency through various ranges. Table 2.2 demonstrates this: it takes exactly as much
time to change the gene frequency of A from p to 0.5 as it does to change it from 0.5 to 1 — p.

This table also illustrates another feature of gene frequency changes: it takes far longer for
natural selection to change the gene frequency by a given amount when the gene frequency is
extreme than it does when the gene frequency is intermediate. This is the counterpart of the
observation that the curve in Figure 2.1 rises slowly at first, then rapidly through the intermediate
gene frequencies, then slowly again when gene frequencies are extreme.

ASEXUALS AND HAPLOIDS - CONTINUOUS GENERATIONS. We can do the
same sort of calculations when generations overlap. In the model of continuous reproduction used
in section I1.3, things are particularly simple. Equation (II-28) can be solved for p as a function of
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t (and vice versa) in the following way: dividing both sides of (II-28) by p(1 — p) and multiplying
both by dt, which is illegal but not immoral,

]ﬁ = (ra—ry) dt. (11-70)

Noting that 1/[p(1 —p)] = 1/p+ 1/(1 — p), we can integrate both sides to obtain
Inp — In(1—p) = (ra—rq)t+C, (I1-71)

where C' is the constant of integration which depends on the initial conditions. Initially, ¢ = 0 and
P = pp, so that
Inpg —In(l —pg) = C (I1-72)

from which
Inp, —In(1 —py) = (ra—re)t+1Inpy—In(l — pg). (I1-73)

We can obtain t as a function of pg and p; by rearranging this to give

t = {m(lftpt) —1n<1f°po)} /(TA—ra) (IL-74)

Comparison of this equation with (II-67) shows immediately that In(1 4+ s) has been replaced by
rq — rq. Table 2.1 is replaced by Table 2.3. It shows the property that when r4 — 7, is halved, a
given gene frequency change takes exactly twice as long. This comes from the appearance of r4 —r,
in the denominator of (II-74). Thus in this respect the continuous-generations case is simpler than
the discrete-generations case.

We can also proceed from (II-73) to solve for p; as a function of py and t. Taking the exponential
(the antilogarithm) of both sides of (II-73) and solving for p;:

(ra—ra)t
Po €
= 1I-75
b o e(TA*Ta)t + (1 — po) ( )

This also has a direct analogy to the corresponding expression for discrete generations: if 14 s is
replaced by exp(r4 —r,) in equation (II-69) we obtain (II-75). This is in effect the same substitution
we use to compare (II-67) and (II-74). Equation (II-75) is a logistic growth curve whose limits are
0 and 1. It will show the same symmetry around p = 0.5 as in the discrete-generations case. The
correspondence of discrete and continuous cases allows us to use Figure 2.1: instead of s = 0.2 if
we assume 14 —r, = In(1+ s) = 0.182 we will have exactly the same Figure, except that the curve

Table 2.2: Times needed for various gene frequency changes.

S 0.01-01 01-05 05-09 09-09
1.0 3.46 3.17 3.17 3.46
0.1 25.16 23.05 23.05 25.16
0.01 240.99 220.82 220.82 240.99

0.001 | 2399.09  2198.32 2198.32  2399.09
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Table 2.3: Time required to change gene frequency from 0.01 to 0.99 in a continuous-

generations model.

rA—7T, time (generations)

1.0 9.19
0.5 18.38
0.2 45.95
0.1 91.90

0.05 183.80
0.02 459.51
0.01 919.02

0.001 9190.24

of gene frequency change will be a continuous curve rather than a discrete set of points. But this
continuous curve will pass through the discrete points shown in Figure 2.1.

Using equation (II-74) we once again find that rates of gene frequency change are slower near
the extremes of gene frequency than at intermediate frequencies, but now the approximate inverse
proportionality between the strength of selection and the time required for gene frequency change
is an exact inverse proportionality: It is well not to be blinded by the analogies between the discrete
and continuous cases. There is no sense in which r4 —r, “is” In(1 + s): these are different models.
One has gene frequencies which change in discrete jumps, the other continuously.

MULTIPLICATIVE FITNESSES. We have already seen that when fitnesses of the three
diploid genotypes are (1 + )2 : 1+ s : 1 we have exactly the same gene frequency change as in
the haploid case. It follows that equations (I1I-66), (II-67), and (II-69) can all be directly applied.
Once again the gene frequency follows a sigmoid logistic curve, or more properly a discrete set of
points which is interpolated by such a curve. Once again, gene frequency change is slowest when p
is near zero or near 1. Once again, there is an approximate inverse proportionality between s and
the time taken for a gene frequency change. The ease with which this multiplicative case can be
solved is one of the most compelling reasons for studying it.

ADDITIVE FITNESSES. It may come as a surprise that when we have the additive fitnesses
142s:1+s: 1 there is no explicit formula for p; as a function of pg and t. We cannot compute the

Table 2.4: Times required for various gene frequency changes in the case of continuous

reproduction.
ra—re 0.01-01 0.1-05 05-09 0.9-0.99
1.0 2.40 2.20 2.20 2.40
0.1 23.98 21.97 21.97 23.98
0.01 239.79 219.72 219.72 239.79
0.001 239790  2197.22 2197.22  2397.90
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gene frequency in a future generation except by the strong arm method of repeatedly evaluating
the iteration (II-46) ¢ times. There is no simple formula for evaluating the number of generations
needed to change from one given gene frequency to another. With the advent of desktop or hand-
held computers, this direct approach has become feasible.

Aside from the trivial case s = 0, there is one case in which we can obtain an exact solution.
When s = —1/2, so that the fitnesses are 0 : 1/2 : 1, substitution in (II-46) will give

P = p/2 (11-76)

which implies that
t = (Inpg—1Inpy)/In2. (I1-77)
This equation is not correct for p = 1, which is a degenerate case because then the relative fitnesses
of all existing individuals are zero! Note that we can never have s be more negative than s = —1/2,

since that would imply a negative fitness for AA.

AN APPROXIMATION. Although we cannot solve the additive case exactly, there is an
approximation which can be used when s is small. Equation (II-47) has w = 14 2sp in its
denominator. We can expand 1/(1 + 2sp) as a geometric power series in s:

1/(142sp) = 1—2sp+4s°p? — ... (11-78)

This series will converge if 2sp < 1. We are interested in small values of s. Using this series,
equation (II-47) becomes

Ap = sp(1—p)(1—2sp+terms in s?)

= sp(l —p) — terms in s> (I1-79)

Our approach will be to approximate the discrete process of gene frequency change by a con-
tinuous process. This will be a good approximation if s is small. We replace the difference Ap by a
derivative, and since s is assumed small, we ignore the terms involving s? and higher powers. The

result is the approximation
dp
— = 1—p). I1-80
L~ spi-) (11-50)
This differential equation is really the same as (II-28), with r4 — r, replaced by s. So its solution
is given by (II-75), which becomes
D0 est
p = ) I1-81
po e + (1—po) (1i-81)

and of course the time for a gene frequency change is

t = [m(lftpt) —1n<1f°po>]/s. (11-82)

Suppose that we try the same approximation for the multiplicative case. The denominator
1+ sp in (1I-42) yields

1
= 1-sp+sip?— ... (11-83)



Table 2.5: Accuracy of approximations for e® and In(1 + s).

s In(1+s) e€° 1+s
0.001 0.0009995 1.0010005 1.001
0.01 0.0099503 1.01005 1.01
0.1 0.09531 1.10517 1.1
0.2 0.18232 1.2214 1.2

0.5 0.4054 1.648 1.5
1.0 0.693 2.718 2
which once again results in
dp
= = 1—p). 11-84
T sp(1-p) (11-84)

We immediately see that, at this level of approximation, the additive and multiplicative cases have
the same approximation. Equations (II-81) and (II-82) apply to the multiplicative case as well.
That is one for which we also have an exact solution, so we can use it to test the adequacy of this
approximation technique. Comparing (II-81) and (II-82) to the exact solutions (II-69) and (II-67),
we find that they differ only in replacing 1 + s by e® (or, correspondingly, In(1 + s) by s). As seen
in Table 2.5, these are approximations which will be quite good if s is small.

The approximations are good to within 10% when s is as high as 0.2. We can therefore have
some confidence in the results for small s, and we can also be confident that the additive and
multiplicative cases give nearly the same results. We have already discussed the pattern and
speed of gene frequency change, and we can simply note that those patterns will be nearly exactly
applicable to the case of additive fitnesses.

THE RECESSIVE CASE. For the case where A is recessive (recall that the size of the letter
means nothing), there is no general solution of the recurrence equation (I1-52), which gives p’ as
a function of p. There is one specific case which can be exactly solved, and that is the case of a

recessive lethal, where s = —1. Then (II-52) becomes
pd—p
REIEY)
—-Dp
p
= —. I1-85
1+p ( )
This may not look promising, but if we take 1/p’, we get
1/p) = 1/p+1. (I1-86)

This tells us that the reciprocal of the gene frequency increases by one each generation. Then

1/pe = 1/po+1t (11-87)

so that "
= . 11-88
b T+ pot ( )

99



Table 2.6: Time needed to make various changes of gene frequency in the case of a
recessive lethal.

From To Time (generations)
0.5 0.1 8
0.1 0.01 90
0.01 0.001 900
0.001  0.0001 9000
0.0001 0.00001 90000

The time needed to change from pg to p; will, from (II-87) be simply

t = 1/pr—1/po. (11-89)
An interesting subcase is when, for some n, p = 1/n. Then, from (II-52),

, 1/n 1
= Un+1 = (a+1) (11-90)
Thus if pg = 1/2, then p; = 1/3, po = 1/4, etc. When p = 1/1000, in the next generation
p = 1/1001. The successive gene frequencies form a harmonic progression. Table 2.6 shows the
times needed to change through various gene frequency ranges.

For comparison, in a case of multiplicative diploid selection with s = —0.2 (so that fitnesses
are 0.64 : 0.8 : 1) it takes 9.85 generations to reduce the gene frequency from 0.5 to 0.1. But to
reduce it from there to 0.01 takes only another 10.75 generations, and to reduce it to 0.001 takes
another 10.35 generations. Thereafter each reduction by a factor of ten takes only an additional
10.32 generations. In fact, in multiplicative selection with negative s, when gene frequency is low
each reduction by a factor of 10 takes In0.1/In(1 + s) ~ —2.3/s generations. In contrast, Table
2.6 shows that selection against a deleterious recessive allele gets progressively less effective as
the gene becomes rare. This occurs for a straightforward reason: the lethal allele is only lethal
in homozygotes. As the allele becomes rare, a progressively smaller fraction of the extant copies
of the allele are found in homozygotes (in fact, p of them). Only this fraction of the deleterious
allele is eliminated by selection, so that the fractional decrease of the gene frequency becomes
smaller and smaller. The result is that it can take an astronomical amount of time to eliminate
a recessive: 999,998 generations to reduce the gene frequency from 0.5 to 0.000001. By contrast,
with multiplicative fitnesses and s as weak as s = —0.01, this would take only 1375 generations!

I am not aware of any other exact solutions to equations (II-52), (I1I-52), or (II-53). To gain
further insight into the behavior of the recessive case, we must resort to approximations. Jarle
Tufto (personal communication) has pointed out that we can start from the difference equation
(I1-53) and replace the Ap by dp/dt, getting

dp _ sp*(1-p)

= — =7 11-91
dt 1+ 2sp? ( )
This differential equation can be solved by separating the variables:
1+ 2sp?
—— dp = sdt, (11-92)
p*(1—p)
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and then integrating. The left side can be integrated by partial fractions since

1+ 2sp? 1 1 2s+1
_ = 44 ) I1-93
p*A-p) p p* 1-p (11-93)

Doing the integrals and removing the constant of integration by requiring that p = pg when ¢t = 0,
we finally obtain for the time required for a gene frequency change:

17 1 1 1-
t = —[———i—ln( Pt >+——ln< o >+25 ln< pt)] (11-94)
s pt 1—p Po 1—=po 1—po

There remains only to solve for p; as a function of pg and ¢. Alas, this turns out to be impos-
sible. Of course, numerical iteration of the basic recurrence equation (II-52) will give considerable
insight. For the moment we defer examining numerical values from (II-94) until we can compare
multiplicative, recessive, and dominant cases.

THE DOMINANT CASE. When the fitnesses of AA, Aa, and aa are respectively 1+ s, 1+ s,
and 1, so that A is dominant, there are two cases for which we can solve exactly the relationship
between gene frequency and time. One is trivial: it is the case of s = —1, where A is a dominant
lethal. Consideration of the gene frequency recursion formula (II-57), or for that matter simple
common sense, will show that p’ = 0, since all the A’s are killed in one generation. The other
case that can be solved is s = oo . If we divide the fitnesses 1 +s: 1+ s : 1 by 1 4+ s we get
1:1:1/(1+s), and s = oo can then be seen to be the case where A is the dominant wild-type
allele and a is a recessive lethal. We have already solved this case. We can take equation (II-85),
which gives the frequency of the recessive lethal allele, and substitute 1 — p for p to follow the fate
of the dominant allele. This gives us .
/
p = 5 (11-95)

p now being the frequency of the dominant normal allele A. The equation (II-88) which relates gene
frequency to generation number can similarly be altered to follow the fate of the dominant allele.

All other cases of complete dominance cannot be solved exactly. The approximation method
can be employed, and in fact the mathematics is exactly that of the recessive case with p and 1 —p
substituted for each other. This gives

dp

- = sp(1-p)? (I1-96)

and that has the solution

1 1 Dt > 1 ( Do ﬂ
t = — + ln( — — In 11-97
s [1—1% 1—p 1 —po 1 —po ( )

which, as before, cannot be solved for p; as a function of py and ¢. But it can be solved numerically
by holding pg and t constant and adjusting p; until the equation is satisfied.

DOMINANCE, RECESSIVENESS, AND GENE FREQUENCY CHANGE. We now
have approximate formulas for the times taken to change through gene frequency ranges for the
recessive and dominant cases, and we have an exact formula for the multiplicative case. Table 2.7

61



Table 2.7: Times required to change through various gene frequency ranges when s = 0.01.

Favored Allele
From To  Dominant Multiplicative Recessive

0.001 0.01 232.07 231.32 90,231.2
0.01 0.1 249.89 240.99 9,239.79
0.1 0.5 308.61 220.82 1,019.72
0.5 0.9 1,019.72 220.82 308.61
0.9 0.99  9,239.79 240.89 249.89

0.99 0999 90,231.2 231.32 232.07

shows the times to change through various gene frequency ranges, and we can use it to get a feel
for the effects of the degree of dominance:

This table shows times for only one value of s, 0.01, but from it we can easily find the times
for other values of s. The approximation formulas (I1I-94) and (II-97) show an inverse relationship
between s and ¢t. When s is cut by a factor of ten, ¢ will increase by the same factor. If s = 0.001,
it will take approximately 2320.7 generations to change from p = 0.001 to p = 0.01 instead of
the 232.07 generations shown in the table. Although this exact inverse proportionality holds only
for the approximations, they are good approximations, and the proportionality is nearly exact for
small s. For the multiplicative case, the numbers shown in the table are exact. While formula
(II-67) does not show an exact inverse proportionality of s and ¢, we have already seen that the
closeness of In(1 + s) to s when s is small makes the proportionality nearly exact. Thus for the
dominant and recessive cases we have exact proportionality in an approximate formula, and for the
multiplicative case we have approximate proportionality in an exact formula. In short, the times
are nearly proportional to 1/s.

Two properties of the numbers in Table 2.7 are immediately noticeable. First, we can see
that it takes a very long time to change the gene frequency of a rare recessive allele. This is true
irrespective of whether that allele is advantageous or deleterious. The top part of the Recessive
column shows the long times needed to increase the frequency of the advantageous recessive A allele.
The numbers at the bottom of the Dominant column show a similar phenomenon. The a allele is
now the recessive allele, and it is deleterious and in the process of being eliminated. The slowness
of change is associated with rareness of the recessive allele rather than whether it is advantageous
or deleterious.

The second feature of Table 2.7 which is striking is the similarity of the top ends of the Domi-
nant and Multiplicative columns, and the similarity of the bottom ends of the Multiplicative and
Recessive columns. This is no mere numerical accident. The fitnesses of the genotypes are:

AA Aa aa
Dominant 1+ s 1+s 1
Multiplicative (1+s)? 1+4+s 1

These differ only in the fitness of AA. When A is rare, almost all the A genes in the population
will occur in Aa heterozygotes, and almost all a genes in aa homozygotes. This is guaranteed by
the fact that in each generation the zygotes start out in Hardy-Weinberg proportions. The relative
mean fitnesses of A- and a- bearing individuals will be nearly 1 4+ s : 1 in both cases. As long as
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A is rare, we expect the course of gene frequency change to be nearly the same in both cases, and
this is precisely what Table 2.7 shows.

It is less easy to see why the Multiplicative and Recessive cases behave similarly, but the same
principle is involved. Superficially, the genotypic fitnesses look different:

AA Aa aa
Multiplicative (1+s)? 1+4+s 1
Recessive 1+s 1 1

We are interested in the case when a is rare, so we want to compare the fitnesses of AA and
Aa. Since these are relative fitnesses, we can use Aq as the standard genotype whose fitness we set
to 1. Now the Multiplicative case changes to

AA  Aa aa
1+s 1 1/(1+s)

which differs from the Recessive case only in the fitness of the very rare aa genotype. Thus when
A is common we expect the Recessive and Multiplicative cases to behave similarly, as in fact is the
case in Table 2.7.

These two phenomena stem from the same cause. The extreme rareness of the homozygote
when one allele is rare means that only the fitnesses of the other two genotypes are relevant to the
rate of gene frequency change. That in turn means that fitness schemes which differ only in the
fitness of the rare homozygote are nearly identical in their consequences as long as the homozygotes
remain rare. The slowness of change of the rare allele when it is recessive is because the fitness
scheme is

AA Aa aa
1 1  something else

Then if @ is rare, the fitnesses of individuals carrying A and those carrying a are both nearly
1, except that a very few of the individuals carrying a are aa. The rarer q is, the more similar are
the fitnesses of A-bearing and a-bearing genotypes, so response to selection will slow down as a is
made rarer. This is not the case if a is not recessive. When fitnesses are multiplicative, then no
matter how rare a is, the fitnesses of A-bearing and a-bearing genotypes are in the ratio 1 4+ s : 1.

While we have relied on approximations for the numbers in Table 2.7, the same pattern appears
when exact changes of gene frequency, Ap, are computed from equations (1I-42), (II-52), and (II-
58). Figure 2.2 shows Ap as a function of p for the three cases considered above when s = 1.3. We
can see both phenomena: when p is small, the Ap for the recessive case is much closer to zero than
the Ap for the other cases, and in this same region the Dominant and Multiplicative curves are
nearly the same. Figure 2.3 shows the resulting course of gene frequency change for the two cases:

AA Aa aa
Dominant 2.3 23 1
Recessive 2.3 1 1

where the initial gene frequency is 0.1. The slowness with which A increases when it is recessive
(circles) and rare, and the slowness with which a is eliminated when it is recessive (squares) and
rare, are both evident. The fundamental principle behind all this is simple: to get a qualitative
idea of how selection is operating when one allele is rare, compare the fitness of heterozygotes for
the rare allele with the fitness of homozygotes for the common allele.
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Figure 2.2: Change of the gene frequency plotted against gene frequency of A for cases in
which the favored allele is dominant (D), multiplicative (M) and recessive (R). Fitnesses
of AA: Aa: aa genotypes were respectively 2.3 : 2.3 :1,5.29: 23 : 1,and 2.3: 1: 1.

HISTORY. The harmonic series and the general method of calculation for recessive lethals appear
to have been known to Castle (1903). Norton (1915) introduced the slow selection approximation
and pioneered the analysis of overlapping generations, though the details of his work were not
available until later (1928). Jennings (1916) and Wentworth and Remick (1916) examined the
elimination of recessive lethals. Punnett (1917) used the harmonic series for recessive lethals as
a powerful argument for the ineffectiveness of negative eugenics measures. This was ignored for
decades by public advocates for eugenics. Warren (1917) obtained gene frequency recursions for a
case where fitnesses depend on the gene frequency. Though it is evident that Fisher and Wright were
familiar with the mathematics of natural selection (see especially Fisher, 1922), most of the modern
work on this subject is descended from the extensive work of Haldane (1924, 1926a, 1927, 1932)
who considered dozens of cases by exact, approximate, and numerical methods. He was the first
author to convey a fairly comprehensive picture of the quantitative effects of natural selection. The
case of overlapping generations was first treated by Norton (1915, 1928) and Haldane (1926b), who
were primarily interested in the more general case in which the genotypes have different age-specific
birth and death schedules.
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Figure 2.3: The course of gene frequency change over 50 generations when fitnesses of
AA, Aa, and aa are 2.3 : 2.3 : 1 (circles) and 2.3 : 1 : 1 (squares). Initial frequency of
A is 0.02.

II.6 Overdominance and Underdominance

In all cases considered in the previous section, we were dealing with patterns of fitness which resulted
in the substitution of one allele for another, so that the only questions of interest are the rates of
change of gene frequency through various ranges. When the fitness of the heterozygote lies outside
the range of the homozygote fitnesses, the situation is altered dramatically. When the heterozygote
fitness exceeds that of either homozygote, selection can maintain a stable polymorphism, and
when the heterozygote has the lowest fitness, the outcome of selection can depend on the initial
composition of the population. Both of these behaviors are of great biological interest.

With a few trivial exceptions, we cannot solve exactly for future gene frequencies in either of
these cases, but we can gain much insight by looking at the change Ap of gene frequency as a
function of the gene frequency, p. When the fitnesses are

AA  Aa aa
1-s 1 1-—¢
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we may recall that the change in gene frequency is

p(l —p)[t—(s+1t)p]

Ap =
PoT s — i1 pp

(11-98)

which we have already seen as equation (II-64). We can start by inquiring whether there are any
gene frequencies p for which Ap is zero. There are four possible ways Ap could be zero:

1. The denominator 1 — sp? — t(1 — p)? could be infinite,
2. p could be zero,

3. 1 —p could be zero,

4. t — (s +t)p could be zero.

The first is impossible, as ¢t and s are finite and are not larger than 1. The second and third
represent the cases where A or a are absent from the population. They reflect the rather obvious
fact that, in the absence of mutation or immigration, selection acting by itself cannot re-introduce
an allele which has been lost. The fourth possibility is of interest. It establishes that Ap = 0

when p has the value
t

Pe = i (11-99)
This value of the gene frequency will represent an equilibrium gene frequency, in that if the popula-
tion achieves that gene frequency it will not be expected to change further as a result of this natural
selection. Our interest is in two cases, both of which have t/(s+t) a realistic gene frequency, in the
sense that it lies between zero and one. The cases are the one in which s and ¢ are both positive,
and the one in which they are both negative.

OVERDOMINANCE. When s and t are both positive, the heterozygote has the highest
fitness. This is known as overdominance. It is sometimes miscalled heterosis, a term which refers
to the observation that a cross between two populations yields offspring whose average phenotype
lies above the average of either parent population. As we will see in the chapter on quantitative
genetics, heterosis may or may not be due to overdominance.

When we have a case of overdominance, we have an equilibrium gene frequency at the value
t/(s+t). But will this equilibrium be achieved? Will it be a stable equilibrium? Some insight can
be gained by noting the sign of the quantity Ap for various gene frequencies. The terms p and 1 —p
in the numerator of (I1I-98) are always positive, and the denominator is always positive. The sign of
Ap will therefore always be the same as that of the term ¢ — (s+t)p. For the case of overdominance,
this will be the same as the sign of p. — p. When p < p,, Ap will be positive. When p > p,, it will
be negative. The change of gene frequency is thus always pushing the gene frequency back towards
its equilibrium value. This would seem to show that the equilibrium at p. is a stable equilibrium,
that whenever the gene frequency is perturbed from this value it returns to it. But this is a hasty
conclusion. We have ignored the possibility that each change in p is so great as to overshoot the
equilibrium, and by such a large amount that the gene frequency oscillates wildly and gets farther
and farther from the equilibrium. The process which then resemble a drunken golfer who is trying
to make a small putt, but succeeds only in getting farther and farther from the hole.

ANALYZING STABILITY. When we are faced with a dynamic system which changes in
discrete jumps, there is a way of determining whether an equilibrium is stable which takes the
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possibility of oscillation into account. The logic behind it is easily seen when, as in the present
case, there is only one variable, p, changing. Suppose that we have a formula, f(p), for the gene
frequency in the next generation, so that

p+1 = f(pr), (11-100)
and from this we can obtain another formula, Ap, which gives the change in p as a function of p:
Ap = f(p)—p (1I-101)

There are two types of stability which we could investigate. An equilibrium will be globally
stable if, no matter how far from the equilibrium we move the gene frequency, it always ultimately
returns to that equilibrium. Global stability is quite difficult to investigate. We will concentrate
instead on determining whether or not the equilibrium is locally stable. 1t is locally stable if there is
some region, however small, enclosing the equilibrium, such that any perturbation which keeps the
equilibrium within that region resulted in the gene frequency returning to the equilibrium. Thus if
the gene frequency will return to its equilibrium when changed by less than (say) 1%, we describe
the equilibrium as locally stable. If a perturbation of (say) 20% would result in no return to the
equilibrium, then this equilibrium is not globally stable. If an equilibrium is not locally stable, we
say that it is unstable.

To investigate local stability, it is sufficient to consider what happens when the gene frequency
is moved an infinitesimal amount. If it always returns, it is necessarily locally stable, if not it is
unstable. At the equilibrium point, Ap = 0. Figure 2.4 shows a plot of Ap against p for an
overdominant case in which fitnesses are 0.85 : 1 : 0.7. There are three equilibrium points, at
p=20,p=1, and p = 0.667. It seems that p = 0 and p = 1 must be unstable equilibria. When p
is perturbed just above p = 0, Ap is positive in that region. Thus p will continue to increase away
from the equilibrium. By much the same reasoning p = 1 also seems unstable. Any change of gene
frequency which makes p a bit less than 1 puts it in a region where p continues to decrease away
from 1. The equilibrium at p = 0.333 looks locally stable, but a casual glance is not enough to
determine its stability.

If we assume (as is true in our example) that f(p), and hence also Ap, are continuous functions
of p, we can make a simple algebraic analysis of local stability. In the vicinity of an equilibrium let
us assume that the Ap curve can be approximated by a straight line. If z is the distance between
p and pe, so that p = pe 4+ =, then we will approximate Ap by ax. The quantity a will be the slope
of the Ap curve as it passes through p = p.. In the next generation, the deviation 2’ from the
equilibrium will be

= p+Ap—p. = petz+Ap—pe
(11-102)
= x4+ Ap ~ r+4ax = z(l+4+a)

When we are close to the equilibrium, the value of = is thus multiplied by 1 + a each generation.
After t generations, it will be (1 + a)! times its current value.

When a is positive (1 + a)! is a positive number greater than 1, and it will grow with ¢. This
is the situation near the equilibria p = 0 and p = 1, where the slope a of the Ap curve is positive.
Any movement of p from p = 0 to a very small positive quantity will create a positive deviation x
which then grows until p leaves the immediate vicinity of p = 0. Near p = 1, if p is set just below
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Figure 2.4: The change in gene frequency (Ap) plotted against the gene frequency in a
case of overdominance where fitnesses of AA : Aa : aa are 0.85 : 1 : 0.7.

1, this is a negative value of x which also becomes steadily more negative until p departs from the
region near 1. Thus the algebra confirms our suspicions about the lack of stability of p = 0 and
p=1

When —1 < a < 0, 1+ a lies between 0 and 1. Raising 1 + a to the ¢t-th power makes
it approach zero without ever becoming negative. This is the case in which p approaches the
equilibrium smoothly without ever overshooting. Whatever the initial sign of the deviation z, it
remains of the same sign but goes to zero. When —2 < a < —1, 1 + a lies between -1 and 0.
Multiplying =z by 1 4+ a will change its sign but reduce its magnitude. That corresponds to the
case where there is overshooting of the equilibrium, but the overshoot leaves the gene frequency
each time closer to the equilibrium than it was. The gene frequency oscillates, but with decreasing
amplitude, and ultimately converges to the equilibrium.

Finally, when a < —2, 14+a < —1 so that the deviation = changes sign each generation and grows
in amplitude. The overshoot is so great as to leave the population farther from the equilibrium
each time. It oscillates away from the equilibrium. Extrapolation of this behavior would lead to
an absurdity: the gene frequency would ultimately be greater than 1 or less than 0. This need
not trouble us, since the multiplier (1 4 a) is only relevant in a region small enough to allow us
to approximate the Ap curve as a straight line. Farther from the equilibrium the higher-order
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derivatives of Ap become relevant, inevitably in such a way as to keep the gene frequency between
0 and 1.
Our criterion for local stability is this:

d(Ap)
9 < [ "

} <0, (11-103)
P=Pe

the brackets indicating evaluation at p = p.. There are two sorts of qualification of this picture
necessary. We have not investigated what will happen when a is exactly equal to 0, -1, or -2. In
each case the exact behavior depends on the higher-order terms in Ap. The results do not modify
(II-103) in any essential way. The second qualification is a more serious one. When generations
are continuous instead of discrete, oscillation is no longer a possibility. In that case the stability
is simply determined by the sign of dp/dt (the quantity analogous to Ap). If it is positive below
the equilibrium and negative above it, the equilibrium is stable, and not otherwise. Overshooting
is impossible because the gene frequency would have to pass smoothly through p. in order to
overshoot, and once it reached p. it would not change further. There is an analogous damping of
oscillations in discrete-time overlapping-generation models, but their analysis requires more than
one variable x.

STABILITY OF OVERDOMINANT EQUILIBRIA. We can now apply the local stability
criterion to overdominance. After tedious algebra, the derivative of Ap at p = p. turns out to be
—st

[d(Ap)] S L (11-104)
dp pzt/s(s—i—t) S+t_8t

Since in overdominant cases s and t are both positive and necessarily < 1, it is easy to show that
expression (II-104) is negative and never smaller than -1. This puts all cases of overdominance in
the category which do not overshoot, but approach the equilibrium smoothly from one side. In
fact, the equilibrium is always globally stable as well, never overshooting the equilibrium.

Figure 2.5 shows the course of gene frequency change starting from p = 0.01 and from p = 0.99
and proceeding to near the equilibrium when the fitnesses are

AA Aa aa
085 1 0.70

The gene frequencies converge relatively smoothly on the equilibrium value p4 = 0.30/(0.15 +
0.30) = 0.667.

UNDERDOMINANCE. When s and t are both negative, the heterozygote has the lowest fitness
of the three genotypes, and we refer to these cases as exhibiting underdominance. Once again, we
have an equilibrium at p = ¢/(s +t). The sign of Ap will be the same as that of t — (s + t)p,
which is the same as the sign of p — p.. Above p., Ap will be positive, and below p. it will be
negative. The change of gene frequency is now always away from the equilibrium. The equilibrium
is unstable (the slope of Ap is positive). Both of the terminal equilibria at p = 0 and p = 1 are now
stable. Though these conclusions are based on local arguments, they give a correct indication of
the global pattern, which is that any initial departure from p. = ¢/(s + t) is amplified by selection
until the gene frequency reaches 0 or 1. Figure 2.6 shows the course of gene frequency change in
such a case, when the fitnesses are
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Figure 2.5: Convergence of initial gene frequencies from p4 = 0.99 and p, = 0.01 to
equilibrium when the fitnesses of AA, Aa, and aa are 0.85:1:0.70

AA  Aa aa
.15 1 1.3
which has s = —0.15 and ¢t = —0.3. The small initial departures from the equilibrium gene frequency

are amplified by selection until A is fixed or is lost.

The case of underdominance is relevant for two reasons. Practical examples are known, since
chromosome rearrangements will show underdominance if there is a loss of fertility in the inversion
(or translocation) heterozygote. Underdominance is also the simplest case in which the outcome
of natural selection depends strongly on the initial composition of the population. In the case of
Figure 2.6, an initial gene frequency were 0.67, A becomes fixed in the population. If it were 0.66, A
becomes lost. This is rather dramatic behavior, and we shall see that it provides a counterexample
to a widely-used biological principle.

PROTECTED POLYMORPHISM. We can get a rough but useful idea of the behavior of
gene frequencies in over- or underdominant cases by examining what happens when one allele or the
other is rare. We make use of the rule that rare alleles appear mostly in heterozygotes, common
alleles mostly in homozygotes. Consider overdominance. If A is rare, it will appear mostly in
Aa heterozygotes. The common allele a occurs mostly in ae homozygotes, which are less fit. We
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Figure 2.6: Gene frequencies in successive generations when fitnesses of AA, Aa, and
aa are underdominant (1.15 : 1 : 1.3) and the initial gene frequency is 0.65 (squares)
or 0.68 (circles).

can immediately see that A will increase in frequency when rare. The terminal equilibrium point
(p = 0) is therefore unstable. A completely analogous argument applies when A is common. Then
a occurs mostly in heterozygotes and A in homozygotes, so a increases in frequency. So p = 1 is
also an unstable equilibrium. We have a situation like this:

JEEN «—

0 gene frequency of A 1

The quantity Ap is a continuous function of p, one which by the above simple arguments is
positive near p = 0 and negative near p = 1. It must therefore be zero at some point in between.
Although strictly speaking we have not excluded various strange kinds of instability and cycling, it
turns out that the crude qualitative picture we get from these rough arguments gives us the correct
impression: there is one equilibrium gene frequency, and it is stable.

For the case of underdominance, Aa is less fit than either AA or aa. The same rough argument
applied to the situations where A is rare or A is common give us the picture.
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Figure 2.7: Physical analogy to protected and unprotected polymorphisms, using balls
rolling on surfaces.
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0 gene frequency of A 1

which once again conveys the correct information: that there is an equilibrium gene frequency
between 0 and 1, and that it is unstable.

In more complex patterns of selection, this kind of analysis-by-endpoints is often all that can
be done. It often enables us to establish that both alleles will increase when rare. This establishes
that there is a protected polymorphism. Whatever the behavior of the gene frequency when it is
in the interior of the 0-1 scale, having a protected polymorphism guarantees that it will return to
the interior of the scale. Only if the gene frequency is pushed all the way to 0 or 1 will it fail
to rebound. Strictly speaking, we have not ruled out oscillations of increasing amplitude, but in
most cases the slowness of gene frequency change will guarantee that this behavior cannot occur.
In cases of constant relative fitnesses at one locus such as the overdominant cases we have been
discussing, growing oscillations are impossible.

While the one case we have seen (overdominance) which has a locally stable polymorphic equi-
librium of gene frequency is a case in which the polymorphism is protected, this will not always be
the case with other, more complicated patterns of selection. Figure 2.7 shows a physical analogy to
illustrate this possibility. In the case of protected polymorphism the ball will always return to the
center, but when the polymorphism is unprotected, it may be locally stable, but cannot be globally
stable to sufficiently large perturbations in the right direction. There are two aspects of the physical
analogy which can be misleading. One is momentum, which has no analogue in biology. A ball
which rapidly rolls to the equilibrium will continue beyond it as a result of its momentum - the
gene frequency will not. The other misleading aspect of these pictures is the behavior at the two
walls. When a gene frequency reaches 0 or 1 it becomes stuck and cannot change further until the
other allele is reintroduced by mutation or by migration. A ball placed at one of the walls depicted
in the Figure simply rolls away if the local slope leads away downhill.
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HISTORY. The equilibrium gene frequencies in an overdominant polymorphism were first derived
by Fisher (1922), and more detail on the dynamics in over- and underdominance was provided by
Haldane (1926b). Muller (1918) had previously pointed out the properties of balanced lethal factors,
when only the heterozygote can survive selection.

I1.7 Selection and Fitness

This is a convenient point at which to undertake an examination of the effects of selection on
the average fitness of the population. We would like to know whether natural selection does, as
expected, increase the adaptedness of the population. In the scheme we have developed in this
chapter, the only available measure of the extent of adaptation is the mean fitness. It would be
nice if we could show that the mean absolute fitness of the population increased under natural
selection, but a moment’s reflection will show that this cannot be so. The absolute (Darwinian)
fitness of each genotype depends on the population density. Generally, it will fall as population
density rises. If the population reaches a stable size, at that point the mean absolute fitness must
be 1, so that in this sense natural selection will make no progress, since it will always result in a
population which has a mean fitness of unity. There are two senses in which the population might
be making progress. It may come to its equilibrium at higher and higher population density. It may
come to consist of those genotypes whose fitness, relative to some standard genotype, is higher. In
this section we will explore this latter suggestion.

ASEXUALS AND HAPLOIDS. In the asexual (or the one-locus haploid) case, matters are
particularly simple and general results easy to obtain. Suppose that we have k different genotypes,
the relative fitness of the i-th of these being w;. Suppose that in some generation the proportions
of these genotypes are p; : ps : ... : pg. After selection the genotypes will be in proportions
PLW : Pows : ... : prwg. The frequency of the i-th genotype will be

P w;
P = % (I1-105)

This is the k-genotype (or in the haploid case, k-allele) version of (II-17). The mean relative
fitness of the initial population is

k
W= Y piw;, (I1-106)
=1

the weighted average of the fitnesses. After selection, at the start of the next generation, the mean
relative fitness of the population is

k
o = phw;. (I1-107)
i=1

Substituting the right-hand side of (I1I-105) for p}, we get

o =y P (11-108)



The question of immediate interest is whether @’ > w, and if so, how quickly w increases. The
difference between w in successive generations is

k
1
—/ _ 2 _
—w = — E i wi | — w. I1-1
w — w p L 1p wZ] w (11-109)

Now note that > p;w? is the weighted mean of w? over genotypes in the initial generation. The

variance of w over genotypes will be the difference between this mean square and the square of the
mean, w?, so that

. 1 _
W —w = E[szw? — w2]

_ Var(w) (11-110)

w

Thus the increment of the mean population relative fitness is the ratio of the genetic variance in
fitness (the variance among genotypes) to the mean fitness. This has two immediate implications.
Since the variance can never be negative, the mean relative fitness will never decrease as a result
of natural selection. This is a fairly reassuring result. Natural selection seems to be doing what it
is supposed to - make the organisms better adapted.

The second implication of (II-110) is that the rate of progress in fitness is proportional to the
square of the selection coefficient. If we double the differences in relative fitness between genotypes,
increasing some fitnesses and decreasing others so as to keep w constant, the genotypic variance
in fitness will not double, but will quadruple. The rate of change of the genotype frequencies will
roughly double, but we will also be doubling the effect of those changes on w, so that the net change
in that quantity quadruples.

The tendency of natural selection to increase mean relative fitness is simple enough to explain:
the more fit genotypes are increasing in frequency, so that ultimately only the single most fit
genotype will exist in the population. This may seem entirely automatic and somewhat trivial.
It is not: in only one other, more complex case - multiple alleles in diploids - does mean relative
fitness necessarily increase. Beyond that, when we involve multiple loci, mean fitness can actually
decrease as a net result of natural selection and recombination, as it can also with a single locus
when fitnesses depend on gene frequency.

DIPLOIDY: TWO ALLELES. For the case of two alleles, there is a simple result which is
suggestive. We can show that the gene frequency will always move in the direction of the peak
in the plot of w versus gene frequency. Consider the general expression (II-34) for gene frequency
change. In particular, consider p(waa—waq)+(1—p)(waq —wWaqa), the quantity in brackets. Suppose
that we were to plot w against gene frequency, and consider the slope of the resulting curve. This
would be the derivative dw/dp. Since

w o= p2 wWAA + 2p(1 - p) WAq + (1 - p)2 Waa (H'lll)
we can take the derivative with respect to p and obtain
dw
i 2pwaa + 21 —=p)wag — 2pwaa — 2(1 —p) Waa

= 2[p(waa —waa) + (1 —p)(Waa — Waa) |- (II-112)
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The quantity in brackets in (II-112) is precisely the quantity in brackets in the next-to-last line

of(I1-34). Substituting from (II-112) in (II-34) we obtain
p(l—p) dw
Ap = ———= —. I1-113

b 2w dp ( )
Of the factors on the right-hand side of this equation, p, (1 —p), and w can never be negative. The
sign of Ap will be controlled by the sign of dw/dp. When that slope is positive, w is rising as p is
increased, and in that situation p increases. When w rises with a decrease in p, equation (I1I-113)
shows us that p will decrease.

The equilibria of the system are the values of p at which Ap = 0. These occur when p = 0,
1—p=0,o0rdw/dp = 0. This establishes that dw/dp = 0 at the polymorphic equilibrium points
in overdominant and underdominant cases. This can be verified by taking the expression for dw/dp
in (II-112), equating it to zero, and solving for p. The value of p obtained is

WAq — Waa

= 11-114
Pe (wAa - wAA) + (wAa - waa) ( )

which is precisely the equilibrium gene frequency with over- or underdominance. This gene fre-
quency is also a stationary point (a maximum or a minimum) of the curve relating w to p. In a
continuous curve, such a point is either a relative maximum or a relative minimum. In fact, the
curve is a quadratic function of p, which immediately tells us that p. is either the overall maximum
or the overall minimum. Taking the second derivative by further differentiating (11-112),

2o

dp2 = 2['U)AA —2wypq + waa]' (11'115)

We can immediately see that the curvature of w is a constant, not depending on p. If wy, >
WAA, Weq this constant is negative, and if wa, < waa,waq it is positive. This establishes that in
the overdominant case, the w curve has a maximum at p = p., and in the underdominant case it
has a minimum there. Figure 2.8 shows w plotted against p for the case

AA Ao  aa
055 1 0.25

Adaptive topography. The maximum of @ at the equilibrium gene frequency p, =
0.75/(0.45 + 0.75) = 0.625 is evident.

Equation (II-113) establishes that the gene frequency always moves in that direction which
is uphill on the “adaptive topography,” the curve relating w to the gene frequency. In cases of
directional selection, where the peak p. lies outside the (0, 1) interval, this establishes that each
change of p moves the population higher on the w curve. In the underdominant case there is also
a continual increase of w as the population gene frequency moves away from p = p.. However, we
must be careful in interpreting the meaning of (II-113) in the case of overdominance. It shows us
that change is in the uphill direction, but it does not, of itself, allow us to rule out the possibility
that p overshoots the equilibrium, possibly even by so much as to end up farther down from the w
peak than it started. As we have seen, this is not the case. There is in fact a continual increase of
w until the population comes to rest on the peak of the adaptive surface, but (II-113) alone is not
sufficient to establish this.
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Figure 2.8: Mean fitness plotted as a function of gene frequency when fitnesses are: AA
0.55, Aa 1, aa 0.25.

FITNESS OPTIMIZATION. We now have the pleasing picture of the population changing so
as to continually increase w, until it comes to rest at a peak of the adaptive surface. This would
seem to provide a basis for the use of “fitness optimization” arguments in ecology and animal
behavior. In those arguments it is assumed that the population will evolve to that collection of
phenotypes which maximizes the mean fitness. The picture we have developed above is only partly
consistent with this notion. In the first place, genetic constraints may prevent the population from
achieving this optimum configuration. In a case of overdominance, the highest mean population
fitness would be achieved if all individuals were to be heterozygotes. Mendelian segregation makes
this impossible: a population of heterozygotes will not be stable - it will immediately segregate out
some homozygous offspring. In the second place, the peak of mean fitness which is achieved need
not be the highest available peak. When we have a case of underdominance, the final equilibrium
achieved depends on the initial gene frequencies. Since the mean fitness at the equilibrium will be
either 1 — s or 1 — ¢, depending on initial position, it is entirely possible that a population will fail
to find the best solution to its adaptive problems. Although its fitness cannot decrease, it may be
climbing the smaller of the two peaks of the adaptive surface. If it starts out at the smaller peak,
it will never find its way to the higher peak if natural selection is the only force changing gene
frequencies. Fitness optimization arguments implicitly assume that a global optimization is carried
out. The actual process of natural selection involves a very narrow view of the adaptive surface.
As we have seen, the local slope of the surface is all that the process of natural selection can “see”
- it cannot know that there is a higher peak in another direction. If the A allele occurs mostly
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in Aa heterozygotes and these are not very fit, the frequency of A will decline, even though the
A A homozygote may be the best genotype. Setting out from your present location and proceeding
always uphill is perhaps a good recipe for escaping a small flood, but it is not the best route to the
top of Mt. Everest.

The analogy between the fitness curve and a landscape is due to Sewall Wright (1932, 1935a,
b), who discussed forces other than selection, particularly genetic drift, as means of moving a
population across valleys in the surface.

SEGREGATIONAL LOAD. If the genetic system were asexual, reproducing by apomictic
parthenogenesis, then natural selection would result in the increase to fixation of the most fit
genotype. The failure of this to happen in outcrossing diploid populations is a weakness of the
Mendelian genetic system. If we consider only the portion of a generation from fertilization to
meiosis, the effect of natural selection will be to increase fitness by an amount which equals the
genetic variance (variance among genotypes) of fitness divided by the mean fitness. This follows
from the argument which we gave for asexuals, for in this portion of the generation even an out-
crossing diploid population is effectively asexual. Meiosis, by disrupting genotypic combinations
and reshuffling the genes, will lower the fitness, though we have seen that in the case of the two
alleles it can never lower it past its initial value.

A numerical example will be useful here. Suppose that we have a diploid population with

fitnesses
AA Aa aa

04 1 0.8
and a gene frequency of 0.2 in the population at the beginning of a generation. After fertilization,
when the genotype frequencies are in their Hardy-Weinberg proportions 0.04 : 0.32 : 0.64, the
mean fitness will be
0.04 x04 + 032x1 + 08x0.64 = 0.848.

Natural selection (which in this example is most easily conceived of as differential viability) will
alter the genotype frequencies to

0.04 x 0.4/0.848 : 0.32 x 1/0.848 : 0.8 x 0.64,/0.848

or

0.0189 : 0.3774 : 0.6038

These genotype frequencies are not in Hardy-Weinberg proportions: there is an excess of het-
erozygotes as a result of their high viability. If the genetic system were asexual, these would be
the genotype frequencies at the start of the next generation. The mean fitness would then be
0.0188 x 0.440.3774 x 1+ 0.6038 x 0.8 = 0.862, an increase of 0.02 over the value before selection.
However meiosis intervenes and makes the next generation start in Hardy-Weinberg proportions at
the new gene frequency of 0.0189 + 0.3774/2 = 0.2076. The genotype frequencies are then

0.0431 : 0.3290 : 0.6279

which gives a mean fitness at the start of that generation of 0.0431x0.4+0.3290 x 14+0.6279x 0.8 =
0.84856. This is considerably lower than 0.868 but still above the initial mean fitness of 0.848. The
increase of mean fitness by 0.02 due to natural selection has been rolled back by meiosis to a net
increase of 0.00056. The disruptive effect of meiosis on genotypic combinations is apparent.
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If the population lacked meiosis, how much higher could its fitness be? This question was first
posed by Morton, Crow, and Muller (1956), who defined and calculated the segregational load. This
they defined as the fractional reduction in the fitness of a population as a result of the existence
of Mendelian segregation. In the presence of overdominance, an asexual population could come to
consist entirely of heterozygotes. In our parameterization, it would then have a mean fitness of
1. An outcrossing population would come to equilibrium at a gene frequency of p, = t/(s +t) for
allele A, which would result in a mean fitness of

w = — sp? — t(1 —pe)?
— st?/(s+1)? — ts?/(s+ 1)
— st(s+1)/(s +1t)?
— st/(s+1t) (I1-116)

—_ = =

The fraction by which fitness is reduced by the presence of segregation, relative to the fitness of
Aa, is st/(s +t). This is half the harmonic mean of s and t.

Is it a burden? The segregational load calculation is often misinterpreted as meaning that a
population segregating at an overdominant locus somehow suffers a loss in fitness. Keep in mind
that we have been calculating in terms of relative, not absolute fitnesses. These depend on which
genotype is taken as the standard. We have taken Aa as the standard, so that w is necessarily
less than 1. To see that an overdominant polymorphism need not impose a burden, imagine a
population initially all aa, into which A alleles are introduced. Initially, the mean relative fitness of
the population is 1 —¢. As we have seen, A will increase when rare, until it reaches the equilibrium
frequency of p =t/(s +t). At that point, the mean fitness will be, from (II-116),

1—st/(s+t) = 1—spa > 1—s
(I1-117)
= 1—tp, > 1-—1t

so that the final mean fitness exceeds that in populations fixed for either a or A. The net effect
of introducing either allele into a population fixed for the other is to bring about an increase in
mean relative fitness. We can calculate a segregational load, but there is no sign that this load
causes any more difficulty to the population than it would experience if it were all aa or all AA.
In a purely technical sense there is no segregational load in a population which is (say) all AA.
This is because the standard of comparison in such a population is the AA genotype, the genotype
which would also comprise the population if it had no Mendelian segregation (as there are no a
alleles in the population). As soon as we introduce Aa heterozygotes, the standard of comparison
becomes Aa, the type which would take over in the absence of segregation, and there is now a
positive segregational load. This increase in segregational load is purely a matter of changing the
standard from AA to Aa. As (II-117) shows, it poses no threat to the population, whose mean
relative fitness has increased.

It may be hard to imagine that introduction of an allele whose homozygote has low fitness
could increase mean population fitness. A numerical example may be useful. Consider the sickle-
cell hemoglobin polymorphism. Calling the two alleles A and S (not the correct notation for
hemoglobin variants but good enough for our purposes), the relative fitnesses in the presence of
falciparum malaria and inadequate medical care are thought to be roughly:
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AA AS SS
08 1 0

where the heterozygote is taken to be the standard. This gives an equilibrium gene frequency for
S of

(1—0.8)
(1—0.8) + (1—0)

ps
= 0.2/1.2 = 0.1667.

Before introduction of the S allele, the mean relative fitness of the population was 0.8. After
the polymorphism reaches its equilibrium frequency, the mean relative fitness is

0.8 x (0.8333)% + 1 x 2 x (0.8333) x (0.1667) + 0 x (0.1667)> = 0.8333,

for an increase of fitness of 0.0333. The introduction of AS homozygotes at a genotype frequency
of 28% has more than compensated for the accompanying presence of 3% of SS individuals. You
may want to verify that (II-116) correctly predicts the mean fitness in this case. It was not the
intention of Morton, Crow, and Muller to argue that a high segregational load creates a problem
for the population. Their computation was part of a rather sophisticated attempt to determine
whether natural variation in viability in humans is maintained by recurrent mutation to deleterious
alleles or by the presence of overdominant polymorphism. The segregational load computation is
part of the analysis of the so-called “B/A Ratio”. The results are equivocal, and this method has
fallen from use. The interested reader will find accounts of this controversy in Lewontin (1974, pp.
74-82) and two books by Wallace (1970, chap. 9; 1968, chap. 15).

I1.8 Selection and Fitness : Multiple Alleles

When we have multiple alleles in an outcrossing diploid population with constant relative fitnesses,
the principle that w increases as a result of natural selection becomes an essential part of predicting
the equilibrium gene frequencies and analyzing the stability of these equilibria. We will only sketch
the method in this section. We start by formulating the equations of change of gene frequencies.

EFFECT OF SELECTION. We can directly generalize equations (II-31) and (II-35), the
basic equations for gene frequency change with two alleles. The extension is straightforward. The
genotype frequency of the (ordered) genotype A;A; immediately after fertilization is p;p;. This
holds for all ¢ and all j, including the case where ¢ = j. The contribution from these individuals
to the pool of A; gametes will be proportional to %pipjwij, w;; being the fitness of A;A;. The
total frequency of A; copies in the gene pool, those A; copies that come from the left-hand gene,
is the sum over j of %pipjwij. Of course, an A; in the gene pool could also have come from an
individual of genotype A;A;, from which it is a copy of the right-hand gene, so there is a similar
sum of %pjpiwij. The total number of genes in the gamete pool is the sum of these expressions over
all ¢ and 7, so the gene frequency of A; in the gene pool is:
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Di (ij wz‘j)
J

= — I1-118
. (11-115)
where w = 3, > pipjwij, the mean fitness of the population. In this equation >, pjw;; is a quite
straightforward quantity: the mean fitness of the organisms in which A; alleles find themselves,
weighted by the numbers of A; alleles they contain. We call it w;. As such these are direct parallels
to the quantities w4 and w, which we used in the two-allele argument. Then (II-118) can be

rewritten as

pp = P (11-119)
w
which also leads us directly to
(35
Ap; = pi — pi = pi— — pi

w

= p ) (11-120)
w

The two-allele argument we presented earlier is a special case of this n-allele case.

EQUILIBRIUM. Either of these last equations readily yield the conditions for equilibrium. At
equilibrium, for allele ¢ either p; = 0 or w; = w. Thus if we want to find an equilibrium at which,
out of 8 alleles, p1 = po = p5s = pg = 0, and p3, p4, p7, and pg are non-zero, the conditions at
equilibrium are wy = w, wy = w, wy = w, and wg = w. Since w is a quadratic expression in n
variables, these seem unpromising candidates for exact solution. However, we can eliminate w from
these equations, so that they become: w3 = wy, wy = w7, and w7 = wg. Each of these is a linear
equation in the gene frequencies, since

n
W; = ijwij. (11-121)
j=1

The equations are then, since p; = p2 = ps = pg = 0,

p3 (w33 — waz) + pa(wss —waa) + p7(wsy —war) + pg(wsg —wag) = 0,
p3 (w43 — wrg) + pa(wag —wra) + pr(war —wrr) + pg(wag —wrg) = 0, (I1-122)
p3 (w73 — wsg) + pa(wra —wse) + pr(wrr —wsy) + pg(wrg —wsg) = 0.

These are three linear equations in four unknowns, but the four gene frequencies are not inde-
pendent variables, as they must add up to 1. We can add a fourth equation,

p3+ps+pr+ps = L (I11-123)
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We have four linear equations in four unknowns. These can be solved by standard methods. The
solution can then be checked as to whether it has all four gene frequencies positive, for if not the
solution is irrelevant.

This pattern can be followed to find all equilibria of the n-allele system prescribed by the
fitnesses w;j. For each subset of the alleles, we can set up the equations corresponding to (I11-122)
and see whether there is an equilibrium containing only those alleles. This works, but is a rather
gloomy prospect. There are in all 2" — 1 subsets of a set of n alleles, counting the set itself but
not the empty set. All of these would have to be checked for equilibria. Each equilibrium which is
found would need to be checked to determine stability. With large numbers of alleles, this can be
a lot of work.

STABILITY AND MEAN FITNESS. We are presumably interested in finding all stable
equilibria. Fortunately, there is a property of the population mean fitness which saves most of this
work and allows us to picture the matter relatively simply. It turns out that the result of selection
is always that @’ > w. Mean population fitness never decreases. This is not particularly easy to
prove, and the proof will not be given here. It was established in a series of papers by Scheuer and
Mandel (1959), Atkinson, Watterson, and Moran (1960) and Kingman (1961a,b). These papers
contain successively simpler proofs of the same basic result. The interested reader will also find
Kingman'’s proof in the books by Ewens (2004, section 2.4) and Nagylaki (1977), with a particularly
detailed presentation of stability conditions in the latter.

The nondecreasing nature of mean fitness immediately lets us prove that certain points are
stable equilibria. Among all combinations of gene frequencies, one will have the highest value of
w. (It is possible that the maxima of w be a line or plane of points, all with the same value of
w, but in most cases this does not arise, and we ignore it). Suppose that a point (pi,...,pn) is
the maximum. In the immediate vicinity of this point there is a region in which the fitness falls
smoothly off as one moves away from the equilibrium. If we perturb the gene frequencies to a point
near the equilibrium, we will find that w has decreased slightly to a new value, w*. Around the
equilibrium is an elliptical contour of height w*. The population must move to a point within that
contour, since w cannot decrease further. Thus it will climb back to the equilibrium. We have
not established this rigorously, but it is true. If a point is a local maximum of w, or at least has
higher w than any nearby point with no negative gene frequencies, it will be a stable equilibrium.
All equilibria with more than one allele present are stationary points (maxima, minima, or saddle
points) with respect to variation in the frequencies of the alleles present. Among those, the stable
equilibria are the maxima. With respect to the alleles not present, the stable equilibria (and only
those) will have for each allele k£ which is absent, wy < w. We can check the stability of an
equilibrium by verifying whether these conditions are true. Kimura (1956b) gave the conditions
necessary to determine stability of an equilibrium with respect to variation in the frequencies of
the alleles present, and Kingman (1961a) the condition for the alleles absent.

An example. Figure 2.9 shows an example with three alleles involving estimated fitnesses in
the human hemoglobin-3 polymorphism with alleles A, S and C. Note how much information can
be gleaned from simply plotting the “fitness surface”, w plotted against the gene frequencies. It is
convenient to plot the gene frequency as points in an equilateral triangle, the distances from any
point to the three sides being proportional to the gene frequencies. Since the sum of these three
altitudes of the triangle must be equal, we can take this sum to be 1. In Figure 2.9, there are
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Figure 2.9: Contours of fitness plotted against allele frequencies in a three-hemoglobin
polymorphism. At any point, the frequency of each allele is proportional to the attitude
to the side opposite the corner labeled with that allele’s symbol. Minima (-), Maxima
(+) and saddle-points (*) of the fitness surface are indicated.

two equilibria. One is the familiar polymorphism of hemoglobins A and S, the other fixation for
hemoglobin C. To which peak the population will climb depends on the starting gene frequencies.

Considerable insight is obtained by looking at the sides of the triangle. When only the S
and C' alleles are present the fitnesses of S5 : SC : CC are 0.151 : 0.545 : 1.0, predicting an
unstable equilibrium when S is fixed and a possibly stable equilibrium when C is fixed. The
side corresponding to A and C has fitnesses of AA : AC : CC of 0.685 : 0.679 : 1.0, which is
underdominance. There will be an unstable equilibrium when p4 = 0.982, po = 0.018, and pg = 0.
The equilibria at either end of the A-C'side have a chance to be stable. In fact, knowing that the C
corner of the triangle is indicated as possibly stable on analysis of both the S-C and the A-C sides
is sufficient to establish its stability in general when all three alleles are considered. The A-S side
shows fitnesses 0.685 : 0.763 : 0.151, the familiar sickle-cell overdominant polymorphism. This has
an equilibrium at pg = 0.113, p4 = 0.887, pc = 0. The instability of fixation for A in the side is
also proof that fixation for A is unstable when all three alleles are considered: it is only necessary
to add a small frequency of S to move away from that equilibrium. We already know that the state
of fixation for S is unstable, from our examination of the S-C'side, but this is confirmed by analysis
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of the A-S side.

It still remains to evaluate the stability of the polymorphism for alleles A and S. For that
equilibrium to be stable, we must know that C alleles introduced at low frequency will not increase
in frequency. The mean fitness of these alleles at this equilibrium will be pswac + pswsc, which
is (0.018)(0.545) + (0.982)(0.679) = 0.676, which is to be compared with the mean fitness of the
population at the equilibrium, which is (0.113)2(0.151)+2(0.113)(0.887)(0.763) + (0.887)2(0.685) =
0.6938. So the mean fitness of C alleles is below the population average, and they will not increase
in frequency. The only part of the triangle not yet investigated for stable equilibria is the interior,
where all three alleles are present. There is an equilibrium there, as the appropriate linear equations
show, but it is not stable. In fact, if there is a stable equilibrium with one fewer allele (including
stability to introduction of the missing allele), the interior equilibrium must be unstable. This fact
follows from the identification of peaks of w with stable equilibria, and from the quadratic nature
of w, though it will not be proven here. Since there is a stable equilibrium with only alleles A and
S, there cannot be a stable equilibrium with all three alleles.

Note that the simple plotting of w over the triangle, as done in Figure 2.9, immediately shows the
locations of the two peaks, and shows that there is an interior equilibrium which is unstable, as it is
a saddle of the fitness surface. Such a plot of w will always convey the full picture in multiple-allele
cases, and is by far the easiest and most accessible way of analyzing these situations. Of course,
the plot must be done to sufficient accuracy: both the saddle point and the A-S polymorphic
equilibrium would have been missed if only the contours 0.1 apart (the coarsely dashed curves)
were plotted.

The small size of the peak for the A-S polymorphism would seem to indicate that West African
populations are proceeding to fixation for allele C. This is not necessarily so, because these popu-
lations are starting from the vicinity of this small peak. There is a lack of good information, but
C'is believed to have reached sufficient frequency in some localities. You may care to consult the
more extensive discussion of this example by Cavalli-Sforza and Bodmer (1971). There have been
many papers on the conditions for maintaining multiple alleles at a locus. We will not explore this
literature here because overdominance seems to be very rare in nature.

I1.9 Selection Dependent on Population Density

We have so far been assuming that relative fitnesses of genotypes are constant, so that we need not
consider absolute fitnesses or population sizes. This amounts to the assumption that the absolute
fitness of genotype A;A; is a product of two factors, so that W;; = w;; f, where w;; is the relative
fitness, which depends on the genotype, and f is a factor which is the same for all genotypes,
though it may depend on population density, gene frequency, or time. This constancy of relative
fitnesses allowed us to make our analysis purely in terms of them, provided we were only interested
in knowing the gene frequency, and not the population density. Although selection turned out to
maximize mean relative fitness, the presence of the factor f allows us to concoct situations in which
f is very sensitive to the gene frequency, declining rapidly as the gene frequency approaches its
equilibrium. In this way one can make a model in which a population evolves its way to extinction.
In the coming sections we relax the assumption that the relative fitnesses are constant and allow
them to depend on population density, time, or gene frequency.
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ASEXUALS AND HAPLOIDS. If the fitnesses are functions only of population density (which
we consider equivalent to population size), there are some regularities in the outcome of natural
selection which provide us with partial assurance that the population does not evolve towards
extinction. It is simplest to consider the absolute fitness is a function of population size, N. Each
genotype may have a different dependence of N, but they all respond to the overall density N. It
is important to realize that this is not the case in which each genotype’s fitness responds only to
its own numbers.

In the two-genotype (or two-allele) case, we have absolute fitnesses wq(IN) and wa(N). The
numbers of the two genotypes follow the dynamics

N/ = N; Wi(N)
(11-124)
N} = Ny Wy(N),

where N = Nj 4+ N,. Charlesworth (1971) has made a particularly penetrating analysis of density-
dependent selection. In the asexual case his argument works out particularly simply, and is the
basis for what is presented here. Suppose that each genotype’s absolute fitness declines strictly
monotonically as N increases. We can trace out curves of W7 and Wy as functions of N:

w

There will be particular points K7 and K», the values of N at which w; and ws, respectively,
reach unity:
Wi(Ky) = 1,
(11-125)
Wy(Ks) = 1.

Suppose (arbitrarily) that Ko < K;j. If the population size N is below K, then equations (II-
124) show that both subpopulations are growing. Which is growing faster is not known without
considering the exact shapes of the dependence of Wi and Wy on N, but the total population
size must continue increasing until it reaches K,. At that stage, unless the genotype A; has
been completely eliminated, it will have the advantage, for when N is above Ky but below Kj,
W1 > 1 > Ws. The population of A; genotypes continues increasing and that of As decreases.
Ultimately A; comes to constitute the entire population, at which point the population size N has

84



risen to Kj. If the initial population contains both types and has N > K, a similar argument
applies and the population size falls into the range Ko < N < Kj, after which type A; will win
out. A similar argument applies with multiple strains (or multiple alleles).

We thus have some assurance that the genotype which will maintain the highest equilibrium
population size will be favored by natural selection. This would seem to guarantee that natural
selection will act so as to reduce the probability of extinction of the population, but a moment’s
reflection will show that this is not necessarily the case. The W5(N) curve may pass through
N = K at a very steep angle, while W (V) passes through N = K at a shallow angle:

w

If this happens to be the case, a population of A; individuals may recover less quickly from
environmental fluctuations than would an Ay population. If a fluctuation of the environment or a
fluctuation due to the randomness of birth and of death events were to carry the population size
below the point of intersection of the Wy and W5 curves, at those low population sizes a population
consisting of the A; genotype will grow more slowly than one consisting of A;. The favored Ay
genotype will then be more susceptible to extinction, provided that population size is sufficiently
strongly fluctuating to carry it often into this region.

DIPLOIDS. The diploid version of density-dependent selection has, for the two-allele case, three
curves, one for each genotype. The discussion here will assume that W = 1 is the value when the
population exactly replaces itself (if it were actually W = 2 the expressions and figures would have
to be adjusted accordingly). In certain simple cases the outcome is straightforward. If the three
curves do not cross in the region between the point where the lowest one reaches W = 1 and the
point where the highest one reaches W = 1, then the population is guaranteed to grow into this
region, and the outcome of natural selection can be qualitatively predicted from the ordering of
the fitness curves. If we have the heterozygote intermediate then natural selection will favor the
Aj allele. As it reaches high frequencies the population will come to an equilibrium at N = Kj;.
When the curves are allowed to cross in the relevant region things can be rather complicated.
The exact equilibrium gene frequency depends on the population size, whose growth rate in turn
depends on the gene frequency. The equilibrium of the two variables requires solution of two
simultaneous equations. Charlesworth (1971) has made a general examination of the matter. He
proved that polymorphism can only be maintained provided that there is overdominance in the
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K;;. He also showed that natural selection maximizes the quantity N*(p), where N*(p) is the
equilibrium population size which would be achieved if p were held fixed, namely the root of

PP Wir(N) + 2p(1 —p) Wia(N) + (1—p)? War(N) = 1, (11-126)

where p is given and N is the quantity which we vary. In particular, if K11 > K2 > Ko, then allele
Aq will be fixed. Natural selection acts as if it is trying to maximize the equilibrium population
size. This does not necessarily mean that the population size increases steadily throughout the
course of natural selection. Ultimately, natural selection finds that value of p which allows it to
reach the highest equilibrium population size. Of course, this maximum is a local maximum - in
underdominant cases the result depends on the initial gene frequency and the global maximum
need not be reached.

OSCILLATIONS AND CHAOS. The entire foregoing discussion rests on a premise that
the population settles down to a single equilibrium size. This will not be true if the W;;(IV)
pass through 1 too rapidly. If population density regulation causes too great a decrease in absolute
fitness, the equilibrium population size can be unstable. The result may be either cyclical oscillation
of population size or a pattern known as “chaos,” in which the population size remains within a
fixed interval of sizes and fluctuates without ever achieving the same size twice (May, 1974, 1976).
In such cases the preceding analysis fails to hold because we cannot argue that the population
comes to rest at that size N at which W(N) = 1.

SOME PARTICULAR GROWTH LAWS. Various workers have analyzed particular functions
W (N) which seem to do a good job of approximating biological reality, but which allow some exact
analysis. The simplest model has W (N) a linear function of N:

Wii(N) = 1 4+ ryy — rijN/Ky;, (I1-127)

which is often referred to as the discrete logistic growth law. It was first worked on in a genetic
context by Roughgarden (1971). Roughgarden showed numerically, and Charlesworth (1971) an-
alytically, that natural selection acts as if trying to maximize K, in that when K1 > Ko > Koo
allele Ay is favored, with polymorphism only when there is overdominance in K. This is only true
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when the equilibrium value of N is approached. Where r;; > 2, oscillations (r < 2.83) or chaos
(r > 2.83) occurs, (May, 1976) and it is not known what governs the outcome of natural selection.
One of the disadvantages of the growth law (II-127) is that when N is large the population can go
negative. This tends to occur if r > 3.

A second growth law,
147 ij

Wii(N) = 1+ (1+7y)N/Kij

(11-128)

cannot yield oscillation or chaos no matter how large is r. This growth pattern has the advantage
of never yielding a negative fitness. It has been introduced in a genetic context by Clarke (1972).
Roughgarden (1979) shows that the sequence of population sizes for a population with a single
genotype lie on a logistic growth curve, so that in this sense this growth curve is a truer analog of
the logistic growth law than (II-127). Little explicit analysis of this growth curve has been done, but
since it never yields oscillations or chaos, Charlesworth’s (1971) results predict that natural selection
will favor the genotype with the highest K if there is neither over- nor underdominance, will bring
about a stable polymorphism if there is overdominance in K, and an unstable polymorphism if K
is underdominant.
A third growth law,

N
o= 1= ’ 11-12
Wi exp |:T‘]< KZ>} ( 9)

has been extensively investigated by May (1972, 1974; May and Oster, 1976). In a population
consisting of a single genotype, there will be a stable equilibrium population size if 0 < r < 2,
cyclic behavior if 2 < r < 2.692, and chaos if » > 2.692. For r < 2 Charlesworth’s analysis predicts
maximization of K. For the oscillating and chaotic realm Turelli and Prout (unpublished) have
proven, by applying rules similar to those we shall develop in the next section, that in that case as
well selection favors genotypes with high values of K.

In both of these last two cases there has been no tradeoff between r and K: the outcome of
selection is predicted qualitatively by the K values, although the r’s will influence the exact position
of a polymorphic equilibrium. On intuitive grounds, we would expect that sometimes there would
be a compromise between r- and K-selection, the outcome depending on both parameters. I have
analyzed (1979) a simple (if rather extreme) model due to Williamson (1974) which shows effects

of both » and K. It is
Ry, ifN < Kj;
Wi = Qb = (11-130)
Rgﬂ‘j, ifN > Kij

This model is almost always chaotic, except for very special values of R; and Ry which allow
it to be cyclic. The outcome of selection is complex: if the genotypes differ only in R’s, the effect
of natural selection is to favor the genotype with the highest value of (In R;)/(—1n R2). When
K alone varies, the genotype with the highest value of K is favored. When both quantities differ
among genotypes the outcome depends on both. Interestingly enough, when r- and K selection
are counterposed it is possible in this growth model to have protected polymorphism under certain
conditions even in an asexual (or haploid) population. Roughgarden (1971) introduced a model in
which seasonality causes the population size to cycle, and in that case as well found that there were
effects of both r and K, with polymorphism possible when r- and K-selection were appropriately
counterposed.
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ADDITIONAL WORK. The investigation of density-dependent selection was pioneered by
MacArthur (1962). Roughgarden has extended the conditions for maximization of N*(p) to multiple
interacting species - an account of the results and further references will be found in that book
(1979). Other investigations of particular interest are those of Anderson (1971), Asmussen and
Feldman (1979), and Asmussen (1979).

I1.10 Temporal Variation in Fitnesses

It is unlikely that relative fitnesses of genotypes will remain constant through time, since the
environmental conditions, population density, and densities of other species will fluctuate, and
these will in many cases affect the strength of natural selection. There has been a certain amount
of work on cases in which fitnesses vary randomly or cyclically from one generation to the next. It
leads to surprisingly simple conclusions.

ASEXUALS AND HAPLOIDS. Dempster (1955) first considered a haploid case with two
alleles. If the fitnesses in generation t for alleles A and a are 1+ s; : 1, we can invoke equation
(II-13), altering it only by subscripting s:

(t+1) ()

Pa . Py
Pa Pa

The ratio pa/p, after ¢ generations of selection will be (using [] as the symbol for repeated multi-
plication)

p(t) t—1 p(o)
% = [H(l—i—su) % (11-132)
Pa u=0 Pa

in direct analogy to equation (II-66). We can immediately see what happens in the case of cyclic
selection. This is the case where there are T' different values of s, which are repeated cyclically, so
that the fitnesses are 1 4+ 51,1 4+ s2,1 + s3,...,1 +s7,1 + s1,...,1 + s7,.... If we follow the change
of gene or genotype frequency over one cycle, we must take the product of these fitnesses over the
cycle. If that product (in square brackets in the equation) is greater than one, the ratio of gene
frequencies is increased by each cycle of generations. If it is less than one, the ratio is decreased,
and if it is exactly one, it does not change. Whether the A allele increases to ultimate fixation
depends on whether this product of relative fitnesses exceeds one. Notice that if we take the T-th
root of the product, that is the geometric mean of the T quantities 1 + s1,...,1 + sp. Taking the
T-th root of a quantity does not change the fact of whether it exceeds 1, since 7' is positive. We can
succinctly state the result by saying that the allele with higher geometric mean relative fitness takes
over. This fo)llows b((ec)ause the geometric mean of 1 + s; is the same as the ratio of the geometric
¢

t
means of wy’ and wg

1/T (u 1/T w® T 1/T 1/T
- (] ] e

u a
(11-133)

, since

[H(l + 5u)

u
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Randomly varying fitnesses. = When the fitnesses do not go through an exact cycle, but
vary randomly with time, the mathematics is more complex but the result is essentially the same.
In the short run we may encounter a run of generations favorable to A or to a, so we must look
to the long run for more exact predictions. The result will depend on the value of the product
[1(1 + sy), that is on H(wj(f)/w((lu)). Though there is no simple generalization covering all cases,
we need only place very mild restrictions on the way in which fitnesses vary to get a simple result.
If we can assume that there is very little long-term correlation of fitnesses (if we cannot predict
future fitnesses far ahead of time) then we need only take the logarithm of this product and get a

In [H(l + s4)

u

= ) In(1+s,) (11-134)

and we can apply the Strong Law of Large Numbers, from probability theory, to this sum. As
we consider large numbers of generations, this sum will approach ¢ times its expectation, and its
variance will also rise proportionally to t. Thus if the expectation of each term is positive, it will
tend to oo, and if the expectation is negative, it will tend to —oo. The expectation of the logarithm
of 14 s, will be positive when the geometric mean of 1 + s, exceeds 1. If the geometric mean
relative fitness of A exceeds that of a, the sum of logarithms becomes positive, and increasingly so.
If the geometric mean relative fitness of A is less than of a, the sum goes negative and becomes
increasingly so, without limit, as time passes. Since we are looking at the logarithm of the original
product of fitnesses, these correspond to the product becoming infinite or going to zero.

After all the probability theory, we again have the result that the allele with higher geometric
mean fitness wins out. Within broad limits the pattern of correlation of fitnesses through time
does not affect the ultimate outcome, a fact which is not obvious in advance. The reader to whom
numerical examples are more illuminating may care to ponder these two sets of fitnesses:

Type of year Genotype

A a
Wet 1.1 : 1
Dry 0.8 : 1

If wet and dry years occur in a cycle of two wet years followed by one dry year, in regular
succession, WWDWWDWWD..., then since 1.1 x 1.1 x 0.8 = 0.968 < 1 allele A will decrease
with each cycle of two generations. If instead we have some other (possibly random) pattern of wet
and dry years, with wet years 2/3 of the time and dry years 1/3 of the time, we can predict the
outcome of natural selection by computing the geometric means:

A o (LD)Y3(0.8)/3 = 0.968Y/% = 0.989217
a @ 10?3103 = 1,

again predicting a long-run decrease in the frequency of A. The outcome essentially does not depend
on the pattern of correlations or the length of cycles. The short term variation in fitnesses may be
dramatically affected by whether dry years tend to come in runs, but the long-term result depends
only on the relative frequencies of wet and dry years. This is perhaps counterintuitive.

Figure 2.10 shows a cyclic case and a random case. Other random sequences of Wet and Dry may
rise to higher frequencies or drop quickly to lower ones, but all will ultimately lose the wet-adapted
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Figure 2.10: Course of gene frequency change in a numerical example of a case of
alternating Wet and Dry years (lighter lines) and in a case of random Wet and Dry
years, independently drawn with equal probabilities. In both cases relative fitnesses of
A are 1.5 and 0.6 in Wet and Dry years. The starting gene frequency in both cases is
0.5.

allele. Note that despite the continued variation in environments, there is no general principle that
both wet-adapted and dry-adapted alleles will persist in the long run.

Note also that the allele with higher geometric mean fitness wins out, but this is not necessarily
the allele with higher arithmetic mean fitness! In the numerical example, the arithmetic mean
relative fitness of A is (2x1.1+1x0.8)/3 = 1, which is tied with the arithmetic mean of a’s relative
fitness, which is 1. Nevertheless A, the allele with equal mean fitness, is certain to ultimately be
eliminated. In the case of temporal variation in fitness, w is not maximized. In the numerical
example in Figure 2.10, the arithmetic mean fitness of A is higher than that of a, and yet it is
certain to ultimately be eliminated. However, the dependence on the geometric mean does give
us some assurance that evolution will not be generally maladaptive. For example, if in all years
wa < Wq, it is impossible that the frequency of A should ever increase.

DIPLOIDS. We have concentrated so much attention on the asexual or haploid case because this
is the key to the analysis of the diploid case. A complete analysis of the diploid case is forbiddingly
difficult, but if we confine attention to the conditions for protected polymorphism, we can find these
easily from the asexual conditions. We want conditions under which both A and a increase when
rare. We start with the effect of selection on the ratio of gene frequencies. If we take equation
(I1-36) and put superscripts on the fitnesses to indicate their dependence on the generation number,

it becomes " "
’ t t
1—
o= B B ) —da. (11-135)
1-p I=p pwy, + (1—p) Waa
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One of the cases in which we are interested is when A is rare. Then p is near zero, so that
equation (II-135) is well approximated by

p/ D w(t)
= Aa (I1-136)

1—9p 1—p W

aa

This is precisely the asexual or haploid formula, with wg) and w((,t) replaced by wgzl and wé? The

reason for this concordance is straightforward. We are interested in the behavior of A when it is rare.
When it is, almost all A alleles occur in heterozygotes, and almost all a alleles in aa homozygotes.
The inheritance of the genotype is then effectively haploid, since Aa x aa — 1/2 Aa + 1/2 aa,
just as in haploids A x a — 1/2 A+ 1/2 a. Of course, an Aa X Aa mating does not follow the
haploid analogy, but such matings essentially never occur if A is very rare. A rare allele can thus
be treated as if haploid, or even asexual. From (II-136) the conditions for ultimate increase of
A are immediate: it will increase if the geometric mean over time of wa, exceeds that of wy,.
This condition is actually the condition for the product [[(waq/wae) to rise to infinity. As the
gene frequency of A increases away from zero, it leaves the region where the approximation (II-136)
holds. So we have obtained a condition for A to increase away from zero, not for A to go to fixation.

A similar analysis can be carried out when « is rare, and the results are completely analogous.
The a allele increases when rare when the geometric mean of w 4, exceeds that of wa 4. Putting these
together, the condition for protected polymorphism is overdominance of geometric mean fitnesses of
the genotypes. If Aa is the genotype with highest geometric mean fitness, we will have a protected
polymorphism. As in the asexual or haploid case, the pattern of correlations essentially does not
affect this condition, which holds for both cyclic and random variation in fitnesses. Of course, this
geometric mean overdominance condition is only part of the story. It tells us whether we have a
protected polymorphism, but not the distribution of gene frequencies over time or the amount of
short-term fluctuation in gene frequencies. These are affected by the pattern of temporal correlation
in fitnesses.

In the case of random temporal variation in fitnesses, the conditions for protected polymorphism
are also the conditions for existence of a polymorphism (except in the case where one allele is
exactly recessive in geometric mean fitness). The equivalence of polymorphism and protected
polymorphism is easily motivated. Random variation of fitnesses will cause the frequency of each
allele to occasionally wander close to zero. When this occurs, to retain the polymorphism it must
have probability one of returning to the interior of the (0,1) interval. The conditions for certainty
of increase of a rare allele thus are not only sufficient to ensure a polymorphism, but necessary for
its maintenance as well.

In the case of cyclic variation of fitness we cannot use this argument. It is possible to have a
stable cycle of gene frequencies in the interior of the (0, 1) interval, even though one or both alleles
will be lost if made rare. Since cyclic variation in fitness need not ever cause either allele to become
rare, a polymorphism need not be protected in order to exist and be stable. An example is a two-
generation cycle of fitnesses in which the fitnesses of the genotypes are alternatively 0.9 : 1: 0.9 and
1.115 : 1: 1.115. It turns out that if the gene frequency starts below about p = 0.18, A will be lost.
If it starts above p = 0.82, a will become lost and A fixed. The geometric means of the genotypes
are 1.0017 : 1 : 1.0017, which is geometric mean underdominance, so that protected polymorphism
is not guaranteed. Yet there is a stable polymorphism, for any starting point between 0.18 and 0.82
results in the gene frequency converging to a stable equilibrium at p = 0.5. So stable polymorphism
can exist in the absence of protected polymorphism.
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FITNESSES VARYING WITHIN A GENERATION. When fitnesses are different for
different life stages, the result is the same - yet different. Strobeck (1975) considered this case,
and showed that there will be protected polymorphism if the fitnesses in different life stages show
geometric mean overdominance. In the random case this result is not very simple, but in the
“cyclic” case it is obvious. Suppose that the fitnesses (viabilities) were 0.8 : 0.9 : 1 in the larval
stage, and were 1 : 0.915 : 0.82 in the adult stage before reproduction. As we saw when we
first discussed fitness, the overall fitness involves the product of these quantities, assuming that the
causes of mortality act independently. The result is fitnesses which show overdominance: 0.8 : 0.845
: 0.82. If these sets of viabilities repeat every generation, this is a case of simple overdominance,
and causes a stable polymorphism.

We can also treat this as a case of fitnesses cycling within a generation. At no single life stage is
there overdominance. The geometric mean fitnesses among life stages show overdominance, being
the square roots of the overall fitnesses: 0.8'/2 : 0.8451/2 : 0.821/2 or 0.894 : 0.919 : 0.906. So the
results follow both the rules for constant fitnesses and those for varying fitnesses. The mean fitness
is maximized by selection, but this is the mean of the overall fitness of each genotype. If we were
misguided enough to average fitnesses within each generation among life stages, we find arithmetic
means of 0.9 : 0.9075 : 0.91, which do not show overdominance.

We can sum up the case of variation of fitness within a generation by saying that there will be
protected polymorphism if the geometric mean fitness among life stages is overdominant. In the
cyclic case, where the cycle repeats every generation, this is simply the requirement that overall
fitnesses be overdominant, in which case overdominance is necessary as well as sufficient for stable
polymorphism to exist.

There need not be overdominance in any life stage for there to be overdominance in net fitness.
In this sense conflicting directional selection in different parts of the life cycle can cause polymor-
phism. It is important to note that it is the net overdominance which is necessary: in the haploid
or asexual case there is no pattern of conflicting directional selection in different life stages which
can cause polymorphism.

REFERENCES. Haldane and Jayakar (1962) were the first to give the geometric mean over-
dominance condition. The necessary side conditions for stable polymorphism when one allele is
completely recessive were given by Haldane and Jayakar (1962) and, more generally, by Hoekstra
(1975). Gillespie (1973) developed the geometric mean conditions further, and Norman (1975b)
gave a general proof that if fitnesses vary independently from generation to generation, overdomi-
nance of geometric means is both necessary and sufficient for maintenance of a polymorphism.

Gillespie and Langley (1974) have made temporal variation the centerpiece of a general hypoth-
esis for the maintenance of protein polymorphism. They argue that geometric mean overdominance
can arise from standard enzyme kinetics. If the heterozygote has an enzyme activity which is the
arithmetic mean of the activities of the two homozygotes, and if the curve relating fitness to en-
zyme activity is concave downwards, then sufficient variation in the enzyme activities of alleles over
time can result in geometric mean overdominance. This is biologically plausible, which is not the
same as saying that it is important as a cause of real polymorphisms. For further references to
the literature on the theory of temporal variation of fitnesses, the reader may wish to consult my
review article (1976) or the reviews by Hedrick, Ginevan, and Ewing (1976) and Hedrick (1986).
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I1.11 Frequency-Dependent Fitnesses

If the fitnesses of genotypes vary as a function of the gene frequency or the genotype frequencies,
various complex outcomes are possible, including oscillation of the gene frequency and chaotic
fluctuation. We are most interested in a simpler outcome, stable polymorphism. A natural condition
to examine is frequency-dependent selection in which the rare allele is at an advantage. There
are a number of biological mechanisms which have been proposed which would lead to frequency
dependent selection:

1. Specialization on different limiting resources. If two genotypes eat different foods, then an
individual of the rare genotype will have a more abundant source of food, by virtue of the
rareness of other individuals who eat that food. The same argument will hold for many other
limiting nonfood resources, such as breeding sites.

2. Different diseases or parasites for different genotypes. If each genotype has its own diseases
and parasites, then whichever type is rarer will be less likely to come into contact with carriers
of its own particular pests.

3. Specialization of different predators on different genotypes. When each genotype has its own
predators, then the genotype which is rare will presumably sustain a lower population density
of predators, and hence might suffer a lower mortality rate from predation.

4. Predator search images: apostatic selection. Many intelligent visual predators form “search
images” of the desired appearance of their prey. They tend to reject potential prey which do
not fit this image. The search image depends on the last few prey eaten. Thus the predators
may tend to avoid taking the rare genotypes, which they have not encountered recently.

5. Rare male advantage. In some species, notably Drosophila melanogaster, males of a rare
genotype seem to have an advantage in mating simply because they are rare. This pattern of
female choice may be an adaptation to avoid inbreeding.

6. Social Interactions. In a social species, if the genotypes differ in their social behavior, the
fitness of a genotype may depend on the frequencies of the genotypes among the individuals
it encounters in the population.

The first four of these mechanisms involve ecological interactions, the last two behavioral inter-
actions. In many of these cases the natural selection would be expected to be density-dependent
as well as frequency-dependent. For example, when population density is low, the first mechanism
(different resources) will not operate, since individuals of both genotypes will find an abundance
of food. When population density is high, the fitnesses will depend on the genotype frequencies.
To analyze the outcome of these kinds of frequency-dependent selection requires a model of the
specific case, including variables for the numbers of predators or parasites, or the amount of each
kind of food resource available. The details of the model will be strongly dependent on the spe-
cific biology involved. In this section, we will examine frequency-dependent selection without this
biological specificity. We will allow the fitnesses to be arbitrarily chosen functions of the gene fre-
quency, in order to see what types of evolutionary outcome are possible, and what the implications
of frequency-dependence are for the mean population fitness.

ASEXUALS AND HAPLOIDS. that we have two genotypes, A and a, with the relative fitness
of A depending on the genotype (or gene) frequency, p, in a simple linear fashion. Let
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wy = 1l4+t—sp

(I1-137)
w, = L.
The equations for the evolution of genotype frequencies then become
/
p p
= (14t—sp) L 11
T 1+t sp)l_p (I1-138)
and
p_ p(A+t—sp) (11-139)
1+ (t—sp)p’
When we compute the change of gene frequency; it is, from (II-139)
Ap = p'—p = (p(L+t—sp) — [L+(t—sp)p])/(1 + (t—sD)p)
(11-140)

= p(l=p)(t—sp)/ (1 + (t—sp)p).

The equilibria of the genotype frequency are the values of p at which Ap = 0. For this to
occur, either the denominator of (II-140) must be infinite, which is not possible, or the numerator
must be zero. The equilibria then occur at p = 0, p = 1, and p = t/s. This last equilibrium will
lie in the [0,1] interval if s > ¢t > 0 or if 0 > ¢t > s. Otherwise wa will always be greater than
(less than) w,, and although selection will be frequency-dependent, it will nevertheless always be
directional selection which leads to the substitution of one genotype for another.

Figure 2.11 shows Ap plotted for particular values of s and t. These values lead the relative
fitness of A to be higher when it is rare and lower when a is rare. It would seem on intuitive grounds
that this should lead to a stable polymorphism. The graph shows that Ap is positive below the
equilibrium point and negative above it. This shows that p = 0 and p = 1 are both unstable
equilibria. The equilibrium p = ¢/s will be a stable one provided that (by the stability criterion

developed above)
d A
-2 < [ ( p)

dp :|pt/s

< 0. (11-141)

After differentiating (II-140), substituting in p = /s, and doing some tedious collection of terms
we find that 2A
[ ( p)} = —t (1 - f) . (11-142)
dp 1, = 1/s 5

The equilibrium is only a relevant one if ¢/s is between zero and one. If ¢ is negative, the
equilibrium is unstable. This corresponds to frequency-dependent fitnesses in which w4 < w, when
A is rare, and the opposite when A is common. It should be obvious that this will lead to an
unstable equilibrium at the gene frequency at which w4 = w,, with stable equilibria at p = 0 and
p = 1. When ¢ is positive, the quantity (II-142) will be negative (if t/s < 1, which we assume).
There is one further restriction on ¢ and s. It makes no sense to have negative fitnesses, so when ¢
and s are positive we must have 1 +¢ — s > 0, so that s —t < 1. Consideration of the right-hand
side of equation (II-142) shows it to be —(t/s)(s—t), so that it will never be below -1 in biologically
relevant cases. In this case we always have a stable equilibrium with no overshooting. While it is
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Figure 2.11: Ap as a function of p for a case of frequency-dependent selection. The
relative fitness of genotype A is 1.6 — p.

quite possible that there will be oscillations or chaos in frequency-dependent cases, the particular
linear dependence of w4 on p which we have used here has ruled this out.

Does frequency-dependent selection necessarily maximize some measure of the mean fitness?
This is easily investigated in the present case. At the polymorphic equilibrium p =t/s, wg =1 =
Wq, so that the mean relative fitness is 1, since

w =pws + (1—pw, =p + (1-p) = 1. (11-143)

The maximum value of w can be found by writing

w = pwag + (1—p)w,
= p(l+t—sp) + (1—p) (11-144)
= 1 + p(t—sp).
This is a quadratic function of p which can be maximized by equating its derivative to zero:
di
o t—2sp =0, (I1-145)
dp
so that the maximum or minimum occurs at
_t
b= 2s
where
2
D = 14+ —. 11-146
W + 1s ( )



If s is positive, which will be the case when we have a stable polymorphic equilibrium, the
quadratic has a negative coefficient of p? so that the stationary point p = t/(2s) is the maximum.
There is thus no correspondence between the polymorphic equilibrium and the value of p which
maximizes the mean relative fitness. In fact, maximum occurs at half the equilibrium gene frequency
in this case. If the population approaches the equilibrium from above, it will have a continually
increasing w. But if instead it approaches from below, w at first increases, then decreases. For the
particular example in the Figure, ¢ = 0.6 and s = 1, so that the equilibrium lies at p. = 0.6/1 = 0.6.
The mean fitness there is 1. The maximum mean fitness is achieved at pyq, = 0.6/2 = 0.3, where
w = 1.09.

Why is @ not maximized? Since w4 is a function of p, the current fitness of the A genotype
is not necessarily a good guide to its future fitness. Natural selection increases the frequency of
whichever genotype has the higher fitness. In doing so it alters the fitness of A for the worse.
Natural selection will maximize mean fitness only if current fitness is a good guide to future fitness.

DIPLOIDS. All of the phenomena which we see in haploids and asexual cases of frequency-
dependence also occur in diploids. If we consider a diploid population with multiplicative fitnesses,
little is changed. If the fitnesses are

AA Aa aa

1+sp)® 1+s(p) 1

with the selection coefficient s a function of gene frequency, this will have exactly the same gene
frequency behavior as the haploid case in which fitnesses are
A a
1+s(p) 1.

Equilibria will occur at p = 0, p = 1, and at any value of p for which s(p) = 0. If s(p) is positive
below a polymorphic equilibrium and negative above it, the equilibrium could be stable, but only
if wild oscillations from overshooting can be ruled out. By writing an expression for Ap containing
s(p), differentiating this and requiring that we be at a point where s(p) = 0, we find that for local
stability of the polymorphism, the slope of s(p) at the equilibrium point must be between 0 and
~2/[pe(1 — po)].

When all three genotypes have fitnesses which are arbitrary functions of the gene frequency,
there is hardly any limit to the complexity of the behavior of the model. The equations of change
of the gene frequency are the usual ones, but now with the fitnesses being functions of p. The
equilibria of the model are at the points p =0, p =1, and

Pe = WAa (pe) — Waq (pe) (11_147)

[wAa(pe) - waa(pe)] + [wAa(pe> - wAA(pe)]

This equation may have many roots, depending on the way in which the w’s depend on p. We

can divide w’s by waq(p) and write fitnesses as
AA Aa aa

- 5(pe) 1 1- t(pe)
in which case the equilibria are at p =0, p = 1, and

t(pe)
5(pe) +t(pe)
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Gene Frequency (A)

Figure 2.12: Four examples of frequency dependent selection, showing fitnesses as a
function of gene frequencies, the position of polymorphic equilibria, and their stability.

The principle at work here is that in any generation the gene frequency changes according to
the momentary fitnesses, so that a polymorphic equilibrium can only occur if the fitnesses at the
value of p yield an equilibrium at that value of p. However it is now neither necessary nor sufficient
for stability of a polymorphic equilibrium that s(p.) and ¢(p.) be positive at the equilibrium. It is
quite possible for there to be underdominance of fitnesses at a stable polymorphic equilibrium!

Figure 2.12 shows some examples which I have investigated numerically, in which the heterozy-
gote fitnesses remain at 1 while wa4 and wg, are linear functions of p. Kach has a polymorphic
equilibrium, in two cases stable and in two unstable. As you can see from examining the Figure,
there is no necessary connection between overdominance and stability. These examples have simple
stable or unstable equilibria, but more complex behavior is possible, including cycles and chaos.
The lack of usable generalities stems from the enormous range of models which are encompassed
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by frequency-dependent selection. That term indicates no more than the absence of frequency-
independence. Without more restrictions on the model it is unlikely that general results can be
obtained. In specific cases, the mechanism producing the frequency-dependence can be modeled.
This involves following not only the gene frequencies but the population densities of predators or
parasites, the availability of food resources, and possibly the population density of the evolving
species itself. With multiple variables, this type of modeling is likely to be difficult, but it has the
advantage of specificity.

REFERENCES. One of the early papers on selection, that of Warren (1917), described a pattern
of selection whose intensity was frequency-dependent, even though the direction of selection was
not. Haldane (1932) discussed the frequency-dependence of an altruistic trait. Wright (Wright
and Dobzhansky, 1946) gave a startlingly modern discussion of frequency-dependent selection.
Only later was much attention been focused on frequency-dependence. General discussions have
been given by Lewontin (1958) and Wright (1969). Some specific models of note have included
the competition models of Nei (1971), Mather (1969), Clarke and O’Donald (1964), Cockerham
and Burrows (1971), and Cockerham, Burrows, Young, and Prout (1972). Sacks (1967) presents
a case in which selection leads to minimization of mean absolute fitness (which is not the same
as minimization of mean relative fitness). The reader will find many further references on specific
models of ecological interactions in the review of coevolution models by Slatkin and Maynard Smith
(1979).

I1.12 Kin selection: a specific case of frequency - dependence

One class of examples of frequency-dependent selection which has attracted wide attention
is kin selection, in view of its usefulness as an explanation for the evolution of social behavior.
Haldane (1932) pointed out that an altruistic behavior, one which benefited the recipient but
was disadvantageous to the donor, would be selected against within populations, even though the
existence of the trait benefited the population as a whole. Haldane proposed that subdivision of
the species into groups could result in increase of the trait, if selection against the trait within
groups were counterbalanced by selection for it by differential increase of those groups having the
highest frequencies of the trait. Haldane’s mechanism is often referred to as group selection. While
it is group selection, it is also an example of a scheme proposed by Hamilton (1963, 1964a, 1964b),
known as kin selection.

In kin selection the impact of the selection falls not only on the individual but on others
who happen to be relatives. In the case of altruistic behavior these others are the recipients of
the behavior. If they are kin, they have some chance of also carrying the alleles which caused the
behavior in the original individual. If the increase in the fitness of the kin as a result of the behavior
is great enough and their relationship to the individual close enough, the resulting increase in the
frequency of the alleles is enough to more than counterbalance the selection against these alleles in
the individual displaying the altruistic behavior. Alternatively, the whole process may be viewed
from the point of view of individual selection. The alleles predisposing an individual towards the
altruistic behavior have a net advantage because they also predispose its kin towards that behavior.
Thus they bring about a loss of fitness by causing an individual to engage in the behavior, but
a compensating gain in fitness by causing the individual to be surrounded by altruistic relatives.
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This is the “personal fitness” approach to intuiting the effects of kin selection (Hamilton, 1964a, b;
Orlove, 1979). The other approach Hamilton (1964a, b) involves computing an “inclusive fitness”
which involves the effect of a gene on the fitness of its bearer, plus a fraction of its effect on the
fitness of each relative.

HAMILTON’S RULE. Hamilton’s rule is that an allele that incurs a cost (in fitness) ¢ on
its bearers and also confers a total benefit b on a set of individuals related to it, whose average
coefficient of relatedness with the individual is r, will increase in the population if

c<rb (11-149)

The coeflicient of relatedness is the probability that a copy drawn at random from the one individual
is identical by descent to one of the copies in the other individual. (Note that it is not IBD to
a random copy drawn from the second individual, but to some copy). It is also important to
understand that the quantity b is not the benefit to one of the beneficiaries, but the sum of benefits
to all of them.

Hamilton’s Rule is sensible, if we consider a rare allele which is acting in heterozygote. The
behavior reduces the fitness of the actor by ¢, thus losing ¢ copies of the allele. But if it benefits
enough recipients to increase ther total fitness by b, and if a fraction r of these recipients also
contain copies of this allele, then 7 b copies who would otherwise be lost are saved, at the cost of ¢
copies lost in the altruist. If Hamilton’s formula holds, there is then a net gain of copies.

This heuristic argument is forceful but not entirely convincing. Below we will see that the rule
can be derived more rigorously in the particular case of a model of pairwise interactions.

KIN AND GROUP SELECTION. In the example used by Haldane (1932), different groups
were assumed to have different frequencies of the gene for the altruistic behavior. This implies that
each group contains individuals who are more related than average, so that the increase of groups
containing large numbers of altruists is as a result of the benefit from each altruist tending to be
conferred on its relatives. In such a case, kin and group selection are the same phenomena, as
pointed out by Price (1970, 1972). If one requires of group selection that it involve the mortality
of whole groups, then one might not want to call this group selection if the survival of a group is
simply a consequence of the survival of individuals.

A MODEL OF PAIRWISE INTERACTION. The computation of inclusive fitnesses or of
personal fitnesses is a shorthand for more complete modeling which discloses more precisely what is
going on. Done properly, these heuristic methods provide a valuable tool, but it must be understood
that they are summaries of a more detailed account that is done by conventional methods. Inclusive
fitness is carried aloft by the humdrum of population genetic modelling: it cannot fly on its own.

Hamilton (1971) has given a model of pairwise interaction which specifies more clearly what is
behind notions of inclusive fitness. The model presented below is an altered version of his model.
It is in no sense a canonical model of kin selection, but only one of the simplest cases.

We consider a rare allele, A, in a diploid population, and ask for the conditions of its increase
when rare. Because of this rareness and because the population is outbred, the AA genotype will
be so rare that we ignore it (which amounts of ignoring terms of order p?). Each generation, the
individuals in the population are assumed to associate in pairs, the two members of which play
different roles. These are not mating pairs: the two individuals dissociate before random mating

99



ensues. In each associated pair of individuals, there may or may not be a certain social interaction
(perhaps an altruistic behavior by the first individual). For the four possible ordered pairs: (Aa,
Aa), (Aa, aa), (aa, Aa), (aa, aa) there will be probabilities ¢11, ¢19, co1, and coo that this behavior
occurs. If it does occur, the fitness of the individuals is respectively 1 4+ s and 1 +t. If it does not,
their fitnesses are both 1. Thus the fitness of an Aa individual which is the first individual in the
first sort of pair is

(1 — 611) X1 4+ c11 X (1 + 8) =14 c11 8. (11-150)

This pattern of selection is frequency-dependent because the overall fitness of an Aa individual
depends not only on the frequency with which it assumes a certain role, but the identity of its
partner, which will depend on the genotype frequency in the population. We are interested in the
conditions for increase of the A allele when it is rare. In that case the frequency of Aa heterozygotes
in the population will be 2p(1—p) ~ 2p, and the frequency of aa homozygotes will be (1—p)? ~ 1—2p.
If each individual’s role and partner were assigned at random, then the probability that a pair would
be (Aa, Aa) would be (2p)2. We are not going to make this assumption, but instead we will assume
that the members of a pair tend to be kin. In particular, the probability that an Aa has a partner
which also carries the rare A allele will be taken to be r, and we will examine the effects of different
values of r. If this occurs as a result of kinship between the two individuals, r will be computed
using the probabilities of identity by descent defined below in Chapter V. It is a quantity first
defined by Sewall Wright (1922), known as the coefficient of relationship. Here are some values for
various relatives:

Relative r
self 1
full sib 1/2
parent 1/2
child 1/2
half-sib 1/4

aunt /uncle 1/4
niece/nephew 1/4
grandparent  1/4
grandchild 1/4

The model is summarized in Table 2.8. The frequencies of the four types of pair are set by the
definition of r and the requirement that the overall frequency of Aa be 2p.

Whether the A allele increases in frequency will be determined by the relative fitnesses of Aa and
aa. A moment’s consideration will show that all but an infinitesimal fraction of the aa individuals
will find themselves in (aa, aa) pairs. The average fitness of aa will then be

Waq = 1/2(1+6005) + 1/2(1+Coot)
(I1-151)
= l4coo(s+1)/2

Of the 2p of the population which are Aa, this can be divided into 2pr/2 individuals playing
the first role in an (Aa, Aa) pair, 2pr/2 playing the second role in such a pair, 2p(1 — r)/2 playing
the first role in an (Aa, aa) pair, and 2p(1 — r)/2 playing the second role in an (aa, Aa) pair. The
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mean fitness of Aa is then

Wae = [pr(l+ecus) + pr(l+ent) + p(l—r)(1+cwos) + p(1—r)1+cort)]/ (2p)

= 1+ TC11 (S+t)/2 + (1 —T)0108/2 + (1 —?”)601t/2.
(11-152)
These fitnesses do not contain the gene frequency p, which would seem to give the lie to the
assertion that the fitnesses are frequency-dependent. A more careful derivation would show that
w4 contains additional terms in p, but that these can be ignored since we are only interested in
cases in which p is very small. The quantities 2p and 1—2p are, as we have seen, also approximations
ignoring terms in p?.
Allele A will increase if waq > Wgq, or (discarding the constant 1 and a factor of 1/2)

reip(s+t) + (1—7r)cios + (L—7r)cont > coo(s+1), (I1-153)
which is easily rearranged as
r [011 (S + t) — Cl0S — (o1 t] > Coo (8 + t) — c10S — cort. (11—154)
Some cases. We are now in a position to look at some particular cases of interest:

1. Altruistic behavior. Suppose that the occurrence of a behavior in the pair depends only on
the genotype of the first individual, and the behavior is deleterious to that individual and
advantageous to its partner. Then ¢17 = ¢19, and cp; = cpo, s < 0 and ¢ > 0 so that (II-154)
becomes

r (611 — COl)t > (COO — 010) S. (11—155)

If allele A makes the behavior more likely, than c;1 > cg1. We already know that c;1 — ¢o1 =
c10 — coo so that (II-155) becomes
r > (—s)/t. (11-156)

This is precisely Hamilton’s basic result. It shows that allele predisposing toward the behavior
will spread if the partners are sufficiently close kin. The greater the benefit the less closely
they need be related. The greater the loss to the individual performing the behavior the more
closely they need be related.

Table 2.8: The pairwise interaction model.

Probability Frequency of

. . Fitness
of interaction  this pair

of first partner of second partner
Aa, Aa) c11 2pr 1+eci1s 1+eci1t
Aa,aa) c10 2p(1—r) 1+cps 1+ciot
aa, Aa) co1 2p(1—r) 1+co1s 1+cort

aa, aa) €00 1—4p+2pr 1+ coos 1+coot
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2. Mutualism. If the behavior is equally beneficial to both members of the pair, then s =t > 0.
Then the inequality (II-154) becomes, after cancellation of s and t:

r (2 Cc11 — C10 — 601) > (2 Coo — C10 — COl) (11—157)

If the more A alleles a pair has the more likely it is to engage in mutualistic behavior, ¢11 > ¢
and cg; > cgo so that the expression on the left of (II-157) is always positive and that on the
right always negative. It is satisfied for all values of r (since r cannot, by its definition as a
conditional probability, be negative).

The result is straightforward: an allele predisposing toward a mutualistic behavior will always
spread, although consideration of the magnitudes of w4, and wg,, will show that its spread
will be faster the greater is r.

3. Complementary behaviors. If the two genotypes are predisposed toward different behaviors
which are complementary (e.g. one tends to chase prey, the other to wait in ambush for the
prey being chased in a cooperative hunting behavior), we would expect that ¢;; < ¢jp and
co1 > coo, with s = ¢ > 0. Inequality (II-157) then becomes

c10 + co1 — 2 coo
c10 +co1 —2cen

(I1-158)

The allele A can spread only if r is sufficiently small, if the individuals are not too closely
related! If cpp < c11 there is no restriction on r, since the right-hand side of (II-158) is greater
than 1. If ¢yg > ¢q11 the limit on 7 lies between 0 and 1 and is a relevant limit. Consideration
of the magnitudes of w4, and w,, shows that the increase of allele A is more rapid the lower
is r.

4. Nasty selfishness. If the behavior is advantageous to the individual but harmful to the other
member of the pair, then s > 0 and ¢ < 0. In that case the condition is r < s/(—t), which
implies that if the harm done to the partner is greater than the gain to the individual, the
partner ought not be too closely related, otherwise the loss of alleles in the partner will more
than counterbalance their gain in the individual that shows the behavior.

The preceding ignores effects of the homozygote AA and is limited to consideration of the
fate of the A allele when it is rare. As the allele becomes common, the approximations we have
made, ignoring terms in p in the fitnesses, become invalid. The frequency-dependence of the fitness
becomes important, and terms involving the effects of AA individuals enter as well. Some insight
can be gained by considering the change of the frequency of a when it is rare, using the above
approximation.

It must be borne in mind that this is but one possible model of social interactions, and that it is
limited by its many assumptions (e.g., one pairwise interaction per generation, between individuals
of the same generation). There is no single canonical model of the evolution of social behavior: this
one is useful primarily for its simplicity.

PITFALLS. In making models of the evolution of social behavior, there are a number of traps
into which it is easy to fall:
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1. Requiring Conscious Recognition of Kin. In the above model, as in virtually every other kin
selection model, there is no requirement that individuals who are kin be actively recognized
from among the rest of the population. It need only be the case that the association of
individuals into an interacting pair be such that the result is that the pairs have average
coefficient of relationship r. The association could be based on geographical proximity, with
nearby individuals being closer relatives than faraway individuals. The theory of kin selection
does not necessarily presume mental or physical adaptations for recognizing kin from nonkin.

2. Ignoring Mutualism. Kin selection of an altruistic trait is one of the ways of explaining the
spread of a behavior which is deleterious to the individual expressing it, but advantageous
to others. There may be many social behaviors which are advantageous to both individuals.
For these the mutualism mechanism mentioned above is a viable explanation. As we have
seen, in the evolution of a mutualistic trait there is no strict requirement that the interacting
individuals be close kin. Textbooks on the evolution of animal behavior commonly ignore or
understress mutualism as an explanation for the evolution of social behaviors. This springs
partly from a fascination with the paradoxes inherent in altruism, and partly from an ide-
ological preference for “nature red in tooth and claw.” (However, mutualism does have the
weakness that there can easily be natural selection for one partner to cheat on the other, and
this can lead in turn for natural selection for various means of deterrence or retaliation).

3. Ignoring Cultural Inheritance. In all of the above arguments, the trait spreads by the differen-
tial death and reproduction of individuals. As some animals (in particular, primates) evolved
an ability to learn and to communicate learned information, it became possible for “cultural”
information to survive and be transmitted. Most of the information we humans possess is
culturally transmitted. The explanation of the existence and spread of a human behavior is
not necessarily genetic variation or genetic transmission. Cultural information is evaluated
subjectively by humans, rather than objectively by their survival and reproduction. It does
not necessarily “mutate” in random directions, but can be consciously altered so as to solve a
problem. It can spread laterally within a generation, and information from different sources
can be chosen and recombined. As such, “cultural evolution” is capable of enormously greater
speed of change than is genetic evolution. The amount of information transmitted culturally
is enormous. This includes, among others, most of the behavior affected by libraries, universi-
ties, mass media, government, business, and religion (and it includes this book). The amount
of recognizably culturally transmitted variations in human behavior is so great, compared
to the amount of recognizably genetically transmitted variations in human behavior, that
cultural transmission is a natural null hypothesis for any human behavior. To ignore it as a
possible explanation of specific changes of human behavior is silly, though this is often done
by biologists who have a preference for genetic determinism of human behavior.

REFERENCES. After the fundamental work of Haldane and of Hamilton just mentioned,
there has grown up a population genetic literature which has been in part dedicated to verifying
Hamilton’s inclusive fitness principle in specific, well analyzed genetic models. Among the models
of this genre are those of Levitt (1975), Matessi and Jayakar (1976), Charlesworth (1978a), Wade
(1978), and Cavalli-Sforza and Feldman (1978b). These are all single-gene models with various
assumptions. A polygenic model is presented by Yokoyama and Felsenstein (1978). The mutualism
mechanism for evolution of social behavior was advocated by Hamilton (1964a), Lin and Michener
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(1972) and West-Eberhard (1975), though not in terms of a quantitative model. Engels (1983)
considered the effects of evolution of the cost/benefit ratio considered as a quantitative character.

A controversy of particular interest as an illustration of the usefulness of explicit population ge-
netic models is that on conflict of parent and offspring, between Trivers (1972, 1974) and Alexander
(1974). The quantitative model of Charlesworth (1978a) provided substantial support for Alexan-
der’s position that parents would win the conflict on a evolutionary scale.

Group selection can be brought into the same framework, as was shown by Crow and Aoki
(1982), who showed that Hamilton’s condition also applied to it. Group selection acts when this
condition holds. Thus the same equation covers more than one level of selection. There is some
recent controversy over the connection between group and kin selection, and whether group selection
is of primary importance. A good entry into that literature is the review by Kerr, Godfrey-Smith,
and Feldman (2004).

Exercises

1. Suppose that we have a haploid population with two alleles, and their absolute fitnesses are
W4 =4 and W, = 2. If the initial frequency of A is 0.001, what will it be after 20 generations?

2. In a haploid or asexual population with continuous reproduction in which ¢ individuals die
instantly after birth, what are the values of r4 and r,7 What do these imply about the change
of gene frequencies?

3. In a haploid system with two alleles, A and a, with fitnesses 1 + s : 1, how long will it take
to change the frequency of A from 0.1 to 0.2 if s = 0.017 How long will it take to change the
frequency of A from 0.9 to 0.8 if s = —0.01? Explain why these numbers are or are not the
same.

4. How large must the selection coefficient favoring a dominant allele be in order to change it
from a gene frequency of 0.5 to 0.51 in one generation? Compute this exactly. Compare the
result with the proper approximation.

5. Suppose that we have a haploid population with three alleles, whose fitnesses are 1 : 2 : 3
and whose initial frequencies are 0.9, 0.099, and 0.001. What will be the allele frequencies
and what will be the mean relative fitness in generations 0, 5, 10, and 157 Are the changes of
gene frequency monotonic? The changes of w? There is no theory in the chapter for this, but
you can construct what you need by using a haploid version of (II-119) and then considering
the ratio p;/p2 and then the ratio of ps/ps, each of which follows a simple equation. Then
you can get the frequencies from those ratios.

6. Suppose that in a diploid population the fitnesses of AA, Aa, and aa are 1: 1+ h: 0. What
are the equilibrium gene frequencies of A in terms of h?

7. In the case of exercise 6 (above), how does the stability of the equilibria found depend on h?

8. For a diploid population with absolute fitness 3 : 4 : 2 of genotypes A4, Aa and aa, compute
W as a function of gene frequency.

Find the maximum of this curve, and compare it to the equilibrium predicted from the relative
fitnesses. Is mean absolute fitness being maximized?
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10.

11.

12.

13.

14.

15.

. What is the segregational load in a system of two balanced lethal alleles (i.e., a situation

where both homozygotes are lethal, so only the heterozygotes survive)?

Suppose three genotypes A1 A1, A1 Ao, and AsAs have fitnesses 4, 0, and 3. What is the
equilibrium gene frequency? Is it stable? Why can’t we just use the formulas for the fitnesses
1—s:1:1-1¢7

Find all equilibria for the following three-allele case:

genotype fitness

AL A, 4
Ay Ay 0
A A, 5
Ay Ay 3
Ay Ay 5
A3 A, 2

What are the mean fitnesses at these equilibria? What does this imply about their stability?

Suppose that we have three genotypes AA, Aa, and aa in a sexual population (where an
absolute fitness of 1 denotes exactly enough offspring to replace the population). The fitnesses
depend on population density (N) in the following way:

Waa = 2/(1+0.004N),
Waa = 1.9/(1+0.003N),
Wea = 1.8/(1+0.002N),

What will be the ultimate fate of the gene frequency if both alleles are initially present in
the population (Hint: first compute what would be the equilibrium population density for a
completely asexual clone of each genotype if it were present alone)?

Suppose that exactly once every ten years a haploid desert plant experiences a wet year. If
genotype A has, relative to a, fitness 2 during wet years and 0.92 during dry ones,

(i) what is the arithmetic mean relative fitness of A ¢ The geometric mean relative fitness?
(ii) what will happen to the frequency of A over the long run?

Suppose that in a diploid plant for which there is one chance in three that each year will be
wet, with an independent chance each year, the fitnesses of genotypes are:

AA Aa aa
Wet 1 2 3
Dry 1 08 0.6

What will happen to the frequency of A if we watch it for many years: what kind of behavior
do we expect? Do we expect it to approach an equilibrium frequency?

In case of a haploid frequency-dependent selection, suppose that the relative fitness of A is
3.5 — 3p. What are the equilibrium gene frequencies of A2 Which ones are or are not stable?
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16. Suppose that we have a diploid frequency-dependent case of the following sort:

AA 1/(1/2+p)?
Aa  1/(1/2+p)

aa 1

What are the equilibria of such a system? Can you say anything about their stability? What
happens to A when it is rare?

17. The gametophytic system of self-incompatibility in plants has the property that there is a
multi-allele self-incompatibility locus, and if pollen falls on a plant that has alleles (say)
Aj Ay only pollen which is neither Ay nor A, can fertilize the ovules. Assume that there is a
three-allele gametophytic self-incompatibility system. Assume that all ovules get fertilized —
there is never a shortage of pollen. So an A; A plant gets all its ovules fertilized by A3 pollen.
What are the equations for the change of frequencies, from one generation to the next, of
the three possible genotypes (all are heterozygotes as homozygotes cannot form)? Do some
numerical calculations for a few generations, for a case where one allele starts out rare. What
do you think will happen if a fourth allele occurs by mutation?

Complements/Problems

1. J. B. S. Haldane preferred to work with the variable u = log,(pa/pa), instead of the gene
frequencies or gene frequency ratios. Obtain the equation for u; in terms of the fitnesses and
ug in a haploid or asexual case. What attracted Haldane to this quantity?

2. Extend the approximation for change under selection in the additive model 1 +2s:1+s:1
by one more term, to terms in s2. Solve the resulting differential equation. How does the
result compare with the exact solution for the case s = —1/27

3. Why aren’t the multiplicative and dominant cases the same in Figure 2.2 when p is near 1?7

4. For s = —1 in the case of a recessive lethal gene, obtain from the exact treatment in Section
I1.5 the equation for the number of generations it takes to change gene frequency from pg to
p¢. Compare this to the continuous approximation formula for s = —1.

5. Can you obtain a set of equations similar to Section I1.3 for diploids? Be sure to check your
equations by trying to predict gene frequency changes in the case of a recessive lethal which
dies as soon as it is born (so dy, = 00). Do your equations appear to work, or do they predict
that the gene frequency of a will go to zero instantly? What is the main difficulty in setting
up these equations? (Think).

6. Is the equilibrium p = 1 stable when the fitnesses of AA : Aa: aaare1:1:1—s? When p
is displaced above 17 Mathematically stable? Biologically stable?

7. For a haploid population with continuous reproduction define a meaningful mean fitness.
Obtain an equation for its value in an arbitrary generation ¢, given the initial gene frequency
and the values of by, da, by, d, in a two-allele case. Can the mean relative fitness ever
decrease?
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8.

10.

11.

12.

13.

14.

15.

16.

Suppose that in one multi-allele haploid population the relative fitnesses are wy : wo : ... : wy,
and in another they are w? : w3 : ...w2. Compare the change in fitness in the first population
in two generations to the change in fitness in the other in one generation. In the case of weak
selection, what does this tell us about the effects of doubling the selection coefficients? For
this one it will help to use a haploid version of (II-119) and construct ratios of gene frequencies

and ask how they change.

. Some plants reproduce by obligate self-fertilization, so that every offspring is the result of

a random pollen grain and a random ovule from the same plant. Suppose that we have
a locus with two alleles, A and a, in such a completely self-fertilizing plant. What are
the equations for change of the three genotype frequencies (note that one cannot assume
Hardy-Weinberg proportions so that we have to follow the three genotype frequencies)? If
there is an overdominant locus with fitnesses 1 — s,1, and 1 — s what are the equations for
the change of genotype frequencies from one generation to the next when one observes the
genotype frequencies immediately after self-fertilization but before selection has had time to
act? How large a value of s is needed to prevent the heterozygotes from disappearing from
the population?

For a sex-linked overdominant lethal whose fitnesses are:

females: males:
AA  Aa aa A a
1 1+h O 1 0

work out the equations for the change of gene frequencies. What are the equilibrium gene
frequencies? For what values of h does a polymorphic equilibrium exist? (It will help to
compute the genotype and gene frequencies in the newborns, immediately before the selection
has had time to act).

Prove that in a two-allele diploid population the segregational load cannot be greater than
1/2. Prove that in an n-allele diploid population it cannot be greater than (n — 1)/n.

Prove that in two-allele diploid overdominant selection, gene frequency changes will never
overshoot the equilibrium.

For a two-allele case, prove that w is never higher after selection and mating than it is
immediately after selection but before mating.

Use the principle that @’ > @ to prove that (in cases of multiple alleles) a minimum or a
saddle point in the w surface cannot be a stable equilibrium.

If w is maximized with all alleles A1, ..., A present, prove that there is no stable equilibrium
which has all but one of these alleles present.

Suppose that in a haploid population the relative fitness of A (compared to a) is in alternate
generations 1 + s and 1 — s. Which allele will increase in frequency?
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17.

18.

19.

20.

21.

22.

Suppose that in a diploid population, fitnesses vary randomly and independently each gen-
eration, being (in a two-allele case) for AA : Aa: aa 1+ s:1:1— s half of the time, and
1—s:1:1+ s the other half of the time. What will happen to gene frequencies? What will
be the difference in behavior between cases with different values of s¢

What will happen in the above population if fitnesses are half of the time 1 : 1 : 1 4+ s
and half of the time 1 + s : 1 : 17 How does this behavior differ from having fitnesses
(1+5)/2:1:(1+ s)"/2 all of the time?

Suppose that we have the following case of haploid frequency-dependent selection: every
generation, a constant fraction f of the individuals are discarded by natural selection, and
fierce competition ensures that the individuals dying are never of the competitively superior
of two genotypes (A) as long as there are individuals of the other genotype (a) available.
Derive equations for change in gene frequency. Do these correspond to your intuition as to
what the results of selection ought to be?

Suppose that an asexual or haploid population has frequency dependent selection with w4 /w, =
[p/(1 — p)]®. What is the behavior of the model for different values of B? (Hint - work in
terms of p/(1 — p) and take logs).

Suppose that a diploid population has two resources available to eat. Suppose that each
individual specializes on one or the other resource. All AA and half of the Aa’s can eat only
resource #1, all aa’s and half of the Aa’s will eat only resource #2. Suppose that there are a
total of N individuals in all, N7 of whom specialize on resource 1, Ny on resource 2. Suppose
that if there are N; specialists on resource 1, the fraction of survivors among them is given
by 1/(1+0.001N; ), and that is is 1/(140.001Ny) for the Ny specialists on resource 2. This is
a form of frequency-dependent selection (note that N; and Ny are functions of the frequency
of the A allele). What are the equilibrium points of this system? Are they stable?

Suppose that in a haploid population with two alleles, each individual occupies a burrow with
another chosen at random. Let the fitnesses of individuals depend on their genotypes and
that of their burrow-partners:

An individual of type whose partner is has fitness

A A WAA
A a WAq
a A Wy A
a a Waa

What are the equations for change of gene frequency? Where are the equilibria of this system?
Are these formulas the same as for overdominance?
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Chapter 111

MUTATION

I11.1 Introduction

Natural selection is the evolutionary force responsible for the progressive adaptational aspects of
evolution - for the fact that organisms are as good as they are at surviving and reproducing. If
this were all there were to population genetics, it would be a dull subject indeed. The independent
existence of population genetics as a field (as contrasted with evolutionary studies in general)
comes from the interaction of the genetic system with natural selection. The mating system and
the mechanism of recombination distribute genetic material in particular patterns which affect the
rates and directions of responses to evolutionary forces. As we shall see in future chapters, the
fact that populations are spread out in space affects the mating system so that migration may be
considered as an evolutionary force in its own right. The very finiteness of natural populations
introduces yet another force, called random genetic drift, which will be treated in chapters V,
VI, and VII. In the present chapter we treat mutation. These three evolutionary forces are not
responsible for creating the adaptive information content of living organisms. Rather, they set
the context within which natural selection takes place, and to some extent they interfere with its
operation.

Among these forces, mutation has a unique role. In a sense, it is a destructive force, making
random changes in the genetic material. In any highly adapted organism such changes are over-
whelmingly likely to be detrimental. The usual analogies we make in such cases involve making
random adjustments in a finely constructed watch, or making random alterations of a carefully-
written poem. While one will occasionally improve the timing of the watch or the effectiveness of
the poem by random changes, with much greater probability one will make things worse. Migration
may have a somewhat similar effect, in moving organisms into regions to whose environments they
are ill-adapted. Genetic drift, which changes gene frequencies at random, may cause a favored allele
to be lost. Yet mutation holds a special place among these, for without it the whole process of
evolution would grind to a halt. For natural selection favoring genotype AA over Aa and aa in the
absence of any mutation will soon cause the gene frequency of A to reach unity. At that point, the
population has lost genetic variability at this locus. If at some future time the fitness of aa were to
rise (as a result of environmental changes) to exceed that of AA there would be no way to reverse
the gene substitution. In the very act of altering of A alleles into a alleles, mutation both erodes
contemporary adaptation and creates the variability which is the basis of future adaptation.

This suggests that there is some need for mutation, that there might be some natural selection
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favoring its existence in a species. But we do not need to explain its existence, for mutation is a
thermodynamic inevitability. There can be little question that natural selection has acted to reduce
rates of mutation. The very existence of a system of precise genetic replication testifies to this,
as mutation has its evolutionary effect as incorrect replication. The question which remains to be
answered by population geneticists is whether there are limits set by natural selection to lowering
the mutation rate. Would a population having a very low mutation rate evolve to have a higher
one? Or is the mutation rate as low as selection can make it, awaiting only genetic variability
(paradoxically - awaiting the mutations) for further reduction of the amount of mutation.

The answer to this puzzle is not known. Existing models of selection for mutation rates are
too crude, and too little is known about the availability of genetic variability which might allow a
decrease in mutation rates.

II1.2 Effect of Mutation on Gene Frequencies

One of the nicer aspects of mutation is that the mathematics of its effects on gene frequencies are
very simple. The main complications come from the model of mutation itself. When the genetic
scheme is simple, everything else comes easily.

TWO ALLELES. The simplest possible mutational scheme has only two alleles. This is intended
literally: there is imagined to be only one site at which the two alleles can differ, and only two
possible nucleotides at this site. We can denote the two possibilities by A and a and the two types of
mutational event which are possible by A — a and a — A. This is obviously a wildly oversimplified
model of mutation in a gene, but there is a large class of circumstances in which it is a reasonable
approximation to reality. Often we may be considering a gene with a large number (say 500) of
nucleotide sites, but we can only detect two phenotypically different proteins, those that are active
as enzymes and those that are not. Thus mutation is in effect moving the gene back and forth
between two different categories of nucleotide sequences: those which form active enzyme and those
which do not. Of course, we are going to assume that all sequences in the A category have equal
probabilities of mutating to sequences in the a category, and similarly for the a sequences. This is
at best only approximately true: some inactive sequences may be many base pairs removed from
the “nearest” active sequence, while others may be able to mutate to an active sequence by several
different routes, each involving only one base pair change.

These considerations aside, the mathematics is a straightforward exercise in elementary proba-
bility. In an infinite random-mating diploid population with discrete nonoverlapping generations,
suppose that the gene frequency of A is . We have two possible mutational events, A — a and
a — A. The rate of mutation for the first sort of event will be u, and for the second sort of event
v. Keep in mind that the probability of each of these events is calculated per copy of that allele. A
fraction u of all copies of A change into a each generation, and a fraction v of all copies of a change
into A.

Suppose that the current gene frequency of A is z. In the next generation, the genes which are
A will come from two sources. Some are copies of genes which were A in the last generation and
which did not mutate to a’s. Since x of the genes are A in this generation, the fraction of the genes
among their offspring which are unmutated A’s will be (1 — u). The other source of A’s is genes
which are mutated copies of a’s. There are expected to be a fraction (1 — x)v of these. So

P =z(1-u) + (1-2)v. (I11-1)
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One can immediately see one characteristic of gene frequency change by mutation: it is going
to be very slow. Typical values of mutation rates for a single gene (summing over all sites able
to mutate so as to inactivate a gene) are 10~7. This means that 1 — u will very nearly be 1, and
(1 — z)v will be very small. So x will change little from one generation to the next. This point is
made more clearly by computing the change in x from one generation to the next:

Az = 2 -2 = —ux + v(l—2). (I11-2)

Note that every term on the right-hand side of (ITI-2) has a u or a v in it, so that the whole
right-hand side will be very small (in fact, it can be no larger than the larger of w and v).

The direction of change contains a pattern of change which will be evident from (III-2). When
all genes are A, so that x =1, Axz = —u. This reflects the obvious fact that when all genes are
A the gene frequency will decrease in the next generation by the fraction of them which mutate
to a. Likewise when x = 0 there are only a’s to mutate to A’s, and the gene frequency increases
by Az = wv. So the frequency of A decreases when large (albeit by a very small amount) and
increases (by a similarly small amount) when small. In between somewhere lies an equilibrium.

The equilibrium point is easily found by using (III-2) to inquire when Az = 0, or by using
(ITI-1) to ask when 2/ = z. Either way, the result is

v

e — I11-
o u—+v ( 3)

At this mutational equilibrium the numbers of A’s being converted by mutation into a’s equals the
number of a’s being converted into A’s.

APPROACH TO EQUILIBRIUM. The rate at which the population approaches this state
is easily found from (III-1) owing to the linear form of that equation. From (III-1), the equilibrium
frequency must satisfy

e = (1—u)ze + v (1 —x) (I11-4)

and using subtracting (I11-4) from (III-1)

-z, = 1l-waz — 1-uwze +v(l—2) — vl — z)
= (l-u)(r—x) + vl — o -1+ x) (I11-5)
= (1 —u—v)(x — x).

The deviation of x from its mutational equilibrium value x. is multiplied by (1 — u — v) every
generation. This is a number very near 1: a typical value might be 0.9999998. The distance from
the equilibrium will decline very slowly, at the rate at which the powers of 1 — u — v decline.

We can get some sense of exactly how slow is the approach to equilibrium by making an
approximation. Since u and v are both very small,

l—u—v ~ e W), (I11-6)

the error in this approximation being terms in u?, v? or uw, all of which may be safely ignored.
After t generations, the original departure of the gene frequency from the mutational equilibrium

will have been multiplied by (1 —u — v)*, which is nearly the same (by III-6) as e~ (“+)!_If we ask
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Millions of generations
Figure 3.1: Approach of gene frequency to equilibrium in a two-allele case starting

from fixation at either allele when u = 5v with « = 10~7. Note the large number of
generations on the horizontal time scale.

at what generation the gene frequency will have moved half of the way to the equilibrium, this will
be given by solving for t in

e~ — 5 (I11-7)

the solution to which is

_ln 0.5 _ 0.693147‘ (III—8)
U+ v U+ v

tos =

As a rough order of magnitude estimate, we can say that it takes about 1/(u + v) generations to
move a substantial fraction of the way to the mutational equilibrium. Figure 3.1 illustrates this. It
shows the whole course of approach of two populations, one started at p = 1 and the other at p = 0,
to mutational equilibrium. Note the horizontal time scale, which is in millions of generations. All
of which emphasizes just how weak a force mutation is, how slowly it will change gene frequencies.
We will see the implications of this shortly. Figure 3.1 demonstrates the slowness of the approach
to mutational equilibrium.
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II1.3 Mutation with Multiple Alleles

FORWARD AND BACK MUTATION. In the above analysis, we did not comment on the
relative sizes of v and v. There are good reasons for believing that v will commonly be many times
larger than v. Usually we will denote the functional enzyme as allele A, and the nonfunctional
enzyme as allele a. In that case, u is the rate of forward mutation and v the rate of back mutation.
Underlying the fiction of two alleles, there is a reality of a very large number of possible base
sequences, giving rise to a smaller, but still astronomical, number of possible protein sequences. Of
these, only a tiny fraction could be functional enzymes (or structural proteins). While most changes
in a functional sequence may inactivate it, few changes in a nonfunctioning sequence will restore it
to function, particularly if it is a sequence far removed from the nearest functioning sequence.

In these circumstances u will be far larger than v. In fact, it is often a reasonable approximation
to let v be zero. We then have unidirectional mutation A — a. Equation (III-1) is then simply

¥ = (1-u)x (I11-9)

which predicts a mutational equilibrium at a zero frequency of A, and a slow approach to this
equilibrium, it taking about 1/u generations to move a substantial fraction of the way to the
equilibrium.

MULTIPLE ALLELES. For a more complete consideration of such a situation, we would have to
consider mutation back and forth among a large (a very large) number of possible alleles. Suppose
that there are n alleles Ay, Ao, ..., A12, and that the frequency of the i-th allele is given by p;. Let
u;j give the frequency of mutation of an A; allele into an A; allele. A simple counting-up of the
possible origins of an A; allele will give the equations of change of gene frequencies:

p; = p; (1—Zuij> + ijuji, 1 = 1,2,...n (IH—lO)
JF#i J#i

the prime indicating the next generation. At the equilibrium, p; = p;, so that this gives

0 = —p; Y uij + Y pius i = 1,2,..,n. (II-11)
J#i J#i
This is a set of linear equations in the p; which can be solved for the mutational equilibrium
gene frequencies once the u;; are known, and keeping in mind that the p; must sum to unity. The
general formulas (which will be in matrix form) are not particularly enlightening, but in certain
cases the results become simple. When all of the mutation rates u;; are assumed to be equal, the
equilibrium can readily be shown to be the situation

pi = 1/n, i = 1,2,..,n (I11-12)

in which all alleles are equally frequent. The rate of approach to this equilibrium will depend
on the total rate of mutation >, ,;u;; = (n—1)u. This is the fraction of the distance toward the
equilibrium that will be covered each generation, so that it will take about 1/[(n — 1)u] generations
to go a substantial fraction of the way toward equilibrium.

This situation of total symmetry is not a particularly good model of mutation at a protein
locus. In a typical sequence with 500 base-pairs, there are only 1500 among the 4°%0 possible base
sequences which can be reached by single point mutations.
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Nevertheless, if the rate of mutation at each site is equal, and if the three possible base changes
which can occur have equal rates u (so that the probability that a C at a given site will mutate to
a G is u, and the probabilities that it will mutate to A or T are also both ), the equilibrium can
be demonstrated to be the situation in which all 4°°° base sequences occur with equal frequencies.
This number is greater than the number of elementary particles in the known universe! The rate
at which convergence to this mutational equilibrium occurs is not so simple to discover, but will be
the total cistron mutation rate 3nu, where n is the number of base positions in the cistron.

A DISTINCTION. The prospect of a population which has 4°%° different alleles segregating
at equal frequencies raises the issue of how we are to regard mutation. Is it a deterministic or a
random force in evolution? In the mathematics above, mutation has appeared as a deterministic
force, pushing gene frequencies slowly toward a set equilibrium gene frequency. In that view,
mutation is not a force which will bring about different results in different populations. Although
it will often act to increase the genetic variability within a population by reintroducing alleles which
have become lost, it will have the same effect in all populations and in all generations (assuming
given mutation rates).

A population with 4590 equally frequent alleles is, however, an impossibility in practice, as it
would require a population size of at least 103%°. In an actual population at mutational equilibrium,
only a tiny fraction of all possible alleles would be present. Two different populations at muta-
tional equilibrium will contain different mixtures of DNA sequences. The same population followed
through time will vary in gene frequencies and in the identities of the alleles present. Doesn’t this
mean that mutation is actually a random force acting to diversify populations? It does not. In
such a situation the diversity is the result of the finiteness of the population. This is an effect of
random genetic drift, which is an evolutionary force we will study in chapters V to VII. That the
randomness occurs through finiteness of the population is easily seen by a thought experiment.
Consider the mutational equilibrium in a series of populations of size N. The larger is N, the
more chance that the same mutant alleles will be in existence in different populations. The amount
of diversity between populations generated by mutation depends most critically on their size. By
moving the population towards a state in which there would be a great number of alleles, mutation
allows genetic drift to have a dramatic effect by eliminating most of the possible alleles from the
population. It is genetic drift, not mutation, that is the random force. We shall see in Chapter VII
a model which allows us to approximate how many common alleles we expect to see in a population
of finite size at mutational equilibrium.

The above point may seem to be only a semantic distinction, but it is important to have a
correct intuitive understanding of evolutionary forces, and confusing a deterministic force with a
random one is a matter of no small consequence.

I1I.4 Mutation versus Selection: Haploids

All the above discussion has assumed that the genotypes are equally fit. Much of our interest in
the phenomenon of mutation stems from situations where the genotypes created by mutation are
less fit than normal genotypes. Mutation may be causing inactivation of a functional protein. As
we saw in the previous section, if there were no selection, the population would move toward an
equilibrium in which functional alleles would be the exception rather than the rule. This would
seem to pose a problem for the continued existence of the organism, but the very differences in
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fitness which seem to threaten the extinction of the population will also act to keep the functional
alleles at high frequency. This two-edged effect of selection results in a surprising cancellation of its
two effects, a cancellation known as the Haldane-Muller principle, which we shall discuss shortly.

First let us show the effects of selection when it acts in opposition to the effects of mutation.
The simplest case in which we can investigate this is a haploid population with discrete generations
and two alleles. We assume that one of the two alleles, A, produces a functional protein, and the
other, a, a nonfunctional protein. Here is the life cycle:

Haploid  Selection Haploid Mating Meiosis Haploid Mutation  Haploid
newborns — adults — Diploids — gametes — Newborns

Suppose that the frequency of the A allele is p among newborns. If the fitnesses of the two
haploid genotypes A and a are respectively 1 and 1 — s, then after selection

* p

pt = m (I11-13)

which is a somewhat altered version of (II-16) in which the fitnesses are 1 : 1 — s instead of 1+ s : 1.
This is a haploid organism, which we are treating as if it were asexual, since mating and meiosis
will have no effect on the gene frequency. So among “gametes” the gene frequency will still be p*.
Mutation does have an effect, one which will depend on the rates of forward and back mutation.
In this case, we are primarily concerned with forward mutation A — a. Let us take its rate to be
u, setting the back mutation rate v to zero. As we shall see, the results will be little affected by
whether back mutation is present or not. The effect of forward mutation on the gene frequency will
be simple. Equation (III-1) will give us the gene frequency of A after mutation in terms of that

before mutation:
p = p"(1—u). (I11-14)
Putting (I1I-13) and (I11-14) together, we get the recursion formula for gene frequency from one
generation to the next:

Po= Y (18(_1“_) > (ITI-15)

We want to find the equilibrium of the population under the two forces of mutation and selection.
This is most readily done by setting p’ = p in (I1I-15) and solving for p. Multiplying (I11-15) by
the denominator of its right-hand side after removing primes, we obtain

p—sp(l—p) = p(l-u),
or
up—sp(l—p) =0,

which is
[u—s(1—p)p = 0. (IT1-16)

The system will be in equilibrium if p = 0, which is simply the situation where the normal allele
has been lost. This will be an equilibrium because we have not allowed for back mutation. This is
not the equilibrium in which we are most interested. That is

u = s(l—p). (IT1-17)
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Since we may prefer to follow the frequency of the nonfunctional mutants, we can replace their
frequency (1 — p) by ¢ and see that the mutant alleles at equilibrium have frequency

e = u/s. (ITI-18)

This is a fairly simple result. It shows us immediately that the outcome of the interaction of
mutation and natural selection is given by the ratio of their coefficients u and s. In many cases, we
will be able to assume that s > wu. In particular, we are often interested in specific loci at which
there are mutations which cause a fairly drastic change in the phenotype. Since values of w are
likely to be so small, in almost all such cases it is hard to imagine that s is not many orders of
magnitude greater than u. Whenever a phenotypic difference is large enough for us to see, it is
hard to imagine that it is not so large that s > 107%. The exception is protein and DNA sequence
data. Molecular methods enable us to discern differences which may be so slight as to have little
or no selection acting on them. Only in those cases is it a reasonable expectation that s and
are of the same order of magnitude. Even if s is not much greater than u, there is only a small
range of values of s for which the equilibrium frequency of mutants is not small. If s > u, ¢, is
small. If s < u, ¢ is predicted by (III-18) to be greater than 1. This is a strange result, to say the
least. A closer examination of (ITII-15) will show that in such a case it is always true that p’ > p,
unless p = 0. So when s < u, the mutation to a is always a stronger force than the selection which
opposes it, and the mutant becomes fixed in the population. The equilibrium with p = 0 is then
the relevant one.

Except for a small range of values of s, we expect either that selection has little influence or that
it is far stronger a force than mutation, and holds the equilibrium gene frequency of the mutant
allele to a very low value. If the latter is the case, then back mutation will be a force of little
consequence. There will be few a genes available to mutate back into A, even if the back mutation
rate were as large as the forward mutation rate. For example, when u = v = 1077 and s = 0.001,
ge = 0.0001. A crude examination shows that, each generation, a fraction u(1—q) = 0.9999x10~7 of
all copies mutate from A to a. A fraction ug = 10~!! mutate from a to A. By far the strongest effect
raising the gene frequency of A is selection, which in this case causes the death (or reproductive
failure) of sq = 10~7 of the genes. A more careful analysis of the case of back mutation will lead
to a quadratic equation for ¢, instead of (III-17), and will give support to the practice used here of
ignoring back mutation.

A useful way of intuiting (III-18) is to note that rare mutant a has, in effect, a risk s of
being eliminated each generation. This leads to the prediction that each mutant will remain in
the population an average of 1/s generations (this is the average number of tosses of a coin with
probability s of Heads until Heads finally occurs). The population should contain as many copies of
a as accumulated by mutation during the last 1/s generations. Since about a fraction u of mutants
arises each generation, we should expect that ¢¢ = u x 1/s = wu/s. This argument ignores a
number of terms, but those terms are small and the resulting error is small. In fact, the resulting
error is zero since the various approximations used happen to cancel each other’s effects!

II1.5 Mutation vs. Selection: Effects of Dominance

It is natural to wonder whether diploidy, dominance and recessiveness in particular, alter this
picture in major ways. With diploidy the mathematics becomes slightly messier but is still not
very difficult if we are willing to make certain approximations.
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RECESSIVE MUTANTS. If the mutant alleles are completely recessive, an exact result is still
possible. Suppose that the life cycle is

Random
Diploid = Selection Diploid Meiosis Haploid Mutation Haploid — union Diploid
Newborns — Adults — Gametes — Gametes — Newborns

Once again the gene frequency among newborns will be taken to be p. First we need to know
how much the gene frequency is changed by selection. The fitnesses are taken to be

AA Aa aa
1 1 1-—s.

This does not fit easily into the scheme of section I1.5 unless we exchange p for ¢ and change
the sign of s. Rather than do that, we can fall back on the general formula for gene frequency
change in diploids, equation (II-48). When the above fitnesses are substituted in, we get for the
gene frequency after selection

o= p(px1+4(1—p)x1) (I11-19)

p*x1+2p(1—p)x 1+ (1-p)?x(1-3s)

and after a little algebra in the denominator, this gives

* p
p* = w (I11-20)

We do not really need to know the genotype frequencies after selection, since all we are interested
in is the effect selection and mutation will have on the gene frequencies. Mutation occurs to genes
one at a time, without substantial regard to the identity of their homologue. As a result, we can
follow the effect of mutation on gene frequencies without knowing how those gene frequencies are
organized into genotypes. This was the basis of section II1.2 above, where we derived the mutational
equilibrium without in any way using the fact that the population was diploid. The same equations
for mutational effects on gene frequencies hold in diploids as in haploids.

Equation (III-20) shows the effect of selection on the frequency of the “normal” allele A. If
mutation is taken to be unidirectional A — a at a rate u, its effect will simply be to multiply p*
by (1 —u), as before. Then we will get for the gene frequency after mutation,

o p(l—w)

= Ty (I11-21)

Equating p’ to p and solving for possible equilibrium values of p, we find that either p. = 0, or
1—s(1—p)? = 1—-u (I11-22)

which gives
(1—p)? = u/s (IT1-23)

so that the frequency g, of the mutant allele a at equilibrium is

¢e = 1—pe = Vu/s. (IT1-24)
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As in the haploid case, if s < u the equilibrium frequency of the mutant exceeds 1. This is simply
the situation where selection is so weak that it is never able to stem the increases in gene frequency
caused by mutation, and in this case the other equilibrium g. = 1 — p. = 1 is the relevant one.

The gene frequency of the mutant allele is higher (for the same values of u and s) in the recessive
case than in the haploid case. This can be seen by using the values of u and s from the numerical
example in the previous section. If 4 = 1077 and s = 1073, we obtain g, = 0.01, which is 100 times
higher than in the haploid case. Note that a rather small mutation rate has resulted in a far higher
gene frequency at equilibrium.

That this result is a reasonable one is seen by making a more intuitive argument along the same
lines as in the haploid case. Each mutant has a probability sq. of being eliminated in each genera-
tion. To be eliminated by natural selection, it must occur in a homozygote (an event of probability
ge given that we already know that the one gamete carries the mutant), and natural selection must
kill (or sterilize) the resulting homozygote, an event with probability s. So the average mutant
will persist in the population for 1/(sq.) generations. The population will then contain 1/(sqe)
generations worth of mutants. Since a fraction u of the genes mutate each generation, the total
frequency of mutants will be roughly

ge = ux1/(sqe), (111-25)

We can solve this for g.. When we do, we get exactly the result (I1I-23). It is remarkable that
an imprecise argument such as this happens to give us exactly the correct result. It contains a
number of approximations, such as the assertion that there are u mutants each generation when in
fact the number is closer to u(1 — ¢¢), as we cannot mutate copies which are already a. Apparently
the different approximations we have made in this intuitive argument just happen to cancel each
other.

Note from (ITI-24) that the equilibrium frequency of the mutant is far higher in the recessive
case than in the haploid case, given that we compare cases with equal values of v and s. This is
primarily due to the weakness of selection in the recessive cases. A mutant can only be eliminated
by selection if it is in the company of another mutant. The fraction of mutants eliminated each
generation is sq. rather than s. With u = 10~7 and s = 0.001, this means that in the haploid case
0.001 of all mutants are eliminated each generation, while in the recessive case the corresponding
number is 0.001 x 0.01 = 107°, so that a given mutant will remain in the population 100 times
longer. This slower rate of loss of mutants raises their frequency in the population by a large
factor (100 times in this case). This in turn compensates for the greater difficulty of forming the
“affected” phenotype, which now only appears in homozygotes. The result is that in both cases
we see exactly the same frequency, u/s, of affected individuals. We shall see later a remarkable
consequence of this fact.

RATE OF APPROACH TO EQUILIBRIUM. This intuitive argument also tells us much
about the rate of approach of the system to equilibrium. If we were to start with no mutants, and
were to wait until the system were near its equilibrium, then since the new mutants at equilibrium
constitute a fraction sq. of the mutant pool, we would in effect be waiting for there to be at least
1/(sqe) generations of mutation. Otherwise it would be impossible for enough to have occurred.
Let us call this number of generations G. In a few multiples of G generations, almost all of the
existing mutants are eliminated by selection, and enough new mutants occur to replace them. So
G is a natural time scale for the equilibrium of gene frequencies, because it tells us about how
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many generations are needed for selection to obliterate the history of the process. It takes about
G generations for the pool of mutants present to “turn over” about once.

This also allows us to get a rough idea of how rapidly a population will respond to changes of
mutation rate. If mutation were to suddenly cease, it would take a few multiples of G generations
for mutants to disappear from the population. On the other hand, if mutation rates were suddenly
to be doubled, it would take essentially the same length of time for the mutant gene frequencies
to approach their new equilibrium frequencies, which in the recessive case will be v/2 times their
current equilibrium frequencies.

EFFECT OF BACK MUTATION. In all of the above, back mutation has been ignored. It
is possible to incorporate it into the analysis, by changing (I1I-21) so as to replace p*(1 — u) by
p*(1 —u) + (1 — p*)v, where p* is given by (III-20). The result is a quadratic equation for the
equilibrium gene frequency. When this is solved, it is found that, unless the equilibrium frequency
of the mutant allele is large, the presence of back mutation makes hardly any difference to the
equilibrium gene frequency of the mutant allele. An intuitive rationale for this is easily constructed.
Aside from our expectation that back mutation rates will be smaller than forward mutation rates,
the very rareness of a alleles makes back mutation an infrequent phenomenon. At equilibrium in
the absence of back mutation, we may approximate by saying that a fraction u of genes mutate
from A to a, and about an equal fraction of all genes are a’s which are killed off by selection. So
the decrease in frequency of a by selection (a decrease balanced by its increase from mutation) is
about u. (Not fraction u of the a copies, but an absolute decrease of u in the gene frequency of
a). Back mutation will also decrease the frequency of a, but by an absolute amount vq, that is, by
converting to A a fraction v of the a copies. This will be an insignificant change in the frequency of
a compared to the changes by selection or forward mutation. If the forward mutation rate is 10~7
and the back mutation rate is 1078, with an equilibrium gene frequency of 1072, forward mutation
increases the gene frequency of a each generation by 10~7 (and selection decreases it by about the
same amount), while the change due to back mutation is only a reduction by 1078 x 0.01 = 10710,
three orders of magnitude smaller.

A COMPUTATIONAL EXAMPLE. It seems at least a reasonable approximation to ignore
back mutation in these calculations. The reader who is skeptical may wish to state and solve the
quadratic equations for p, and to see how much difference back mutation makes in the equilibrium
gene frequency of the mutant allele a.

The utility of the calculations of this section can be seen by consideration of the disease cys-
tic fibrosis. This is a recessive disease, which until very recently was almost always fatal before
reproductive age. The disease has an incidence at birth of about 1 in 2,500. If Hardy-Weinberg
proportions are assumed to hold in the newborns (which will be the case if there was random mat-
ing among their parents), the gene frequency for the cystic fibrosis allele is 0.02. One hypothesis
that can be made to explain the frequency of cystic fibrosis is that the alleles are introduced by
mutation and are currently in a mutation-selection balance. If the selection is only on the affected
homozygote and amounts to complete lethality (s = 1), then equation (III-23) shows us that
0.02 = \/u, so that the mutation rate would have to be 0.0004 per gene per generation. This is
almost 1000 times higher than the admittedly imperfect estimates available to us of mutation rates
per cistron. This renders it unlikely that we can explain the prevalence of cystic fibrosis as the
equilibrium under a balance between mutation and selection. Either there is some other pattern of
natural selection (perhaps heterozygote superiority) or the situation is not an equilibrium.

119



DOMINANCE. When the mutant allele is partially or completely dominant, exact algebraic
solution is not so simple. The same sort of equations as before can be used, but the counterpart
to (III-21) now yields a quadratic equation of g.. While its solution is not difficult, interpretation
of the resulting formula is. Consequently we will limit ourselves to approximate treatment of this
case, since the approximations are quite good ones.

There is one case which can be dealt with exactly, however. This is the particular case of
multiplicative or geometric fitnesses:

AA  Aa aa
I 1-s (1-s)?

After changing the notation somewhat in the development in Chapter 11, we find that

pr= 2 (I11-26)

1 - (1-p)s
But this is exactly (III-13), the haploid case. The equivalence of selection formulas for haploid
and geometric cases, as well as the fact that mutational changes in gene frequency are the same in
haploids as in diploids, enable us to immediately make use of (I1I-18):

Ge = — (111-27)

It is convenient to have this one diploid case which can be exactly solved, for this allows us to com-
pare the amount of selection which occurs in homozygotes and heterozygotes. When the frequency
of the mutant allele is ¢, the fraction of all genes which are a’s killed off (or sterilized) by selection
in heterozygotes is ¢(1 — ¢)s, keeping in mind that only half of the genes in heterozygotes are a.
The fraction of all genes killed off as a’s in homozygotes is ¢?[1 — (1 — s)?] or ¢?(2s — s?). The
ratio of these two mortalities is (1 — ¢)/[¢(2 — s)], which will be somewhere between (1 — ¢)/q and
(1 — q)/2q, depending on s. Since ¢ is expected to be small at equilibrium, we can conclude that
far more a copies are killed off in heterozygotes than in homozygotes, simply because a rare allele
occurs far more frequently in heterozygotes than in homozygotes.

Partial dominance. Now we can apply this to construct an approximate argument good for
a wide range of dominance patterns. Suppose that the fitnesses of our three genotypes are

AA Aa aa
1 1—hs 1-—s

Since the gene frequency of a will be small at equilibrium (at least, it will be for small u
and larger s), we will be hard-pressed to distinguish between this pattern of selection and the
multiplicative or geometric pattern

AA Aa aa
1 1—hs (1-hs).

In both cases the selection against heterozygotes is hs, while homozygous aa genotypes will
account for hardly any of the mortality of a genes, as this genotype will be very rare. So the

equilibrium gene frequency should be quite close to the multiplicative value, which would be
u
= —. I11-28
Ge = 7 ( )
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Table 3.1: Exact and approximate equilibrium gene frequencies with partial dominance,
u=10"" and s = 0.01.

h  qe (approx.) qe (exact)

0.001 0.01 0.0027

0.002 0.005 0.00232

0.005 0.002 0.001534
0.01 0.001 0.0009175
0.02 0.0005 0.0004885
0.05 0.0002 0.0001993
0.10 0.0001 0.0000999

020 5.0x107° 5.00392 x 107
0.50 2.0x107° 2.0 x 107°

0.75 1.33x107° 1.33179 x 107°
1.00 1.0x107° 1.00583 x 107°

The intuitive interpretation of this result is straightforward. Since a mutant allele is exposed each
generation to a probability hs of elimination (except for the very unlikely possibility that it will
occur in a homozygote), it will be expected to remain in the population for 1/(hs) generations,
and the current mutant frequency should be the fraction of genes which mutate during that time,
u/(hs).

From the way we have obtained the result, it is expected to be accurate only when ¢, is small,
i.e. when u < hs. In fact, a more complete consideration of the solution of the full quadratic
equation verifies our intuition. Here is a comparison of some values for s = 0.01 and v = 10~7. We
may use these exact solutions to verify the unimportance of selection against mutant homozygotes.
When h = 0.2, we have ¢, = 5.00392 x 10~°. The frequency of heterozygotes in the population
among newborns will be 2(0.99995)(0.00005) = 0.0001. Mutant homozygotes will be much rarer,
being only 2.5 x 1079 of all individuals. The fraction of genes being lost as a result of selection
against heterozygotes will be 0.2 x 0.01 x 0.0001 = 2 x 10~7. The fraction of genes eliminated
as a result of selection against homozygotes is 0.01 x 2.5 x 107 = 2.5 x 107!, Even taking
into account the fact that two mutant alleles are lost when a homozygote dies but only one is lost
when a heterozygote dies, the loss of heterozygotes is by far the more severe effect on mutant gene
frequencies. This helps justify our approach, which is based on more or less ignoring the selection
which occurs in mutant homozygotes.

Note that the approximation u/(hs) is quite good, even for as little dominance as h = 0.01,
although it begins to degrade below that value. Even a very slight selection against heterozygotes
will have more impact than a much stronger selection against the much rarer homozygotes. While
this may seem a perfectly straightforward result, it is less obvious when we look at rare disorders in
human populations, for it tells us that medically trivial effects in heterozygotes are likely to have
more impact on gene frequencies than the much better publicized effects which the gene may have
in homozygotes.

Figure 3.2 shows the entire process of transition from validity of the partial-dominant approxi-
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Figure 3.2: Equilibrium gene frequency as a function of h for a case in which v = 10~
and s = 0.01, with no back mutation. Note the transition from the recessive case to the
partial dominant case.

mation to the validity of the recessive approximation, for the case of Table 3.1.

POLYPLOIDY. The same sort of logic will serve as well with higher ploidy levels. If mutants are
even partially dominant, most of the elimination of mutants will take place in genotypes carrying
only one mutant. For instance, in a tetraploid with mutant gene frequency ¢, the frequency of
AAAa heterozygotes will be approximately 4q. If ¢ is small, most copies of a will occur in such
genotypes. If the fitness of AAAais 1 — hys, then the reduction of a frequency by selection will be
about —hjsq, while the increase due to mutation is about u (most genes being A and thus available
for mutation to a) If we equate these, we find that

Qe = 7 (IH—29)

which is the same formula as in the diploid case. It will be valid under the same sort of conditions,
namely that u < hs so that g, is small and most elimination of mutants is in heterozygotes which
carry a single copy.
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I11.6 Mutational Load.

If there were no mutation in a population, there would be no source of new variation allowing
evolutionary progress, and the population would be worse off as a result. But there would also be
no deleterious mutants occurring. How much advantage would accrue by the absence of mutation,
owing to the lack of deleterious mutants? We are now in position to answer this question, although
not the more general question of the effects of the absence of favorable mutants.

The simplest approach to this question, the one taken by J. B. S. Haldane in 1937 and by
H. J. Muller in 1950, is to compute the effect of mutations on mean population fitness. This is
easily done using the results of the previous section, and it leads to a rather surprising general result
known as the Haldane-Muller principle. In the haploid case, the mean fitness of the population will
be

@ =(1-q)x1+ gx(l—s). (I11-30)

At equilibrium under mutation vs. selection, ¢. = u/s so that since

w = 1-—gq.s,
(I11-31)
w = 1—(u/s)s = 1—u.
Without mutation, the gene frequency of the mutant allele will be zero, leading to w = 1.

So the presence of mutation depresses the mean fitness of the population by an amount equal to
the rate of mutation to the deleterious allele. This is an unusual result, since it predicts that the
amount by which a deleterious allele affects population fitness is independent of its fitness. So a
mildly deleterious allele with s = 0.01. will have just as much effect in depressing population mean
fitness as will a lethal which has s = 1!

In diploids, closely similar results are obtained. For recessive mutants,

w o= (1-¢x1+ 2¢1-q)x1+ ¢>x(1-5)
(IT1-32)
= 1—q25
and since g, = \/m, ,
o = 1 - (Vufs) s
= 1 — (u/s)s (1I1-33)

= 1—u,

so that at a locus with recessive mutant allele, the depression of fitness is again equal to the
mutation rate and independent of the selective effect of the mutant.
A partially dominant mutant will have

w = (1-¢)?x1 + 2¢(1—¢q)x(1—hs) + ¢>x(1—5)
(I11-34)
= 1 — 2q(1—¢q)hs — ¢*s.
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Since we have to very good approximation that g, = u/hs,
w = 1 — 2(u/hs) (1 —u/hs) hs — (u/hs)?s

= 1 — 2u + 2u?/hs — u%/h?s (I11-35)

12

1 — 2u,

The approximation involving dropping terms of size ¢%s or ¢2hs, which are both expected to be
very small since q is itself small. Once again we see that the decrease in fitness is dependent on
but not on either h or s (to the accuracy of the approximations used).

This reduction in fitness is known as the mutational load. Recall that we have computed it for
a single locus. If population mean fitness is the product of mean fitnesses for the individual loci,
as will be the case if there is multiplication of fitnesses between loci and no linkage disequilibrium,
then for n partially dominant loci

w o~ (1—2u)" ~ e 2, (I11-36)

If there are (say) 20,000 loci, each of which can mutate to a partially dominant deleterious
allele, and if the mutation rate is 10~% per locus, then the total mutation rate per diploid genome is
0.02. By (III-35) the fitness of the population is reduced to e =292 = 0.9801986, so that in this case
the reduction of fitness is nearly the same as the total mutation rate per genome. If all mutations
were instead recessive, the reduction in fitness would be only half as great. Figure 3.3 shows the
full dependence of load at a locus on h.

A HEURISTIC APPROACH. The mutational load can also be derived in a heuristic fashion
by a direct argument which does not utilize equilibrium gene frequencies. This approach will make
it a bit clearer why the load is the same for a weakly deleterious allele as for a strongly deleterious
allele. Consider a (very large) population of N individuals. Every generation 2Nwu new mutants will
occur, since there are about 2N copies of the wild-type allele available to mutate. At equilibrium
we require that the number of mutants eliminated by natural selection equal the number added by
mutation. Let L be the fraction of individuals who die, so that L is our measure of the mutational
load. If the mutants are partially dominant, then each selective death (with rare exceptions) kills
one mutant. So requiring that the number of alleles killed equal the number that mutate amounts
to requiring that

2Nu = NL (I11-37)

or

L = 2u. (I11-38)
If the mutants are recessive, each death by natural selection kills two mutants, so that

2Nu = 2NL (I11-39)

or

L = u (I11-40)

Similar arguments easily compute the mutational load in haploids and in polyploids.
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Figure 3.3: The mutational load as a function of dominance when = 10~7 and s = 0.01,
for the case of no back mutation.

This deceptively simple argument is not as airtight as it seems. At equilibrium one should
actually require that selection reduce the gene frequency by the same amount that mutation has
increased it. This is not quite the same as decreasing the number of mutants by the number which
have just mutated. A simple numerical example will serve. Suppose that a population of 1/2
million individuals has 10 mutants occur in the current generation, these being added to 100 copies
of the mutant allele already present. If selection now restores the mutant frequency to its previous
value of 0.0001 by killing homozygotes (let us assume that the mutants are recessive) it has to kill
10.001001 copies instead of 10 copies. The difference comes from the fract that if we killed exactly
10 copies of the mutant, we would not only reduce the number of mutants from 110 to 100, but
would also reduce the total population number by 5 individuals (10 gene copies). This is hardly
a dramatic inaccuracy, and it points up both the approximate nature of the argument and the
essential accuracy of that approximation.

WEAK SELECTION AND MUTATIONAL LOAD. the mutational load is said to be a
function of the mutation rate, but not the selection coeflicient, it is natural to wonder how a very
weak selection could impose a load. Surely the Haldane-Muller principle cannot hold all the way
to s = 0. Of course, it does not. In the haploid case, the mutational equilibrium gene frequency
de = u/s is only correct if u < s, otherwise the only equilibrium of the system (I1I-21) is ¢. = 1. If
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u > s, so that ¢. = 1, the load is
L = qgs = s, (IT1-41)

so that as we consider cases with progressively smaller values of s, the load will remain u until
s = u, then below that point the load will smoothly decline to zero as s declines.

We have also been ignoring back mutation, and justifying this practice on the basis that the
frequency of the mutant allele is very low. As s — 0, we will be less and less able to make this
approximation. As s becomes of the same order of magnitude as u, the equilibrium gene frequency
will rise not to one, but to the mutational equilibrium frequency g = u/(u + v), and the load will
become su/(u + v), which will approach zero.

Similar considerations apply in the diploid case and the polyploid case. The load will be a
simple function of w unless s is so small that it is not substantially greater than u. Below that
point the load will decline to zero as s does.

MEANING OF THE MUTATIONAL LOAD. We have considered the load as if it imposed
a burden on the population, yet the reader may recall that in the case of the segregational load
(in section II.7), serious reservations were expressed as to whether that load really imposed any
burden. In that case, one might imagine that an overdominant mutant arose in a population
previously fixed for one of the alleles. In the process w would increase, even though a formal “load”
would be created, through alteration of the standard against which w is judged from AA to Aa.
In the present case, if we compare mean fitnesses in the population with or without mutation, we
are using the same standard, namely the “wild-type” genotype AA. The presence of mutation is
undoubtably making the population worse off, by introducing the genotypes Aa and aa which have
lower fitnesses.

While there seem to be less difficulties with the notion of mutational load than with segregational
load, matters are not quite as simple as they seem. We have carried out our computations in terms
of relative, not absolute fitnesses. The existence of mutational load means that average population
fitness will be below the fitness of the AA genotype. If the imposition of the mutational load were
somehow to coincide with a raising of the absolute fitness of AA, then the “load” might actually
benefit the population. It is also not necessarily true that the load will be visible to an ecologist as a
lowering of population size. A population with density-dependent population size regulation might
have an average of 1000 offspring per parent, with only two of those surviving to adulthood. In such
a case, the reduction of the number of surviving offspring from 1000 to 500 will probably have only
a small effect on the number of adults maintained in the population, since the population will still
be pressing against the limits set by density-dependence. It would be a mistake to conclude from
this that the mutational load has no effect whatsoever on population dynamics. The reproductive
excess acts as a buffer allowing the population to survive various misfortunes, and a reduction of
the size of this buffer, even if it has little effect on average population size, may make the population
more vulnerable to extinction in time of crisis.

THE ¢ PARADOX AND MUTATIONAL LOAD. question of the reality of mutational load
as a problem for the population is made more pressing when we consider what used to be called
the “c paradox.” This is the observation that eukaryotes have far more DNA in their genomes than
we can account for based on estimates of the number of structural genes producing polypeptide
chains. A typical mammal has about 5 billion base pairs in the DNA of its haploid chromosome
complement. Taking an average structural gene to have about 500 nucleotides in the part coding for
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the polypeptide chain, this is enough for 10 million loci. This is far more than could be estimated
by extrapolation from the number of salivary gland chromosome bands in Drosophila, far more
than was guessed from the numbers of different mRNA sequences expressed in the cell, and far
more than turned out to be there in sequenced genomes.

Accounting for this “extra” DNA was a classical problem in molecular biology (i.e., it was a
problem for more than 4 years). We can say little about it from the standpoint of population
genetics, but the mutational load calculation may be relevant. If there were 20 million genes, each
subject to mutation at a rate 1077 to deleterious alleles, the fitness of the population would be
reduced to e~2? ~ 0.15 of its potential value. If we assign an absolute meaning to the mutational
load, this would mean either a 15% probability that a newborn would survive to adulthood (all
risk coming from genetic disorders, with any death from environmental accident being on top of
this) or else that fertility would be reduced by 85% by sterile or partially-sterile mutants, or an
intermediate combination of these two. Clearly an organism with as much DNA as we have would
be in severe trouble. Yet in humans well over 98% of all newborns survive to adulthood in most
industrial countries.

There are several possible resolutions of the dilemma. If much of the DNA is simply “spacer”
DNA whose sequence is irrelevant, then there will be a far smaller mutational load. But notice
that the sequence must be truly irrelevant, not just of unknown function. If the “extra” DNA
has regulatory or chromosome-pairing function requiring it to have a specific base sequence, then
mutations in that sequence will still cause a mutational load, even if these loci are not producing
polypeptide chains. Thus the mutational load argument seems to give weight to the notion that
this DNA is nonspecific in sequence. That is now believed to be the case, and the mutational
load must give pause to anyone who proposes to find important functions for most of the DNA in
eukaryotic genomes, especially functions that constrain its sequence.

The other way out is to question whether the load is truly a burden. Surely an organism which
increases its amount of DNA and evolves a new gene function cannot be making things worse for
itself! It may be that in nominally increasing the load, organisms have at the same time increased
the upper limit of their fitness (perhaps by increasing their reproductive excess) more than enough
to compensate. Thus if a species starts out with a nonfunctional sequence at a given locus, and
evolves a functional sequence, there is a nominal gain in mutational load as we change the “normal”
standard from (say) ato A, but this is more than offset by the increase of fitness. The difficulty with
accepting this view is that it seems to predict that as more loci enter the genome the discrepancy
between maximum possible fitness and average fitness increases. This is hard to reconcile with the
high viability of humans in industrial countries.

An alternative solution is to suggest that each selective death kills many mutant genes, so that
one needs fewer selective deaths to balance the number of mutations. This implies that selection
occurs in such a way that there is an interaction between mutants. If an individual only dies if it
has ten or more mutants, then we cannot simply predict the fitness of a ten-fold heterozygote from
the fitness of single heterozygotes. Models of selection of this sort were introduced by Sved, Reed,
and Bodmer (1967), King (1967), and Milkman (1967) to deal with segregational load problems,
and these papers may be consulted for more details.
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III.7 Mutation and Linkage Disequilibrium

Mutation is a particularly simple evolutionary force in that (at least in our simple models) it
occurs independently to each gene copy. This has enabled us to treat diploids as if haploid, and
has generally kept things fairly simple. The amount of mutation at a locus, being independent of
what are the genotypes at other loci, cannot be affected by the amount of linkage disequilibrium,
but it remains to be seen whether mutation can in some way cause linkage disequilibrium. Will
the presence of mutation cause a lack of independence between loci, and in this way complicate the
analysis of other evolutionary forces?

Intuitively, one feels that an evolutionary force whose action at each gene is independent could
not create disequilibrium. In fact, this intuition is correct, but to validate it requires a bit of
algebra. Let us look at two loci in a population with discrete generations, where each locus has two
alleles. Suppose that the population is in a state of linkage equilibrium, but does not necessarily
have its gene frequencies at their mutational equilibrium values. Before mutation we have four
chromosome types, AB, Ab, aB, and ab at frequencies given by the four quantities x op, Tap, TaB,
and x4, which we assume add to one. The forward and backward mutation rates at the A locus
are given by u; and vy, at the B locus by us and vs. After mutation the frequency of an AB
chromosome (or haploid genome) is

'1{43 = xAB(l_ul)(l_UQ) + wAb(l_ul)UQ + xanl(l_UQ) + Zgp V1V2. (IH—42)

The justification of this formula is straightforward: to end up with an A B chromosome we must
either start with an A B chromosome and have neither gene mutate, or start with an Ab chromosome
and have the A gene remain unmutated while the b mutates to a B, and similarly for the other two
chromosome types.

We have not yet used the fact that this generation started out in linkage equilibrium. We can
write xap = papp, etc. so that

g = papp (1 —u1)(l —u2) + papy (1 —ui)va + pappvi(l —u2) + pappvive
(I11-43)
= [pa(l —u1) + pav1] [pB(1 — u2) + ppval.

The fact that the chromosome frequency is a product of two terms, one corresponding to
each locus, suggests that this may be a state of linkage equilibrium, and such is in fact the case.
Comparison of (I1I-43) with formula (III-1) shows that (allowing for differences in notation) each
of the terms in brackets is the new gene frequency of A or of B after mutation. So immediately
after mutation we have linkage equilibrium:

ahp = PaPp (IT1-44)

We have considered part of a single generation, and seen that the changes in chromosome
frequencies as a result of mutation are such as to alter the gene frequencies but leave the fact
of linkage equilibrium unaltered. Although we have talked of chromosomes, the same calculation
applies to two loci which are unlinked but in the same haploid genome or gamete genome.

Since recombination will have no effect on chromosome (gamete) frequencies which are in linkage
equilibrium, we did not need to take it into account.

The principle that mutation alters gene frequencies without causing departure from linkage
equilibrium can be applied to any number of loci and any number of alleles, but we are too lazy to
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do so here. In the more general case where we start in a state of linkage disequilibrium, mutation
will act to move the population closer to linkage equilibrium by a very small amount, as is shown
by Turner (1967).

I1I.8 History and References.

The mathematics of mutational equilibrium are so simple that they were well-known to Fisher,
Wright, and Haldane. Most of the early work on mutation was concerned with the fate of a single
mutant (Fisher, 1922; Haldane, 1927) which we will treat in Chapter VII. The pioneer of work on
mutation in populations seems to have been Danforth (1921), but full mathematical treatment was
somewhat delayed. Recurrent mutation was not often considered because these authors held too
realistic a view of population sizes and mutation rates: when Haldane (1927) finally treated the case
of recurrent mutation, he did so in the more realistic and more general case of the balance between
mutation and selection. There he presented a general treatment utilizing the full cubic equation
generated by a model with forward and backward mutation and complete recessive inheritance of
the mutant. A somewhat simplified version of this argument was given in the Appendix to his book
(1932). Fisher (1928, 1930) presented a verbal argument obtaining the equilibrium frequency of a
dominant mutant opposed by selection. Wright (1929a) presented a more complete treatment of
partial dominance and recessiveness, very similar in notation and conclusions to our section III.5
above.

The discussions of mutation-selection equilibrium by Haldane, Fisher, and Wright took place
in the context of a debate over Fisher’s theory of the origin of dominance of rare mutants. Fisher
started from the well known fact that rare visible mutants tend to be recessive to wild-type far
more frequently than they are dominant. Noting that the rare mutant would be present almost
exclusively in heterozygotes, Fisher asked what would happen if alleles arose at another locus, a
modifier locus, which altered the fitness of heterozygotes or homozygotes for the mutant. Since few
homozygotes would be present, the selection favoring increase of homozygote fitness would hardly
ever be present, while modifier alleles whose effects were on the heterozygote would be subject to
much larger selection. The result, Fisher argued (1928, 1930) would be a faster increase in the
fitness of the mutant heterozygote than in the homozygote fitness, leading to the evolution of the
degree of dominance of rare mutants toward complete recessiveness.

Wright (1929a) disagreed, arguing that in either case the selection on the modifiers was far too
weak (owing to the rareness of mutants at the main locus) to allow it to be a significant evolutionary
force in the face of genetic drift. In the ensuing controversy (Fisher, 1929; Wright, 1929b) debate
centered around the effects of finite population size, with Wright citing results he was later (1931)
to publish in his classic paper on the interaction of deterministic forces and genetic drift. Haldane
(1930a) and Muller (1950b) sided with Wright in this dispute. These authors adduced other, more
directly physiological reasons why deleterious mutants tended to be recessive, and saw no need for
Fisher’s theory of the evolution of dominance to be of real importance.

The mutational load was discovered independently by Haldane (1937, 1939, 1940) and Muller
(1950a), having been prefigured by Danforth (1921). Haldane’s work of the 1930’s (1935) resulted in
the first estimates of the rate of mutation of human genes, using a method discovered by Danforth
(1921). In the 1950s and 1960s, the concept of mutational load played a role in the controversy
over the genetic effects of atomic radiation and atmospheric testing of atomic weapons.
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Exercises

1.

10.

11.

Suppose that allele A is initially fixed in a population, and that it has a mutation rate of
10~° to a, and that there is no back mutation. What will be the frequency of allele a in the
population (ezactly) after 2 generations?

If there were back mutation in the above case, at the same mutation rate, what would the
result be?

When A — a at rate 107° and ¢ — A at rate 1075, what will be the equilibrium gene
frequency in an infinitely large population?

. In the above case, how long will it take the population to move half way to its equilibrium

starting from fixation for A7 Starting from equal frequencies of the two alleles?

. If a population reproduces apomictically (by completely asexual clonal reproduction) and

has A — a at rate 107° and a — A at the same rate, what will be the gene frequencies at
mutational equilibrium? What will be the genotype frequencies?

Suppose that we consider a haploid organism with lethal mutants occurring at rate u. How
do the equations given in this chapter compare with our intuitive understanding of what the
frequency of mutants at equilibrium will be? How rapid will be the return to equilibrium
after the frequency of mutants changes?

. What will be the frequency of mutants at equilibrium if the fitnesses of A (nonmutant) and

a (the mutant allele) are 1+ s : 1 instead of 1 : 1 — s? (This can be solved without redoing
all of the equations).

At Hiroshima and Nagasaki there can be little doubt (from the frequency of somatic effects
such as leukemia) that many mutations occurred, yet studies of offspring of survivors have
shown few genetic diseases among offspring of survivors. What might this imply about the
values of h and s in such mutants?

. What are some of the biases which we are likely to risk by taking observed human genetic

disorders and using their frequencies and presumed fitnesses to calculate the average mutation
rate per gene in humans?

Huntington’s Disease is an autosomal dominant disorder with a frequency of about 1 in
100,000 in the population. It is a severe neurological disorder with onset in the mid-thirties,
so that it is probable that the fitness of affected individuals is only reduced by 2% or so, since
they have already had most of their offspring by this age. Estimate the mutation rate at this
locus. How many generations ago did the average mutant allele in the population occur?

How would the frequency of Huntington’s Disease be altered if (i) carriers could be detected
at birth and as a result of knowing their status reduced their average number of offspring by
20%? (ii) if instead genetic counselling resulted in offspring (who do not know their exact
carrier status) of affected individuals having 20% fewer offspring themselves? How rapidly
would the disease incidence change in these cases?
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12.

Consider an underdominant locus with fitnesses of AA, Aa, and aaof 1 : 1—s : 1. If
mutation rates for A — a and a — A are both p, what will be the (approximate) stable
equilibrium gene frequencies if p is small?

Complements/Problems

1.

If we consider a population with partial self-fertilization (a randomly chosen fraction s of
the population selfing in each generation, and the rest mating at random), in the absence of
selection what will be the mutational equilibrium of gene frequency? of genotype frequencies?

In a diploid random mating population consider an underdominant locus with fitnesses of
AA, Aa, and aaof 1 : 1 —s : 1. If mutation rates for A — a and a — A are both p, what
will be the (approximate) stable equilibrium gene frequencies if p is small?

. In a sex-linked locus with two alleles, if the mutation rates for A — a are uy and u,, in the

two sexes, and the rates for a — A are vy and vy,, what will be the equilibrium gene and
genotype frequencies in the absence of selection?

. For what values of s and u will the various equilibrium solutions of (III-15), the haploid case

of mutation-selection balance, be stable or unstable?

Suppose that there is a diploid locus with one normal allele and two mutant alleles. The
mutation rate from the normal allele to the first mutant allele is p1, and that to the second
mutant allele is po. There is no back mutation. Suppose that any individual with two of the
mutant alleles (whether or not they are the same mutant) dies. Heterozygotes between either
mutant allele and the normal allele have no reduction in fitness. What are the equilibrium
frequencies of the two alleles? What would they be if instead the heterozygote between the
two mutant alleles had normal fitness?

. We could approximate (III-15) by saying that the two evolutionary forces, selection and

mutation, make changes of gene frequency of approximately sp(1 —p) and —u p respectively.
When we require that these cancel each other out by summing to zero, we can obtain an
equilibrium gene frequency. Is it correct? Should it be? Why or why not?

If a recessive lethal mutant can occur at a sex-linked locus, with equal mutation rates in
females and males, what will its equilibrium gene frequency be (assuming that male hemizy-
gotes are equivalent to female homozygotes in fitness)? What will be the answer if the fitness
of hemizygotes and homozygotes is 1 — s rather than zero? How could we use sex-linked
mutants to estimate mutation rates of human genes?

. If the fitnesses of AA, Aa, and aa are respectively, 1, 1 — hs, and 1 — s, with unidirectional

mutation A — a at rate u, what is the exact quadratic equation for equilibrium gene frequency
of a?

What equations must be solved to obtain the equilibrium gene frequencies in the sex-linked
case corresponding to the autosomal case of the preceding problem? Assume hemizygotes
have the same fitnesses as the corresponding homozygotes.
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10.
11.

12.

13.

Based on problem 8, what is the exact mutational load as a function of u, s, and A?

Use the equations for selection at a multiplicative locus to obtain an expression for the muta-
tional load in a case where fitnesses are geometric: 1: 1 —s: (1 — s)2. Is the approximation
L = 2u a good one in this case?

When mutation is bidirectional, with A — a at rate u and the reverse at rate v, obtain an
exact (quadratic) expression for the mutational load in the haploid case. Does it show results
consistent with our intuitive discussion when s is allowed to be very small?

What are the equations for change of linkage disequilibrium when we start in linkage dise-
quilibrium and with gene frequencies away from their mutational equilibrium? Can mutation
ever increase the value of D?
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Chapter IV

MIGRATION

IV.1 Introduction

Migration is a bit of an enigma. Although it is one of the evolutionary forces whose mathematics is
simplest, it is not easy to see whether it is an adaptive or a maladaptive force. As we shall see, while
migration works against adaptation to local environments, and in this sense is maladaptive, there
may be situations in which adaptation to local environments is itself maladaptive with respect to
future environments. Migration is of particular interest because its consideration enables us to take
advantage of the existence of the spatial dimensionality of the environment. Alternatively, one may
regard it as a complication, a violation of the simplicity of the single random-mating population, but
even then the presence of this complication is accompanied by an increased amount of information
in the form of gene frequencies or phenotypes at different locales.

IV.2 The Effect of Migration on Gene Frequencies

The mathematics of migration are only slightly less simple than those of mutation. Mutation
occurs (roughly) independently to each gene, while if it is diploid individuals who are doing the
migrating, the genes they introduce into a population come in packets of two. In terms of gene
frequencies, the effects of migration are easily seen. Suppose that a population, immediately after
some migration has occurred, consists of a fraction 1 — m of individuals who have not immigrated,
plus a fraction m of new immigrants from another population. Suppose that the gene frequencies
of an allele A were p; and po in these two populations before the migration occurred. Finally,
suppose that individuals migrate or stay at home without regard to their genotypes. Then among
non-immigrants the frequency of the A allele will still be p;, and among immigrants it will be ps.

A simple calculation of a weighted average then immediately tells us that the new gene frequency
after migration will be

py = (1—m) p1+mpo. (IV-1)

this result applies to a single allele. Since we have not specified how many other alleles there are, we
have in effect done the computation for the general case of multiple alleles. But we have restricted
ourselves to two populations. If there are a total of n populations, and if my; is the fraction of
individuals in population 1, after a bout of migration, who come from population i, then a directly
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analogous formula holds:
Py = (1—miz—miz — ... —miy)p1 + mizpa+ ... + MippPn. (IV-2)

We can make this expression a bit more compact by defining mq; to be the fraction of individuals
in population 1 which are nonimmigrants. This replaces the expression in parentheses in (IV-2),
yielding
Py = Zmu Di- (IV-3)
i

We shall see later that these conventions enable a compact matrix notation.

IV.3 Migration and Genotype Frequencies: Gene Pools

We have been following gene frequencies rather than genotype frequencies. When we start keeping
track of genotypes, things are not quite so simple. It starts to matter very much at what stage
of the life cycle the migration takes place. Initially, suppose that adults migrate. If we have two
populations, each fixed for a different allele. If population number 1 is fixed for A, and receives
20% immigration of diploid individuals from population 2 which is fixed for a, then the frequencies
of genotypes after migration will be

AA  Aa aa
0.80 0 0.20.

These are certainly not Hardy-Weinberg proportions. There is a strong deficit of heterozygotes.
We can compute the frequencies of genotypes in a mixture by a simple process of weighted

averaging. If Pl.(jl) and Pi(f) are the genotype frequencies of A;A; respectively in populations 1

and 2, after migration, and Pigm) is the genotype frequency in the resulting mixture, we have
straightforwardly
P = (1-m) P +m P (IV-4)

In the numerical example both populations were fixed before migration. Note that fixation for
an allele is also a state of being in Hardy-Weinberg proportions. So by mixing two populations,
each in Hardy-Weinberg proportions, we have created a mixture which is not in Hardy-Weinberg
proportions.

THE WAHLUND EFFECT. Mixed populations are usually out of Hardy-Weinberg proportions
immediately after the mixture, as a calculation due to Wahlund (1928) shows. Let us retreat to the
case of two alleles. Let p; be the gene frequency of A in population i (not the frequency of allele
A;). Before mixture let each population be in Hardy-Weinberg proportions. Immediately after the
mixture of diploid individuals occurs, but before any mating can take place, the proportion of A4
homozygotes in the population will be

Pisy = mlp% + mgpg + .+ mnpi, (IV-5)

where m; is the fraction of the mixture which was contributed by population ¢. This formula is
just a version of (IV-4) for n ancestral populations, each in Hardy-Weinberg proportions, with
two alleles. Note that (IV-5) is just the weighted average of p?, taken over all n populations with
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weights (m;) proportional to the contribution of each population to the mixture. It is simply E(p?),
the expectation of the random quantity p?, where the randomness comes from having probability
m; of encountering an individual from population ¢, a population having p = p;.

By contrast with (IV-5), if the mixture were in Hardy-Weinberg proportions we could predict
its genotype frequencies from its gene frequencies in the usual way. The gene frequency in the
mixture is given by (IV-2) and (IV-3). Note that these can be written as the expected value E(p),
where the random quantity p has probability m,; of taking on the value p;. The Hardy-Weinberg
genotype frequency of AA is of course simply the square of this, [E(p)]?, so that the deviation of
the frequency of AA from Hardy-Weinberg proportions is

Paa — [E(@)] = E@°) - [E@] (IV-6)

The righthand side of (IV-6) is the standard expression for the variance Var (p) of the random
variable p. So rearranging this equation

Pas = [EQ)? + Var(p). (1V-7)

This is the Wahlund Effect: the frequency of homozygotes in a mixture of populations, each in
Hardy-Weinberg proportions, is increased over Hardy-Weinberg proportions by the variance of the
frequencies of the allele in the components of the mixture. For instance, if we draw a sample of
individuals from a geographic area which comprises not one random-mating population but many
populations, whose mean gene frequency is 0.3 with standard deviation of gene frequency 0.1, then
the frequency of homozygotes in our sample is expected to be (0.3)? 4+ (0.1)2 = 0.09 4 0.01 = 0.10,
so that the overall frequency of homozygotes for this allele is increased above its Hardy-Weinberg
expectation by an amount equal to the variance of gene frequency among the populations.

If there are two alleles, Wahlund’s Law applies to each homozygote, and since p + g = 1, the
variance of the frequency of a must be exactly the same as the variance of the frequency of A.
So equal amounts are added to the frequencies of AA and aa, and there must be a corresponding
subtraction from the frequency of Aa. Replacing E(p) by the simpler notation p, we have

paa = p°> + Var(p)
paa = 2p(1—p) — 2 Var(p) (IV-8)
Paa = (1-p)% + Var(p).

With multiple alleles the situation becomes more complex. The Wahlund Effect applies to
each homozygote, although the variances of the frequencies of different alleles need no longer be
equal. The heterozygote frequencies are increased by twice the covariance of the frequencies of
the relevant alleles, the covariance being weighted, as was the variance, by the contributions of
each population to the mixture. Most pairs of alleles have negative covariances, so that usually
the heterozygote frequencies are decreased. But it is is possible for covariances to be negative, so
it is possible for mixture to create an excess of certain heterozygotes relative to Hardy-Weinberg
expectation. However, since each homozygote is present in excess, there must be an overall deficit
of heterozygotes. The Wahlund’s Effect is worth keeping in mind: it is one of the most important
sources of departure from Hardy-Weinberg proportions in samples from natural populations.
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EFFECTS OF RANDOM MATING. The Wahlund Effect operates in a direct mixture of
individuals who have not yet had an opportunity to intermate (indeed, the mixture may be entirely
a product of our sampling methods). If a generation of random mating occurs after mixture, the
results are entirely different. We have already seen that the offspring of random mating will be
in Hardy-Weinberg proportions no matter what the genotype frequencies in the parents, provided
that suitable conditions apply. We may conclude that, following random mating, the population
which has received immigration will be in Hardy-Weinberg proportions at the new gene frequency
given by (IV-3), and Wahlund’s Law will no longer be relevant.

It will therefore be important in modelling the process of migration to keep careful track of
the life stage of which the migration occurs. If haploid gametes (both eggs and sperm) migrate
and thereafter all the gametes in the population combine at random, Hardy-Weinberg propor-
tions will be achieved immediately, while migration of adults leads to a mixed population out of
Hardy-Weinberg proportions, which does not achieve Hardy-Weinberg proportions until the next
generation. But if migration recurs each generation, there may never be a generation that is truly
in Hardy-Weinberg proportions.

LINKAGE DISEQUILIBRIUM CREATED BY MIGRATION. The foregoing discussion
has been entirely in terms of single loci. Just as it creates departure from Hardy-Weinberg pro-
portions, the process of mixture creates linkage disequilibrium as well. An example may be useful.
Suppose that population 1 consists entirely of AA BB individuals, and population 2 entirely of aa
bb individuals. In a mixture of these in equal proportions it is obvious that there will be departure
from Hardy-Weinberg proportions at both loci, as the new gene frequencies are 0.5 4 : 0.5 a and 0.5
B : 0.5 b while there are no heterozygotes at all. There will also be linkage disequilibrium: of the
gametes contributed to the next generation, half will be AB and half ab, with no Ab or aB. Note
that the two original populations are each in Hardy-Weinberg proportions and linkage equilibrium,
since fixation for (say) AA BB is such a state. So it is possible to create linkage disequilibrium by
mixing individuals (or gametes) from two or more populations, neither of which itself shows any
linkage disequilibrium.

Will linkage disequilibrium always result from mixture? How much disequilibrium will be
created? A simple derivation may shed some light on this. We have seen that when we make
a mixture of individuals, a fraction m; coming from population i, we can regard there as being
a random variable p which takes on the value p; with probability m;. Let p be random variable
corresponding to allele A, and let ¢ be the random variable corresponding to allele B. Since these
alleles are at different loci, we do not have that p + ¢ = 1. Consider a randomly chosen individual
from the mixture, and consider a gamete produced by it. With probability m; the individual came
from population . We are assuming that it was randomly chosen from that population, and that
the population is in linkage equilibrium. If so, the probability that the gamete is AB is simply p;qg;.
So the overall proportion of AB gametes produced by individuals in the mixture is

Prob (AB) = Zmipiqi. (IV-9)

We can subtract from this the product of the frequencies of A and B in the mixture. These
are given by expressions like (IV-3), so that the amount of linkage disequilibrium in the mixture is

given by
D = Zmipi%‘ - <Zm2pz><zmz%> (IV-10)
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This is formally the answer, but its meaning will be clearer with some further interpretation. Each
of the parts of (IV-10) can be written in terms of the random variables p and ¢:

D = E(pq — E(p)E(qg) = Cov(p,q). (IV-11)

The linkage disequilibrium in the mixture is simply the covariance in the frequency of p and g over
the populations contributing to the mixture, weighted by the proportions in which they contribute.
Only if the distributions of gene frequencies at the two loci are independent when examined across
the original populations will there be no linkage disequilibrium created by mixture. On the other
hand, if p and ¢ do not vary much over populations, the amount of disequilibrium cannot be large
(in fact, it cannot be greater than the product of the standard deviations of the allele frequencies
at the loci).

Once the mixture occurs, the linkage disequilibrium starts to decay by recombination. If the
loci are unlinked, then it rapidly disappears, leaving a population in linkage equilibrium at the new
gene frequencies given by (IV-3).

GENE FLOW. Once the departures from linkage equilibrium and Hardy-Weinberg proportions
are gone, what has been accomplished by the admixture is to alter the gene frequencies to new
values, intermediate between those of the contributing populations. This is an example of the
notion of the population as a gene pool, a mixture of genes rather than phenotypes, genotypes, or
gametes. In a state of linkage equilibrium and random mating, all genotype frequencies can be
constructed from the gene frequencies. In fact, we can predict the existence of genotypes whose
frequencies may be so low that in most generations they do not occur in the population. The
migration computations serve as a clear illustration of the fact that it is the gene frequencies, and
not individual genotypes, which form the inheritance of a population.

This has often been expressed by referring to migration as gene flow, to emphasize that from the
standpoint of evolution it is the genes which move, and not individuals or genotypes. Cases can be
found in which the retention or creation of departures from random combination have qualitative
effects on the outcome. More often, the vision of the population as a gene pool and migration as
gene flow gives a true picture of the underlying dynamics of this evolutionary force.

IV.4 Estimating Admixture

Human populations are frequently composed of mixtures of individuals of different genetic back-
grounds. When this admixture has occurred in past generations, it leaves its trace in the gene
frequencies. Attempts have been made to use gene frequencies to estimate the degree of admixture
of various populations.

In the simplest case, the computation simply reverses equation (IV-1). If we call the frequency
of an allele in the putatively admixed population p, (IV-1) is

p = (1—m)p1+mps. (IV-12)

we can use (IV-12) to estimate m if p, p1, and p2 are known, solving it to give

m = LD (IV-13)



For example, in the town of Claxton, Georgia the gene frequency of the A blood type allele (actually
a composite of two alleles, A; and As) was found by Cooper et. al. (1963) to be 0.05 among whites
and 0.129 among African-Americans. In West African populations (Cavalli-Sforza and Bodmer,
1971, p. 493) the frequency of A is about 0.143. Our estimate of the fraction of European ancestry
among African-Americans in Claxton will then be

. 0.129 — 0.143 01505
0.05 —0.143

The pitfalls of such a computation are many. In the first place, each of these gene frequencies is
itself an estimate, and the variances and covariances of these quantities must be taken into account
in computing the variance of the resulting estimate. There is a presumption that the admixture of
white ancestry is fairly represented by looking at gene frequencies of whites in Claxton. Even more
dubious are the West African gene frequencies. Slaves were taken not only from West Africa, but
from Central Africa and East Africa. Even within West Africa there are local differences in gene
frequencies which render it dubious whether a given West African population is representative of
the ancestry of African-Americans.

Granted these limitations, an interesting application can be made of this sort of calculation.
When admixture estimates are made for the same set of populations using different loci, the results
sometimes differ. For example, Cavalli-Sforza and Bodmer (1971) obtain an estimate of 0.296
for the European ancestry of African-Americans in Claxton when the allele for sickle-cell anemia
is used. The most likely explanation for this discrepancy is that the gene frequency of the Hb3°
allele reflects not only admixture but also selection. In a New World environment lacking falciparum
malaria, the deaths of Hb3 HbS° individuals from sickle-cell disease will reduce the frequency of
that allele, an effect which will make it look as if there has been greater admixture from the white
population.

REFERENCES. Admixture studies led to some of the earliest work on migration effects. The
basic formula (IV-1) was used by Bernstein (1931) in the form of equation (IV-13). The notion of
using admixture studies to indicate which loci are under natural selection was first used by Work-
man, Blumberg, and Cooper (1963). Wahlund (1928) derived the effects of mixture on genotype
frequencies, but it was only realized four decades later that such mixtures would also be a source
of linkage disequilibrium (Cavalli-Sforza and Bodmer, 1971, p. 69). The formulation in terms of
covariances is due to Prout (Mitton and Koehn, 1973).

IV.5 Recurrent Migration: Models of Migration

When migration exerts a continual effect, the mathematics is a simple extension of that given
above. There are many different situations possible, but a few patterns of migration have accounted
for most of the studies in the literature of population genetics. Let us review a few of these models
of migration.

THE ONE-ISLAND MODEL. One imagines a small island located near a large continent.
Migration from the island to the continent is too tiny a fraction of the gene pool of the continent to
be of any influence, and it is imagined that the gene frequencies on the continent remain unchanged.
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Island Continent

Figure 4.1: The one-island model.

Figure 4.2: The island model.

But a fraction m of the gene pool on the island comes from the continent each generation. The
geographic situation looks like this: and the equation for gene frequency p®) on the island in
generation t is:

P = 1—m)p* Y + mop, (IV-14)

where p. is the constant gene frequency on the continent.

THE ISLAND MODEL. Suppose that we had n islands which exchanged migrants with each
other. Each generation the fraction of genes which arrive from each given other island is taken
to be m/(n — 1), so that m is the fraction of genes which come from outside each island. In this
model there is not only a total symmetry, but even an absence of geography. No island is imagined
to be closer to one neighbor than to another. This geography cannot be realized except in n — 1
dimensions, but it may be represented as in Figure 4.2. Population ¢ will have its gene frequency
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AT 1

Figure 4.3: The one- and two-dimensional infinite stepping stone models.

®)

p;  in generation ¢ be determined by:

_ m _
P = (=m)pY + 3 -1 p " (IV-15)
i

a similar equation holding for each population.

THE STEPPING-STONE MODEL. Imagine that the populations are arrayed in a regular
pattern in space, and let migration depend on the distance between them. The simplest patterns
are a one dimensional string of equally-spaced populations, and a two dimensional rectangular
lattice:

Migration is imagined to occur between neighboring populations. In the one-dimensional case
a fraction m/2 of genes after migration are immigrant from each neighbor. In the two-dimensional
case m/4 are immigrants from each neighbor. More general patterns of migration can be imagined in
which the number of migrants depends on distance in a more complicated way, with some migrants
being received from populations 2, 3, or more steps away along the chain of stepping stones.

In the Figure, the arrays of stepping stones are imagined to extend off to infinity in all directions.
If the object is to study a population of finite geographical extent, it is easy to envision a line of
populations of finite length, or a rectangle of populations. In these cases some special provision
must be made for the pattern of migration at the boundaries. In the one-dimensional case, an end
population may be imagined to receive m/2 of its genes from its one neighbor, so that only m/2 of
its genes are new immigrants immediately after migration. Alternatively we may specify that m of
its genes come from the neighbor, so that the fraction of genes in each population which are newly
immigrant is kept the same.
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To avoid the mathematical difficulties inherent in having some populations be more equal than
others, we may consider a circle of populations instead of the one-dimensional line, or a toroidal
pattern (instead of the rectangle), where the top and bottom rows of populations exchange migrants,
and so do the leftmost and rightmost columns. If this is done properly, the model is seamless, if
not terribly realistic.

THE GENERAL MIGRATION MATRIX MODEL. The most general possible pattern, one
which subsumes all the others, simply states that we have n populations, and that after migration
of fraction m;; of the genes in population i are newly arrived from population j. Some care must
be taken in interpreting the quantity m;;. The table of the m;; is referred to as the backward
migration matriz, because it looks back in time from the recipient (i) to the source (j), measuring
the number of immigrant individuals (or genes) as a fraction of the number of individuals (genes) in
the population receiving the immigration, the measurement being conducted after the migration.
One can also describe the migration rates by means of the forward migration matriz m;;, which
gives the fraction of individuals (or genes) in population ¢ who end up in population j. Since
the number of individuals migrating must be the same whether we measure it as immigrants or
emigrants, we have the following relationship:

N; m;

v

where N; is the population size of population ¢ before migration, and N J’ is the size of population
j after migration. The two sides of (IV-16) simply compute the number of migrating individuals
using the two different rates m;; and my;.

The advantage of posing this general migration matrix model is that the computations can be
recast in matrix form. If M is the matrix of the m;;, and if p® is the vector of the pz(»t), then the
counterpart to (IV-1) is simply

p) = Mptb. (IV-17)

A special case of particular interest is when the expected number of individuals arriving in
population ¢ from population j is equal to the expected number arriving in j from 7. In that case

Ni mi; = Nj mgg. (IV—18)

For the particular case of equal population sizes, this gives equal migration rates in both directions,
so that the matrix M is symmetric. Whether or not the population sizes are equal, (IV-18) defines
a situation where each population exports as many genes as it imports, so that there is no net
outflow or inflow from any population. In this case, a gene gains no advantage from being in any
particular population. As we shall see, this case yields particularly simple results.

IV.6 Recurrent Migration: Effects on Gene Frequencies

Having defined these models of migration, let us look at a few of them to see what will be the
effect of migration on gene frequencies.
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THE ONE-ISLAND MODEL. Equation (IV-14) has an equilibrium value which is particularly
easy to find. Dropping the superscripts (¢) and (¢ — 1) and solving it for p, we get p = p.. More
interesting is the rate of convergence to this equilibrium. Subtracting pc from both sides of (IV-14).

PP —p. = 1—m)p" Y + mp.—p.

(IV-19)
= (1-m) ("D - p).

The island population is approaching the continental gene frequency p. as a result of recurrent
immigration. Equation (IV-19) shows that the deviation of p from its final value p. is multiplied
by (1 — m) every generation. Thus the island population moves a fraction m of the way to its
equilibrium each generation. The effect of migration is to make the gene frequencies p and p. more
similar (in this case by changing only p). the rate at which this happens is given by m.

THE ISLAND MODEL. This model has a particularly symmetrical structure which yields
results easily. Equation (IV-15) can be rewritten (after a little algebra) as

t t—1 t—1
P = —mtmpl ) m s Y
(IV-20)
t—1 _(
= 1= () a0 () mpt Y,
where plt) = Zpgt) /n is the mean gene frequency in all colonies in generation ¢. This shows

that in each generation, the gene frequency p; is obtained by averaging its previous value with the
overall mean gene frequency p. If we take (IV-20), sum both sides over ¢ and divide by n, we get:

0 = [ )l s ()

= ﬁ(til)

(IV-21)

which shows us that the mean gene frequency over all populations does not change through time.
Note the quantity nm/(n — 1) which appears in all of these expressions. It is nearly equal to m if
n is large (when n = 20 it is 20n/19). Let us call this quantity m*. Now we can rewrite (IV-21) as

W0 = QoD 4 vz

This is really just (IV-14) with somewhat different notation, and we can immediately see what
will be the behavior of the gene frequencies in the individual populations. Each population’s gene
frequency moves a fraction m* of the way toward its ultimate equilibrium value each generation.
The equilibrium value is given by the overall average gene frequency p. So migration has an
averaging effect, bringing all gene frequencies to a common value but not actually changing the
overall gene frequency. As we shall see, this property of migration is general to a large class of
migration schemes.

The rate at which gene frequencies approach their common equilibrium is nearly given by m,
with the time to move a substantial fraction of the distance to equilibrium being roughly 1/m.
This has an intuitive interpretation as the time scale on which a large fraction of the population
has been replaced by immigrants.
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MORE GENERAL MODELS. Comparable derivations can be done in the stepping-stone
models, although things become more difficult there. The rate of approach to equilibrium is then
quite a bit more complicated to obtain. But the qualitative results are similar. Even in the most
general scheme, the migration matrix, certain generalities emerge. We shall state them intuitively
here but not give derivations:

1. At equilibrium, all populations have the same gene frequency. It is rather easy to use (IV-17)
to show that a state in which there is no geographic differentiation is an equilibrium state.
One uses the fact that each row of the matrix M must sum to 1, since each gene in the
population must have come from somewhere. It is not so easy to show that this is the only
kind of equilibrium state - in part because that is not so. If we are allowing full generality in
the pattern of migration, we allow cases where one can easily see that other equilibria exist.
For instance, there is the case in which there is no migration at all, so that m;; = 1 and
all other m;; are zero! In such a situation it is immediately apparent that whatever gene
frequencies we start with will simply remain unchanged. Another case involves two subsets
of populations. There is exchange of migrants within each subset, but no migration between
different subsets. In that case each subset could have a uniform gene frequency, but the gene
frequencies in the two subsets could differ substantially.

It is not even ruled out that there may be no equilibrium at all. If we have two populations,
and mio = mg; = 1, then in each generation the ancestry of each population is supplied
entirely by the other. So if we start with different gene frequencies (say 0.6 and 0.3) the
gene frequency of the first population will oscillate: 0.6, 0.3, 0.6, 0.3, .... In effect, the two
populations change places every generation.

All of which establishes that the above “generality” requires some special conditions. We
will not attempt to find the least restrictive possible conditions generating convergence to an
equilibrium at which all gene frequencies are equal, but the following rather weak conditions
will suffice: each population must have some individuals who are nonmigrant (so that all the
mg; must be nonzero), and it must be possible for any given population to receive immigration
from any other if we wait a sufficient number of generations. The second condition simply
requires that the populations form a connected set with regard to migration - that no subset
of populations be isolated from the others. An example where we can readily verify that these
conditions hold is the stepping stone model. There will be no isolated sets of populations
(provided that m > 0) and some individuals will not migrate (provided that m < 1).

2. The rate of approach to equilibrium is controlled by m. Usually the rate of approach will be
relatively close to m, where m is an appropriately defined migration parameter. This is a
rather hazy principle which cannot be more precisely stated without making quite elaborate
theorems. Suffice it to say that when all migration rates are small multiples of m, and we
take m small, it is usually found that halving m halves the rate of approach to equilibrium.
In many cases the rate of approach will itself be a small multiple of m.

Although perfect generalities are hard to come by, the reader will not be seriously misled by
the following Principle:
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Migration tends to smooth out geographic differences in gene
frequencies. The rate at which this occurs is given by the
rate of migration.

IV.7 History and References

The earliest work on migration involved admixture computations, in the work of Bernstein (1931).
Glass and Li (1953) applied the notion of recurrent migration to admixture computations. The
one-island model was first used by Haldane (1930a), and the island model was invented by Sewall
Wright (1931), who used it to investigate genetic drift effects on gene frequencies, which we will
cover in Chapter VII. The great Russian mathematician A. N. Kolmogorov (1935) did some early
computations involving means and variances of gene frequencies in island models. The stepping
stone model was invented independently by Malécot (1950) and Kimura (1953), although both were
apparently influenced by the model of a population continuously spread out in a spatial continuum,
propounded by Wright (1940). The migration matrix approach has only been investigated rather
recently (Cavalli-Sforza and Zei, 1967; Bodmer and Cavalli-Sforza, 1968). The constant in most of
these investigations is that migration in and of itself is such a simple evolutionary force that these
papers are largely investigations of its interaction with other evolutionary forces such as selection
or genetic drift. We will cover one of these interactions later in this chapter and the other in a
subsequent chapter.

Just as simple mixture creates linkage disequilibrium, so does recurrent migration. A model of
this sort was first put forward by Li and Nei (1974). Feldman and Christiansen (1974) presented
an interesting model in which migration maintained a gradient of gene frequencies (a cline) and in
which linkage disequilibrium persisted as a result of recurrent migration.

IV.8 Migration vs. Selection: Patches of Adaptation

Migration as an evolutionary force continually works to make the genetic composition of different
populations more similar. Under certain circumstances natural selection will be operating in the
opposite direction, and it is clearly of interest to see to what extent one force will prevail over the
other.

The simplest model available seems to be that in which a single population is subject to selection
different from its neighbors. Selection will then work to differentiate its gene frequency from its
neighbors’, but migration will work against this. Let us start by examining a haploid model.

A ONE-ISLAND HAPLOID MODEL. A single island lies near a continent. On the continent
natural selection keeps allele a fixed. On the island the A allele is favored. We consider a one-
locus two-allele haploid (or asexual) population with discrete generations. The fitnesses of A and
a individuals on the island are 1 and 1 — s. As far as migration is concerned, the model is a simple
one-island model. A fraction m of the individuals each generation are immigrants. There is no
migration back to the continent, or if there is it has no influence on the gene frequencies on the
continent.

This model is erected as the simplest possible model in which a local patch of genetic adaptation
to a local environment is continually in danger of being swamped by immigration. What we are
interested in is the conditions under which local adaptation can be maintained in the face of gene
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flow. When it can be maintained, we also want to know how strong a genetic differentiation can
be maintained.

The changes of gene frequency are readily computed under this model. If p is the gene frequency
of A, after selection

* p
= — 1V-23
and after migration
p = (I1-m)p*+mx0
= (I=m)p (IV-24)
_ p(-m)
1-(1-p)s

The reader may have noticed that these are precisely the equations for the balance between mutation
and selection in haploids, equations (III-13) through (III-15). From (IV-24) we can compute the
change of gene frequency:
1—m) —mp+p(l—p)s
Ap — of —p = DL = IV-25

PP = g P T (- p)s ( )
There are two values of p for which Ap = 0. These are the values at which the numerator of
(IV-26) is zero. They are when p = 0 or when

p = 1—m/s. (IV-26)

These correspond to the two possible fates of the patch of adaptation: it may be lost (p = 0) or it
may be maintained in the face of continued gene flow.

Our interest is in which of these equilibria is stable. This will reflect the sign of Ap, and that in
turn is solely a function of the numerator of (IV-25). The denominator, being the mean fitness, can
never be negative. The numerator is p[—m + (1 — p)s]. There are two cases of interest. If s < m,
then a moment’s consideration will show that (1 — p)s can never be greater than m, so that the
numerator of (IV-26) will always be negative. This is exactly the case in which the equilibrium gene
frequency 1 — m/s will be negative. So we get a picture which is consistent: only the equilibrium
p = 0 makes any sense, and consideration of Ap shows that p will continually decrease toward that
equilibrium. When m > s, migration which brings in a’s overwhelms the selection which is trying
to maintain some A’s in the patch.

When s > m, the picture is different. The quantity —m + (1 — p)s will sometimes be positive
and sometimes negative. In particular, it will be positive when p < 1 — m/s and negative when
p > 1—m/s. So in this case the gene frequency of A will rise toward the equilibrium value when it
is below it and fall toward it when above it. To prove that the equilibrium is truly a stable one, we
would have to also show that there is no overshooting of the equilibrium (or at least, not enough
to allow any oscillations of increasing amplitude). This can be done without much difficulty, but
we will not allow this matter to detain us here.

The picture which emerges is a fairly simple one. When m > s, migration overwhelms selection
and a patch of adaptation to local conditions cannot be maintained. When s > m, local adaptation
can be maintained, but the frequency of the locally favored allele will be only 1 —m/s, so that some
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a alleles will always be present, in an equilibrium between their introduction by migration and their
elimination by selection. This result forms a reasonably consistent picture with our intuitive feeling
that migration as an evolutionary force operates with a speed given by m, and selection with a
speed given by s, so that maintenance of a patch of local adaptation depends on whether selection
can eliminate inappropriate alleles as fast as the come in. We can also make an intuitive analysis
similar to the mutation models, using the fact that m a alleles immigrate every generation, and
that each persists an average of 1/s generations, to predict that their equilibrium frequency will be
m/s.

DIPLOID MODELS. The extension of this model to diploidy reveals new phenomena, so that
it is important to look at that case. Suppose that migration occurs after selection, just before
random mating within the patch. It will then alter the gene frequencies within the patch, but there
will be Hardy-Weinberg proportions before selection. We will investigate only the two extreme
cases - complete dominance and complete recessiveness of A. When A is dominant things are fairly
straightforward. The equation for change of p is readily found to be
/ p(l—m)
= w (IV-27)
(s is the selection coefficient against aa). The condition for A to increase in the patch becomes
simply
1—-m>1-s5(1-p)? (IV-28)

or
m < s(1—p) (IV-29)

A little examination of this condition fills in most details of the behavior of gene frequencies in this
case. When m > s, there is no equilibrium frequency of A, which declines in frequency until it
disappears. When m < s, migration does not overwhelm selection, but there is a stable equilibrium

at
pe = 1—+/m/s. (IV-30)

if A is introduced into the patch at low frequency it will increase to this equilibrium value. If the
patch starts out all AA, the frequency of A will be reduced by immigration to this equilibrium.

The picture with dominance of A is much the same as with haploidy: the ratio between m and
s controls the frequency of A. No A genes will persist if m > s. When s is much larger than m
almost all the genes in the patch will be A.

Recessive adaptations.  With A recessive things become more complex, and a bit strange.

The fitnesses are
AA  Aa aa

1 1—-s 1-—s

and the equation for change of p is

, _ p[l-(1—p)s](1—m)
1-[2p(1-p)+ (1 -p)?s

(IV-31)

and the condition for p to increase is

1—(1—=p)s](1—=m)>1-(1—-p?s (IV-32)
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Figure 4.4: Change of gene frequency in the one-island model with migration opposed
by selection, with the locally favored allele recessive. The horizontal line is zero change
of gene frequency. In the upper case the patch of local adaptation can persist, in the
lower case it is lost.

which reduces to
—p?s + ps(l—m) — m(1—3s)>0. (IV-33)

We are only interested in cases in which s > 0, so we can immediately see that when p is near
zero, it will not increase, since (IV-33) is not satisfied if we set p = 0. When p is near 1, the
left-hand side of (IV-33) has the value —m (1 — s), which shows that p will decrease when large.
This quadratic thus has a negative value at p = 0 and at p = 1. The coefficient of the p? term is
negative, showing that the parabola opens downward. The point at which this parabola achieves
its maximum can be found by equating its derivative (with respect to p) to zero:

—2ps+s(l—m) =0 (IV-34)

which shows that the maximum is achieved at p = (1 —m)/2. Putting together this information,
keeping in mind that (IV-33) is satisfied when p increases, we must have one of the two following
circumstances: In the first case there are two equilibrium values (these are the points at which the
parabola intersects the axis). The lower one is unstable, with p decreasing below it and increasing
above it. The upper one is a stable equilibrium, though to complete the demonstration we would
have to show that there is no oscillating overshooting of the equilibrium. In the second case, there
are no equilibria, except for the equilibrium p = 0 which can be seen in (IV-32). The A allele
will continually decline until it is lost. It remains for us to find out which of these cases applies.
This can be done by examining the discriminant of the quadratic (the expression which you find
under the square root sign when you solve the quadratic). For roots to exist which are not complex
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numbers, the discriminant must be positive. For the quadratic on the left side of (IV-33) this yields

s2(1—=m)? — 4ms(1 —5) >0 (IV-35)
or since s > 0, provided s and m are both less than one,
4
S L (IV-36)

1-—s (1 —m)?

When we consider weak selection versus weak migration, the terms in s? and m? generated by the
denominators of both sides of this inequality are small compared to s and m, so that the condition
for existence of a nonzero equilibrium frequency of A becomes essentially s > 4m, just as in all the
other cases.

But case of A recessive is different. While it is true that an equilibrium frequency of A exists,
and is a stable equilibrium, when s (roughly) exceeds m, the behavior of A when rare is very
different. It can never increase when rare for there is an unstable equilibrium on the p-axis between
0 and the stable equilibrium. There is a simple interpretation of this behavior. When A is rare
it has very little selective advantage, for hardly any of the A genes are in the advantageous AA
homozygotes. There is a constant introduction of a fraction m of d’s into the island or patch.
For A to increase the effective selection coefficient favoring A must be large enough to overcome
the continued dilution of A genes by migration. In the recessive case, when A is rare its selective
advantage is nil, and it cannot invade the patch even though it might be able to persist if introduced
in high enough frequency. This is an unusual example of a type of behavior which in physics would
be called hysteresis - the population can (if s > m) maintain a high frequency of A, but if that
frequency is perturbed to near zero, it will not return. Recalling the terminology of our discussion
in chapter II, this polymorphism is stable, but not protected.

One consequence of this phenomenon should be that if an allele arises which is locally advanta-
geous, but that allele is recessive, there will be a reduced chance that the allele is able to become
the basis of a patch of local adaptation. There should thus be a selection for the dominance of
locally-advantageous alleles, by weeding out those mutants which are recessive.

Another, entirely different consequence of these results is that we should not expect to see
locally-favored recessive alleles maintained at frequencies much below 1/2. Recall that our quadratic
in p has a maximum at p = (1—m)/2, which will often be slightly below 1/2. Consider what happens
as we look at a series of cases with different values of m. When m is small A will be maintained at a
high frequency. The unstable equilibrium will be near p = 0. To see this consider that when m = 0,
one can see from (IV-33) that p = 1 is an equilibrium and so is p = 0. When we have m small,
the small amount of migration will reduce the stable equilibrium a little below p = 1 and increase
the unstable equilibrium to a bit above p = 0. As m is gradually increased, both equilibria move
toward p = (1 —m)/2 from opposite sides. When m reaches the critical threshold value defined by
(IV-36), both equilibria collide at p = (1 —m)/2, and thereafter there are no equilibria other than
p = 0. So the stable equilibrium frequency of A is reduced from p = 1 down to just below 1/2 as
m is increased, and then the pocket of local adaptation suddenly collapses, with natural selection
no longer able to maintain it in the face of migration. This behavior may be contrasted with the
dominant and the haploid cases, where the collapse of the patch occurs as the equilibrium gene
frequency (as can be seen from (IV-26) and (IV-30)) reaches zero.

REFERENCES. The case of an island with locally-adapted alleles was explored rather fully by
Haldane (1930b), who observed all of the above phenomena. Sewall Wright (1931) was aware of
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the same phenomena at about the same time. Nagylaki (1975a) has examined these phenomena
more fully for a model with weak selection, in the context of consideration of the more complicated
case of geographic continuum.

IV.9 Two-Population Models

When we considered the effect of migration on a single island or patch of adaptation, no account
could be taken of the effect of the island on its neighbors. In most realistic models of the geographic
structure of natural populations, a patch or local population will export some of its genes to its
immediate neighbors. This in turn means that some of the genes which migration brings into a
population are these recently-exported genes. Since neighbors export part of their gene pools to
each other, they thereby reduce the genetic impact of the genes they receive from each other. When
two-way migration is allowed, we should expect that maintenance of a patch of local adaptation
will not be quite so difficult as in the one-island model.

The simplest model which can show this phenomenon has two islands exchanging migrants.
Let us consider the most symmetric and simplest form of this two-island model. Imagine two
populations, each of which receives a fraction m of its genes from the other each generation. Each
population is haploid (or asexual) with discrete generations. The fitnesses of alleles A and a in
population I are 1 + s : 1, and in population II they are 1 : 1 4+ s. Thus each allele is favored
in its own population, and the selection coefficients are taken to be equal. Let us call the gene
frequencies of A in the two populations p; and ps. We assume that these frequencies are measured
at the beginning of the generation, and that selection precedes migration. After selection

. pi(l+s)
) e a——
1 + sp1
and (IV-37)
pE = b2
2 1+ s(1—p9)
After migration
Py = (1—m)pj+mp;
IV-38
_ pi(l+s)(1—m) pam ( )
14+ spp 1+s(1—p2)’

with a similar equation for p,,. We can look for equilibria of this system of equations by requiring
that p| = p1 and p, = p2 and trying to solve this system of two equations for p; and ps. But in
this case we can exploit the symmetry of the model and simplify things.

A SYMMETRIC EQUILIBRIUM. It seems reasonable that the equilibria we are seeking
should be of the form p; = p, p2 = 1 — p. That is, if the equilibrium frequency of A in
population I is p, the equilibrium frequency of a in population II is also p. This expectation comes
from the symmetry of the model: if we exchange the names of populations I and II, and then
exchange the names of alleles A and a, we still have the same model. It is not ruled out that there
might be other kinds of polymorphic equilibria, but it seems worthwhile to see if there are any of
this form. It is a simple matter to do this using (IV-38). If we substitute p1 = p, ps = 1—p,

149



and require that also pj = p; = p, then the equation becomes

_ p(+s)A-—m) (L—p)m
N 14 sp * 1+sp (1V-39)

Multiplying both sides by the denominator (1 + sp) and rearranging to collect powers of p, we
have the quadratic equation

sp® + 2m4+ms—slp—m = 0 (IV-40)

This quadratic has the value —m when p = 0 and m(1 + s) when p = 1, and since these are of
opposite sign there must be a root (exactly one, since it is a quadratic) between 0 and 1.

The equation for equilibrium gene frequency is not a particularly revealing expression, being
the solution to this quadratic. It is possible to make various approximations. The simplest is to
notice that if we let m and s both be small, we can ignore the term ms as being smaller than terms
in m or in s. The quadratic equation becomes (dividing by s)

F o+ @mfs—1)p — mfs = 0 (IV-41)

The salient fact about this equation is that its coefficients (and therefore its solution) depend on m
and s only through their ratio. Figure 4.5 shows values of p obtained by solving (IV-40) for different
values of s and m/s. The dependence of p chiefly on m/s when s is small is readily apparent.

When m < s, in the upper right corner of the diagram, the curve relating p to m/s is very
close to p =1—m/s. That can be derived from the solution of the quadratic equation when s, m,
and m/s are all taken to be small. It also makes good intuitive sense: when m is small the favored
allele is nearly fixed in each population, and immigration brings in mostly the other allele, so that
the situation is nearly the same as the one-island model, whose equilibrium frequency of A would
be 1 —m/s. When m > s, the frequency of A is nearly 1/2 + s/(8m), which can also be obtained
as an approximation from the solution to the quadratic.

ASYMMETRY AND PATCH-SWAMPING. A stability analysis of this equilibrium can
be done, although it involves two variables, p; and ps, it involves matrix algebra and we will not
reproduce it here. It can be shown that the equilibrium we have found is always stable. This
may be a bit surprising, for in the one-island model the equilibrium disappeared when m was
made large. In the two-island model the equilibrium never disappears or becomes unstable. In
fact, there is in the two-island model a behavior which corresponds to the swamping of a patch
of adaptation. It arises when the strength of selection in the two populations is unequal. This
can be seen intuitively by imagining the case in which there is selection coefficient s; favoring A
in population I, but in population II the selection favoring a is infinitely strong (sy = oc0). Then
even if migration introduces some A’s into population II, selection immediately kills them off and
returns that population to consisting entirely of a. Migration from population II to population I
thus always consists entirely of a’s. What we have done is to make the dynamics of gene frequency
in population I follow precisely a one-island model! When m > s, the A allele cannot persist in
population 1.

Asymmetry in the selection thus allows a sufficiently high rate of migration to abolish the
patch of adaptation in the population with weaker selection. By choosing to examine a case with
perfectly symmetric selection we missed this behavior. We will have a bit more information on this
phenomenon in the next section.
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Figure 4.5: Gene frequency in the two-island model as a function of s/m. The upper
two solid curves are for s = 0.01 and s = 0.02, the lower curve is for s = 0.05.

All of our discussion has been in terms of haploid selection, but the equations are exactly the
same if heterozygote fitnesses are the geometric mean of homozygote fitnesses. We could have
considered partial dominance, but that would only have made life difficult by converting quadratic
equations into cubics.

REFERENCES. The two-island model received little attention for many years. Moran (1959b)
solved for equilibria in a diploid two-island model with weak selection and migration, and he also
established the stability of this equilibrium and the instability of the other equilibria at which
both populations are fixed for the same allele. Eyland (1971) analyzed the case where selection
is not symmetric, giving conditions for existence of the equilibrium when there is a possibility of
one island’s alleles swamping the patch of adaptation on the other island. Maynard Smith (1970)
presented sufficient conditions for the maintenance of polymorphism in a two-island model.

IV.10 The Levene Model: Large Amounts of Migration

In 1953, Howard Levene set forth a model of selection and migration which it is useful to discuss
at this point because it gives us some insight as to when the contradictory selection in different
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populations gives rise to adaptations which cannot coexist. Levene’s model constitutes the extreme
in migration, complete random mating among all populations. There is a single pool of mating
individuals who mate at random. The ¢-th population contributes a fraction ¢; of them. The
resulting offspring are distributed at random among the populations (let us say that there are n
populations). Because the same mating pool contributes all the offspring, in a diploid two-allele
case each population starts out with frequencies p?, 2p(1 — p), and (1 — p)? of the three genotypes.
This is what makes the Levene Model so easy to analyze - the overall random mating leaves us
with only one variable, p, to follow.

Within each population selection occurs. Suppose that the i-th population has fitnesses w; :
1 : v; of the genotypes AA, Aa, and aa. Then after selection the gene frequency of A in the i-th
population will be ,

P i . p(1—p) : (1V-42)
pPw; + 2p(1—p) + (1—p)*v

as a result of the usual selection formulae. Now each population contributes a given fraction c¢; of
the mating pool in the next generation. The overall gene frequency p’ in that mating pool is simply
the weighted average »_ ¢;p;, which is

2
/ p” wi +p(1 —p)
p = E G 1V-43

—~ pPwi+2p(1—p)+(1-p)v (V-49)

While this looks like a complex expression, it involves only one variable, p. This makes analysis
quite simple.

If we look for equilibrium values of p, there are of course p = 0 and p = 1. The obvious way
to find equilibrium values between 0 and 1 is to set p’ = p and try to solve (IV-43) as an equation
in p. Alas, this gives us a polynomial in p of order (2n + 1) which has no known explicit solution.
However, we can easily get conditions for there to be a protected polymorphism by asking whether
p will increase near p = 0 and decrease near p = 1. When p is small, then we can ignore the rare
AA homozygotes and write (IV-43), ignoring terms in p?, (terms in p? in the numerator or in p in
the denominator)

po= S Gk (IV-44)

- (%3
2
The condition for p to increase is just p’ > p, which from this equation is seen to be
G 1. (IV-45)

— U
i

There is an exactly analogous equation for the case in which (1 — p) is small, namely

Ci

Yo — > 1 (IV-46)

W;

If both of these conditions are satisfied, there will be protected polymorphism. If not, then there
may be stable polymorphic equilibria between 0 and 1, but polymorphism may disappear if the
gene frequencies are perturbed to values near fixation.

The conditions (IV-45) require, in effect, that the weighted harmonic mean (the reciprocal of
the mean of reciprocals) of the heterozygote fitnesses exceed the weighted harmonic means of both
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homozygote fitnesses. Why weren’t the results dependent on weighted arithmetic means? If the
newborns are being randomly distributed among the populations, why didn’t the maintenance of
polymorphism just depend on the weighted average fitnesses ) . c;w;, 1, and ), ¢;v;7 The answer
to this points up an important property of the Levene model. If a fraction ¢; of the newborns were
exposed to the selection regime of population 4, and the survivors (let’s assume for the moment
that the selection is by differences in viability) were simply taken and pooled to form the parents
of the next generation, then we could simply use arithmetic weighted mean fitnesses. The average
probability that an AA individual would survive would then be ciywy + ... + chw,. The conditions
for polymorphism would simply be overdominance of these mean fitnesses.

The probability that an AA individual survives and contributes to the mating pool is, however,
not this arithmetic mean fitness. Recall that ¢; is not the proportion of newborns allocated to
population ¢, but the fraction of the mating pool which population ¢ ends up contributing. The
contribution of each population is fixed, independent of the fitness of individuals in that popu-
lation. Even if most of the individuals in population 7 are of very low fitness, the contribution
to the mating pool is still ¢;. This in effect assumes that selection in each population precedes
density-dependent population size regulation, which takes place separately in each population. The
population size, and hence its contribution to the mating pool, is determined after selection, and
essentially independently of it. Thus an individual of low fitness in a given population may be
more or less likely to end up in the mating pool, depending on the fitnesses of the others in its
population.

An example will help clarify the point. Let’s consider for the moment a haploid two-allele case,
with two populations. The two genotypes A and a are equally frequent. In one population A is
twice as fit as a, in the other the reverse:

fitness of
VReY A a

1 1/2[05 1
2 1/2| 2 1

If ¢; represented the probability of an individual landing in population ¢, and there were no
density regulation in each population separately, then the mean fitness of A would be (0.5+2)/2 =
1.25, and the mean fitness of a would be (1 + 1)/2 = 1.0. We expect A to increase. But with
density regulation in each population with ¢; being the contribution population ¢ makes to the
mating pool, we find that in population 1 the gene frequency of A after selection is 1/3, and in
population 2 it is 2/3. The resulting genotype frequencies in the mating pool are 1/2 : 1/2, the
same as the initial genotype frequencies. The separate population regulation in each population
has yielded a different outcome. That this is the critical way in which Levene’s model differs from
a single random-mating population was first pointed out by Dempster (1955).

The frequency-dependence of overall fitnesses which is induced by having densities regulated in
each population makes it easier to maintain an overall polymorphism than if there were only one
population. In the diploid case, this is a general phenomenon. Allele A changes when rare as if
it had an overall fitness of 1 while the common aa homozygote had a fitness of 1/(>°, ¢;/v;), the
weighted harmonic mean of the aa fitnesses. Likewise when a is rare, the frequency of A changes as
if the fitnesses of AA : Aa were 1/(>, ¢;/w;) : 1. It can be proven that harmonic means are never
larger than the corresponding arithmetic mean. So the effect of having density regulation in each
population is to lower the effective fitnesses of the homozygotes, making polymorphism easier to
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envisage. The reader may find it useful to compute some numerical examples.

In effect there are two things that we mean by the word “population”. The first is a group
of organisms in perfect competition. The second is a group of organisms which mate at random.
Levene’s model presents us with a divergence between the two definitions, with competition only
within populations, but mating at random over all populations.

We can use Levene’s model to find conditions under which polymorphism will be protected in
the two-population model of the previous section, provided m = 1/2; which is equivalent to having
one mating pool covering both populations. Our model of that section was a haploid model, but it
should have exactly the same dynamics as if the population were diploid with geometric fitnesses.
So let us consider the following case:

fitness of
1 ¢ AA Aa aa
1 1/2 1+ s 1 1/(1+s1)
2 1/2|1/(1+s) 1 1+ s9

Each population shows geometric fitnesses with heterozygote relative fitness 1, and with selec-
tion acting in opposite directions in the two populations (assuming s; and so are both positive). We
have allowed the selection coefficients in the two populations to differ. The object is to investigate
by how much s; and sy have to differ to eliminate the possibility of stable polymorphism. Of course
our answer will only tell us about protected polymorphism, and then only when m = 1/2.

The conditions for increase of A when rare are, from (IV-45)

s(m) + 3 () > (V47

1 +1+82
2(1+ s1) 2

and the corresponding condition for increase of a is the same with subscripts 1 and 2 interchanged:

or

>1 (IV-48)

1+ 51 n 1
2 2(1 + s9)

> 1 (IV-49)

We want to know when both of these will hold. If we express each of these by finding the limits on
s9 as a function of s1, we get from (IV-47)

s3> < _8:81 (IV-50)
and from (IV-48) .
52> 1 —231 (IV-51)
yielding the overall condition
T > 82> 7 - (IV-52)

These are fairly tight limits. If s = 0.1, then they require that

0.1111 > s5 > 0.0909
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so that so must be (roughly) within 10% of the value of s; or one patch of adaptation will swamp
the other out of existence. As the selection coefficients become smaller, the conditions become more
restrictive. When s; = 0.01,

0.0101 > s > 0.0099 (IV-53)

which means that sp must now be within 1% of s;.

We can conclude that when selection in the two populations is of unequal strength, then at
high migration rates one patch of adaptation swamps the other. At low migration rates it is much
easier to maintain polymorphism: when s; = oo we are in a one-island model, and we will still have
polymorphism (in the form of the maintenance of local adaptation to local conditions) no matter
what the value of so, provided that so > m. So both patches can maintain adaptation to local
conditions, provided that either the selection coefficients in each population are nearly equal, or that
migration is sufficiently restricted. Correspondingly, the swamping of a patch of local adaptation
will nearly always occur if there is sufficient migration, unless the strengths of selection in different
populations are rather precisely balanced.

We have thus been able to use Levene’s conditions for protected polymorphism to get some
insight into the behavior of the two-island model. Eyland’s (1971) conditions for the local stability
of polymorphism in a two-island model differ slightly from the above, but show the same general
patterns. Eyland used an additive rather than a geometric fitness pattern, and made an analysis
restricted to small values of s; and so, so it is not surprising that the results should differ, and it
is comforting that the differences between Eyland’s and our conditions disappears as s; and so are
made small. Karlin and McGregor (1972) have presented a method of small parameters, a method
which is a version of one widely used in applied physics, which can easily be used to show that
polymorphism will always be stable if m is sufficiently near zero.

REFERENCES. In addition to Levene’s and Dempster’s papers, there has been some further
general work on the Levene Model. Li (1955) showed that under Levene’s model gene frequency
changes in the direction that moves uphill on a surface which is the weighted geometric mean of
the individual population mean fitnesses (as a function of p). Cannings (1971, 1973) generalized
Li’s result to multiple alleles. Gliddon and Strobeck (1975) showed that the Levene Model could
maintain polymorphism in haploids. Maynard Smith (1962) and Prout (1968) gave conditions for
protected polymorphism when one allele is completely dominant, in which case Levene’s result
needs to be supplemented by other conditions. Karlin (1977) has presented a general mathematical
analysis of some special cases of Levene’s model, as well as intuitive speculations on more general
patterns.

IV.11 Selection-Migration Clines

Having examined these simple geographic structures, we can more readily understand more realistic
situations. Complete realism is unattainable, save at the sacrifice of mathematical tractability. The
compromise we examine in this section is the simplest models yielding clines, situations in which
a regular geometric arrangement of populations and a simple pattern of selection yields a smooth
unidirectional pattern of change in gene frequency. Clines were defined by Julian Huxley as smooth
gradients in the average value of a character. Here we take the character to be gene frequency. We
will look at some simple arrangements which generate clines.
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CLINES IN A STEPPING-STONE MODEL. We start with some numerical results. We
consider an infinite one-dimensional stepping-stone model, with discrete generations. Each popu-
lation receives a fraction m/2 of its mating pool from each of its two neighbors, and 1 — m from
itself. Each generation consists of selection, followed by migration, and then random mating. The
populations are numbered with consecutive integers -5, -4, -3, -2, -1, 0, 1, 2, .... Selection is assumed
to involve geometrically intermediate heterozygotes: alternatively we may regard this as a haploid
model. Each population has its own selection coefficient on A (as usual, we have two alleles).

All that we have done is to generalize to a stepping-stone model the two-population selection-
migration model of previous sections. It will be convenient to alter the model of selection slightly
to make it additive rather than geometric: the fitnesses of A : a (if we consider the model haploid)
are 1+ s;/2: 1 — s;/2. This has the merit of being symmetrical: a selection coefficient +s in favor
of A should be exactly as much selection as one of —s in favor of a. The equations for change in

gene frequencies are
« pi (1+5i/2)
b; = ) IV—54
1 + s (pi — 1/2) ( )

and
pi = (m/2)pi_y + (L—m)p; + (m/2) piyy. (IV-55)

No algebraic solution of these equations is known, for any other than biologically uninteresting
cases (such as all s; the same). There are, after all, an infinite number of nonlinear equations to
solve, even to get equilibria by requiring that p; = p; for all i. A little examination will show that
there are always the solutions in which all the p; are 1 or all are zero. After all, neither selection
nor migration can create an allele when it is absent. But the solutions we are most interested in
would have p; near 1 in regions where s; > 0 and near zero when s; < 0.

While finding solutions algebraically may be impossible, there is no difficulty in simply iterating
them numerically. We are interested for the moment in two patterns of selection. In one, which I
call the “step”, the selection coefficient shifts abruptly as an environmental boundary is crossed.
In populations 27, 28, 29, ... the selection coefficient favoring A is s, and in populations 1, 2, ... 23,
24, 25, 26 it is —s. Each allele is favored in its own region. The other pattern I call the “ramp”.
It represents the case where an environmental factor changes smoothly, with selection coefficients
against A gradually weakening until A becomes favored, at first slightly, then more strongly. The
selection coefficient s; in this pattern might look like this:

—3.55,—2.5s,—1.55,—0.55,0.5s,1.5s,2.5s, 3.5s, ....

Of course we cannot actually numerically iterate the full set of equations (IV-52) and (IV-53), for
we would have to compute an infinite number of quantities every generation. Instead, we take a
suitably large number of populations (in the present case 16), so that the terminal colonies are
nearly fixed one way or the other. The finite stepping stone differs from the infinite stepping-stone
model in that the end populations do not receive immigration from neighbors on one side. If all
these populations are fixed for the same allele, then it makes no difference whether or not the end
colony receives immigrants from one or both sides.

Figure 4.6 shows the equilibria which result when we iterate these equations. In both the step
and the ramp patterns of selection clines are produced. The terminal populations are so near
fixation that we can have some confidence that the infinite stepping-stone model would show a
similar pattern.
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Figure 4.6: Clines in a ramp case (squares) and in a step case (circles). In both cases
m = 0.3. In the ramp case s = 0.1 and in the step case s = 0.09. This approximately
matches the slope in the center of the clines so that the differences in their shape are
more easily seen.

The clines are similar in shape - in fact the strengths of selection were chosen so as to result in
clines of similar slope near the center. Notice that a cline resulting from a step pattern of selection
is not itself a step pattern of gene frequency. Migration introduces alleles from each side of the
environmental transition into the other, rounding off the pattern of gene frequencies into a smooth
cline. The “step-cline” beloved of some evolutionists - the sudden absolute change in a character
as a boundary is crossed - is more of a myth than a reality. It is only possible when selection
is infinitely strong, so that migrants crossing the boundary are instantly killed, or else when no
migrants at all cross the boundary. A smooth cline of gene frequency can be the result of either a
sudden transition of selection coefficients (a step) or a smooth change (ramp). Although there are
quantitative differences in the shape of the cline in these two cases, a glance at the Figure should
convince you that our chances of distinguishing between these patterns in the field is nil, given
sampling errors, historical perturbations, and the geographical inhomogeneities of actual patterns
of migration and selection.

Another sort of information we get from iterating these equations numerically is the rate at
which the equilibrium cline shape is approached. We do not have space for an extensive treatment
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of this matter, but suffice it to say that the fraction of the distance toward the final cline shape
which the collection of populations moves is roughly indicated by the sizes of the migration rate m
and the selection coefficients s;. It is a function of all of these but is about the size of the larger of
m and s;, at least, those s; in the middle of the cline. So if we have a step pattern of selection, with
s =m = 0.1, it will take on the order of ten generations to move a substantial distance toward the
ultimate cline, while if s = m = 0.01, it will take on the order of 100 generations. In the case of
a step pattern, a gene from one region survives an average of 1/s generations in the other region
before succumbing to selection. So the A alleles in the region in which a is favored have existed
there no more than 1/s generations. The cline should re-establish itself in at most a few multiples
of that time if we eliminate each allele from the “wrong” region. We will use numerical iteration
more after we have used theory to make some predictions to check.

APPROXIMATE SOLUTIONS OF CLINES: A DIFFERENTIAL EQUATION. If we
assume that m and the s; are small, and alter the geography a bit, then we can convert the system
of nonlinear equations (IV-52) and (IV-53) into a differential equation. From that equation we can
get information on the slope of the cline, and in some cases we can solve for the entire shape of the
cline. The change in geography is to imagine that populations are packed so closely in space that
we in effect have a true continuum of populations. We can index position by a coordinate x which
runs from —oo to +00. At position z the gene frequency is p(x) at equilibrium, and the selection
coefficient favoring A is s(z). As before we consider a haploid (or geometrically-intermediate
diploid) population with discrete generations.

Since in a continuum there is no notion of the “next” population, we must alter the migration
scheme a bit. Let M(y)dy be the probability that an individual at point x after migration came
from the interval between x +y and = 4+ y + dy. The counterpart to equation (IV-1) is the integral
(in effect a summation) over all possible displacements of the individual by migration:

p(z) = / M(y) p* (= +y) dy. (IV-56)

If migration is weak, migrants come almost entirely from nearby locations (small values of y), so it
is legitimate to approximate p*(z + y) by its Taylor series:

/M(y) [p*(x) +y dpd*a(jx) + %2 6552*] d

dp*(x)
dx

12

p(z)

(IV-57)
1 d*p*(x)
2 dx

12

p*(m)/M(y)dy + /yM(y) dy + /yQM(y) dy.

Of the three integrals on the right-hand side of (IV-57), the first is simply the sum of all
probabilities of different origins of an individual, and thus is 1. The second is E(y), the expectation
of the displacement under migration. Note that the displacement is mot the distance migrated,
but has a sign indicating the direction of migration. We are primarily interested in the most
straightforward cases, and these are cases in which migration by an amount +y is just as probable
as migration by an amount —y, so that there is no directional tendency to drift rightwards or
leftwards on the average. In these symmetrical cases the average displacement E(y) is zero, so that
the second term will vanish. The third integral is E(y?), the mean square displacement. When
E(y) = 0, this is also the variance of the distribution whose density function is M (y). This quantity
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we use to measure the amount of migration, and call m. Note that in the discrete stepping stone
model where migration involves y = +1 with probability m/2, y = —1 with probability m /2, and
y = 0 with probability (1 —m), E(y?) does in fact turn out to be m.

The result of these changes in (IV-55) is

(IV-58)

the terms ignored in the Taylor series being terms in m?.
The quantities p*(x) are the gene frequencies before migration, after selection. Since s(z) is

small, we have approximately

p(x) =~ p(x) + s(z)p(@)[l —p(@)], (IV-59)

ignoring terms containing s2(z). This can be substituted into (IV-56). If the product ms(z) of
two small quantities is also ignored, the result is

m d*p(z)
2

o (IV-60)

P(z) = pl) + s(z)p(@)[l-pl@)] +
At equilibrium, we can erase the prime on p’(x) and make it p(x). Then writing p(z) as p and s(z)
as s (but keeping in mind that these are functions of x), we have the differential equation

m d*p
— — 1- = 0. IV-61
" AP sp-p) (v-61)
It is on this equation that we concentrate.

An alternative derivation of the equation is to take (IV-52), substitute it into (IV-53) and ignore

terms in m?, s;m, and s?, getting

pi =~ pi + sipi(l—pi) + % [Pi+1 — 2pi + pi-1)- (IV-62)
The differential equation then arises when we approximate the second order difference in the
rightmost term by d?p/dz? and the difference between p; and p; by dp/dz. This differential equation
was first obtained by Fisher (1937) and was also given by Haldane (1948) and Fisher (1950). The
latter two papers use it to try to solve for equilibrium positions of clines, but Fisher is forced to
solve numerically rather than exactly. Fisher’s 1950 paper is almost certainly the first application
of computers to biology, as his cline computations we carried out on the Cambridge University’s
EDSAC, the first (or perhaps second) stored-program electronic computer operational, within a
few months of its completion (see Wilkes, 1975).

APPROXIMATE SOLUTIONS OF CLINES: THEIR SHAPE. In one case, the full
solution of equation (IV-59) is available. In his pioneering paper on clines, Haldane (1948) gave the
solution for the case of a step pattern with symmetric selection. The solution of this differential
equation is tedious, and since it is the only case of interest which can be easily solved it is not
particularly useful to go over the steps of the solution. The result is, for z > 0

pla) = —% +g (tanh [(M) 2 + tanh™! ( 2/3)} )2, (IV-63)
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where tanh(y) = (e¥ —e7¥)/(e¥ + e7¥) and tanh~'(,/2/3) turns out to be 1.1462158. It can be
verified that this has the slope given in (IV-70). When 2 < 0 there is a corresponding formula
which has the same slope, but reflected so that p(—z) = 1 — p(z). For details of the derivation see
the step-by-step explanation by Roughgarden (1979, pp. 243-246).

In most other cases the only solutions to the basic differential equation (IV-59) are numerical.
The earliest papers on equilibrium clines, those of Haldane (1948) and Fisher (1950), presented
numerical solutions of different cases. Haldane found the equilibrium for a step pattern of selection
and a completely dominant gene, Fisher for intermediate dominance and a smooth ramp pattern
of selection. Slatkin (1973) presented numerical solutions for a number of different cases. Slatkin’s
solutions were not actually of the differential equation (IV-59), but of the integral equation which
gives rise to it, (IV-54). Slatkin gives a number of numerical results validating the notion of the
characteristic length. May, Endler, and McMurtrie (1975) have presented further numerical results
and scaling arguments supporting Slatkin’s generalizations.

APPROXIMATE SOLUTIONS OF CLINES: THEIR SLOPE. We can use the differential
equation to solve rather simply for the slope of the cline in the case of the step pattern of selection.
In that case, in the right-hand half of the cline s(x) = s, so that there the differential equation is

d’p 25
a2 - T m p(1—p). (IV-64)

Let y = dp/dx be the slope of the cline. Then this equation can be rewritten

dy 2s
— = — — p(1 —p). Iv-
Yo T pnyp) (1V-65)

For the moment, let us rename 2s/m by letting a = 2s/m. Now divide both sides of (IV-65) by
dp/dx =y. We get

dy /dp
A IV-
-/ I ap(l—p)/y, (IV-66)
or d
Y
22— _ap(l-— V-
i ap(l—p)/y, (IV-67)
so that
ydy = —ap(l—p)dp. (IV-68)

We have managed to obtain an equation in which the variables are separated, and we now simply

integrate both sides, getting
2 2 3

y
I — ¥ 2y V-
> +C 5t (IV-69)

where C' incorporates the undetermined constants of both integrations. We can determine C by
using boundary conditions. As we move out to the right, the cline approaches p = 1 and is
increasingly flat. This means that “at” p = 1 the slope y = 0. Requiring that this be true in
(IV-69) by substituting in these values of p and y, we find that C' = —a/6. So we can solve for y,
the slope as

(IV-70)

2 1/2
3 3 '

a 2
y = [g—ap”+p
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Table 4.1: Comparison of slope of a stepping-stone model cline with m = 0.1, the
corresponding approximation from the slope in the center of the gene frequency curve
predicted from the differential equation, and a better approximation from the differential
equation’s predicted gene frequencies at 0.5

s slope (exact) slope (approx.) slope(better)

0.005 0.123 0.129 0.123
0.01 0.176 0.183 0.170
0.02 0.246 0.258 0.233
0.05 0.374 0.408 0.347
0.1 0.499 0.577 0.458

The specific case we are interested in has a symmetric step pattern of selection, so that s(z) = s if
x>0, and s(x) = —s if x < 0. The solution we are interested in runs through p = 1/2 at = = 0
(which is not to say that there might not be other solutions as well). Substituting in p = 1/2 and
recalling the definition of a, we find that the slope in the center of the cline will be

dp s \1/2
doe <3m> ' (IV-71)

The slope depends on s and m only through their ratio, but it is less obvious that it should be
proportional to the square root of their ratio. This is a result different from the one-island case.
There the slope, actually the difference in equilibrium gene frequencies between populations, was
1—m/s.

We can compare this approximation to the slope found when we iterate equations (IV-52)
and (IV-53) to equilibrium and evaluate the difference between the two central populations Table
4.1 shows the comparison between the two slopes. The results of the iteration are in reasonable
agreement with our approximation. The agreement is better when s is small (and would presumably
have been even better if m had been smaller). We do not expect the two numbers to be exactly
the same because in the iteration the slope is measured at two points each 1/2 unit from the center
of the cline. Even if the approximate solution were to exactly interpolate the points of the discrete
iteration, since the curve is sigmoid (“S-shaped”) its slope would be higher in the exact center than
if measured between two points each 1/2 unit distance from the center. In the rightmost column
of the table this is computed using the solution for the continuous cline (equation IV-63 below).

The “exact” iterations in Table 4.1 are only exact for a region 16 populations in length: in a
truly infinite array of stepping stones we expect the cline to have a slightly different (in fact slightly
higher) slope, because of the absence of end effects.

THE CHARACTERISTIC LENGTH OF A CLINE. There are many variants on the cline
which can be investigated by numerical solution of the differential equation (IV-59). One leads to
recognition of a phenomenon of particular importance, first pointed out by Slatkin (1973). This is
the existence of a characteristic length of a cline.

We know that for a step pattern of selection with parameters s and m, the slope of the cline at
its center is (s/3m)'/2. If the cline had this slope throughout its central region, then it would go
from 0 to 1 in a distance of \/3m/s. If we take the quantity y/m/s, this will be slightly more than
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half this distance. We call this quantity ¢. the characteristic length of the cline. We now show that
it has some meaning beyond this interpretation. Slatkin showed that a variation in fitness which
is substantially shorter in extent than /. is too short for selection to respond to. He did this by
placing in the middle of the cline a region with no selection, and asking how long it has to be before
it has a noticeable effect on the shape of the cline.

CHARACTERISTIC LENGTH AND SWAMPING OF PATCHES. We saw in Moran’s
two-island model that if selection was asymmetric, the export of alleles from one island could
overwhelm selection against them on the other. A similar phenomenon occurs in clines, and the
notion of characteristic length plays a role, one which rather neatly fits in with its other effects.
Each end of a cline of finite extent can be regarded as in a battle with the other. Selection in a
given region reduces the frequency of the ill-adapted allele in that region. The export of alleles by
migration reduces the frequency of those alleles in their own region of the cline, thus making the
first region less susceptible to swamping by immigration. The second region is engaged in the same
“activities”. The stronger is selection in each region, the less likely it is to be overwhelmed by an
influx of unfavorable alleles.

Another factor favoring retention of locally adapted alleles in a region is the length of the region.
The shorter a region is (in terms of distance from the boundary), the larger is the fraction of its
gene pool which consists of new immigrants. For a given rate of migration, whether each patch
persists depends on both the strength of selection in that patch and the length of the patch. As
migration rates are increased, one patch of adaptation will be lost before it can swamp out the
other patch.

There is then an amount of migration which does not allow local adaptation in both regions. It
is particularly interesting that this seems to depend on the characteristic length of the cline. Table
4.2 shows results from numerical solutions of the stepping-stone model (IV-54) and (IV-55). The
length of the species range is 16 populations, the first 4 of which have A favored with selection
coefficient s, and the last 12 of which have a favored to the same extent. It can be seen from the
Table that the value of s at which the smaller patch disappears corresponds to a characteristic
length which is about twice the length of the patch. This is a fairly general rule. If the patch is
being eroded by immigration from both sides the critical threshold is reached when £, is roughly
equal to half the length of the patch.

It might be thought that this poses a problem for the species: if adaptation to a local environ-
mental variation cannot occur if it is smaller than £., surely this means that there would be regions
which were small but in which the environment was very unfavorable to the nearby genotypes. In
such cases local adaptation to the region would not occur, and the organism would never be able
to adapt to the region well enough to survive there. This problem does not occur. If selection is
strong in that region, then that will reduce ¢, (which has s in its denominator). The result will be
that if s is large enough /. will be small enough to allow local adaptation to occur.

Hanson (1966) found the approximate collapse of a pocket of adaptation, but was misled by his
numerical methods into believing that in such a case a small frequency of the locally-adapted allele
would exist at equilibrium. The first person to point out that the collapse of a patch of adaptation
would be absolute was Nagylaki (1975). Fleming (1975) and Conley (1975) have applied various
analytical mathematical techniques to prove theorems concerning the existence of stable clines in
cases of habitats of finite length.
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Table 4.2: Numerical solution of stepping-stone cline with step pattern of selection.
Details of case explained in text. The table shows the maximum gene frequency in the
smaller patch as function of s, for m = 0.1. The characteristic length of the cline is also
given.

S Pmaz 1%
0.1 0.994 1
0.05 0974 1.41
0.02 0.895 2.24
0.01 0.769 3.16

0.005 0.557 4.47
0.003 0.320 5.77
0.002 0.058 7.07
0.0019 0.019 7.25
0.0018 0 7.45
0.0015 0 8.16
0.001 0 10

IV.12 The Wave of Advance of an Advantageous Allele

Fisher (1937) and Kolmogorov, Petrovsky, and Piskunov (1937) posed an ingenious problem which
has led to much interesting mathematical work. Imagine a large region in which allele A is at an
advantage over a, the advantage being the same everywhere. If we introduce a few copies of A
into one area, they will increase in frequency and then descendants will also begin to spread out
horizontally. There will form a “wave” of A individuals (or genes) which will propagate through
the region, ultimately ending in fixation of A everywhere. These authors posed the problem of
determining how fast the wave travels, and what its shape is. This problem happens to lead to
fascinating mathematics, and has become a favorite exercise for mathematicians specializing in
differential equations, although these subsequent investigations have added little of substance to
Fisher’s treatment. All we shall do here is to present the basic differential equation, and cite a few
of the conclusions.

With haploid selection and selection coefficient s, an argument similar to that which leads to
equation (IV-58) yields

plt+1) ~ plat) + splat)[1—plat)] + = Pp(a,t)

S (IV-72)

In this case, since we are not dealing with an equilibrium cline, we have indexed p by t as well
as x, in which case the second derivative must be a partial derivative. The argument implicitly
assumes that s and m are small. In that case, we will not go far wrong by approximating p(z,t+ 1)
by its Taylor series expansion around p(z,t),

plz,t+1) ~ p(z,t) + (IV-73)



so that we get (dropping the arguments of p but keeping in mind that it is a function of x and t),

2

% = sp(l—p)+% %
which is the partial differential equation of the system. In particular, we are interested in the
solution curves which propagate unchanged in shape at a constant velocity. If the velocity right-
wards along the x axis is v, then moving rightwards by an amount v dt at time ¢ should involve
as much change in gene frequency as moving back in time by an amount dt, so that we have the
wave condition that the velocity of the wave, times the negative of its slope, is the rate at which
the water rises

(IV-74)

Ip Ip
= - = IV-75
e ot (IV-75)
which can be substituted into (IV-72) to get
m 0%p dp
Ll 4 - 1—p) = IV-
28x2+v<9m+8p( D) 0 (IV-76)

This equation has no explicit solution, but Fisher obtained information regarding the velocity

v. It turns out that depending on the initial pattern of gene frequencies, there may be waves of

different velocities. But the wave of greatest biological interest corresponds to the slowest possible
velocity, which is

v = V2ms. (IV-77)

The methods by which this is established are discussed in some detail by Moran (1962). References
to further work are given by Hadeler (1976).

While the mathematics involved is no doubt challenging, some caveats are necessary. In some
cases (e.g. a recessive advantageous gene) a wave does not even exist. If the environment has
inhomogeneities, as in a stepping-stone model, they can severely affect the speed of the wave, so
that the result (IV-75) may not accurately approximate more realistic spatial distributions. The
speed of propagation of a wave depends critically on the exact shape of the leading edge of the
wave, so that genetic drift may also have an effect on wave speed. Slatkin and Charlesworth (1978)
give a numerical simulation in which a stepping-stone model with finite populations achieved only
half the wave speed predicted by the Fisher theory.

There is thus reason for skepticism of the relevance of the theoretical result. The question is
of some importance, because a wave of advance would be difficult to distinguish from a stationary
cline in practice, and we would like to know how easily we may be thus misled about the type of
selection present. In chapter VII we will see that genetic drift can also mimic a cline if conditions
are right.

Exercises

1. With three alleles, find a set of gene frequencies in two populations which give more heterozy-
gotes than expected under Hardy-Weinberg proportions for at least one of the heterozygous
genotypes, if we sample from a mixture of the two populations.

2. When linkage disequilibrium is created by an initial admixture of two populations, each in
linkage equilibrium, but with both loci having different gene frequencies in the two popula-
tions, what will be the formula for the decay of D with time?
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3. In a two island model with immigration rates 0.1 and 0.2 into the islands, whose initial gene
frequencies of an allele are respectively 0 and 1, what will be the equilibrium gene frequency?
(Hint — find a quantity a which has the property that if p; and py are the frequencies of the
allele in the two islands that the weighted average ap; + (1 — a)po stays unchanged from one
generation to the next).

4. Can you construct a case with two populations exchanging migrants at a constant rate, in
which the gene frequency in a population oscillate but ultimately settle down to an equilib-
rium? A numerical example will suffice.

5. Suppose that we have two continents, one with a gene frequency of 1.0 for allele A, and the
other with a gene frequency of 0. Between them stretch a chain of islands that form a perfect
stepping stone model, with migration rate m/2 between adjacent islands, and migration
rate m/2 into each of the terminal islands from the nearby mainland. The mainland gene
frequencies are unaffected by the gene flow across the islands, because the continents are so
big. There is no selection or mutation. What is the equilibrium array of gene frequencies in
the islands? (Hint — the pattern is the same no matter what the number of islands. Don’t
bother to derive the equilibrium from first principles, you will probably succeed if you make a
good guess and then verify that it is the equilibrium).

6. In the one-island model, what will be the “migrational load” as a function of m and s?
Investigate the cases where the allele favored on the island is dominant, and where fitnesses
on the island are geometric. You can assume that m > s.

7. For different degrees of dominance of A in a one-island model, obtain from an intuitive
argument the conditions for A to increase in its island if initially present in very low frequency.
How does this compare with the conditions for A to have an equilibrium gene frequency which
is nonzero? What does the comparison of these two sets of conditions tell us about the patterns
of dominance will we see among locally adapted alleles (as compared to the dominance of a
random sample of locally favorable new mutants)?

8. For the haploid Levene model of section (IV.9), with two equal-sized patches having fitnesses
of A:a of05: 1and?2: 1, what will be the behavior of the gene frequency of A as a
function of its frequency p?

9. What is the expression for the “slope” of the gene frequencies in the two-island model with
haploid selection? How does it compare numerically with the slope from (IV-69) for an
infinitely long cline in cases with small s and small m? What are the intuitive explanations
for any discrepancy?

10. On intuitive grounds, do we expect that a cline of finite length will have a greater or a lesser
slope than a cline in a habitat of infinite length? Why?

Complements/Problems

1. In a mixture of populations, express the general formula for E[P4, 4] in terms of covariances
of allele frequencies. In a two-allele case, can E[P4,4,] ever be less than the product of the
mean gene frequencies of each allele?
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. In a mixture of gametes from populations which are themselves not in linkage equilibrium,
what is the expression for D in terms of m;, p;, ¢;, and D;? In terms of covariances between
and within populations?

. With two parental populations and an admixed population, with observed (sample) gene
frequencies p1, po2, and p.q, and with sample sizes ny, ng, and nyg, what is the maximum
likelihood estimate of the degree of admixture? Be sure to consider all cases.

. Suppose that admixture occurs by male sailors from population 2 settling down in population
1. How will the effects on gene frequency differ if we compare autosomal vs. sex-linked loci?

. In the general two-island model with immigration rates m; and me, what is the equilibrium
gene frequency as a function of the initial gene frequencies p;(0) and p(0)? Now suppose
we assume that the different values of m; and mo are due to there being an equal number
of migrant individuals M in each direction, but different population sizes N1 and N, in the
islands. Express the above result in terms of Ny, No and M rather than m; and mo. Why
does the result make good intuitive sense?

. Suppose that we have a stepping-stone population structure with migration rate m and no
selection. Imagine a region in which gene frequency is initially a linear function of position.
Will the gene frequencies change? What is wrong with this result?

. Why didn’t we use 20 rather than 16 populations in the numerical calculations of equilibrium
gene frequencies for the ramp pattern of selection? (It wasn’t just the numerical difficulty -
it was a cover-up. Unmask this dastardly deed.)

. What would be the “migrational load” in a cline if we roughly approximate the cline by saying
that gene frequency is linear from 0 to 1 with slope /s/3m in the middle of the cline and
either 0 or 1 beyond there?
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Chapter V

INBREEDING

V.1 Introduction

We now deal with the consequences of non-random mating. There are two important kinds of non-
random mating: assortative mating and inbreeding. The first is preferential mating of individuals
with similar phenotypes. For example, at a locus with two alleles, aa individuals might mate
only with other aa individuals, and A- individuals (AA or Aa) might mate only with other A-
individuals. The second type of non-random mating is inbreeding. Inbreeding is the preferential
mating of relatives, where the probability of mating depends only on the degree of relationship, with
the genotype or phenotype not further affecting the chance of occurrence of a particular mating,
once the degree of relationship is known. In this chapter we are concerned only with inbreeding.

B C D

\ /Q\ %
EQ\ j
O

Figure 5.1: Pedigree example. Circles are females, squares males. Arrows point from
parents to offspring.

Nonrandom mating seems at first to be a prohibitively difficult phenomenon to deal with.
Consider the situation shown in Figure 5.1. Two half-sibs, F and G, have mated to produce an
offspring, H. Suppose that a great many such half-sib matings occurred, and that in each mating,
the three original parents B, C, and D were taken at random from a random-mating population
with two alleles A and a, at gene frequencies p and 1 — p. What would be the fraction of the
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AA aa

Figure 5.2: A particular assignment of genotypes compatible with the pedigree of Figure
5.1 and with the Mendelian rules. There are 155 such assignments, 45 of which have
individual H as AA.

resulting individuals (those designated H) who were (say) AA? The straightforward approach is to
consider all possibilities. Each of the three founding individuals B, C, and D could be any of the
three genotypes, so that we start with 3 x 3 x 3 = 27 possibilities. For each of these there are
further possibilities for the genotypes of F and G. Thus, if B, C, and D were respectively AA, Aa,
and aa, E could be either AA or Aa, and G could be Aa or aa. There are then further possibilities
for H, so that if Eis AA and G is Aa, H could be either AA or Aa.

The particular assignment of genotypes to individuals shown in Figure V.1 has a probability of

P 2p(1 = p) x (1—p)> X = x & x 2 (V-1)
2 2 2

Summing this sort of probability over all possibilities in which H is AA, we could obtain the
probability of this event. But it would be very tedious. There are 3¢ = 729 possible assignments
of genotypes to individuals. Of these, 155 do not violate the Mendelian rules in the assignment of
genotypes to phenotypes. Of those, 45 have individual H being AA. Of course, as the individual
cases are not equiprobable, the actual probability of H being AA is not 45/155. Rather, it is a sum

of 45 terms, each a probability of the same sort as (V-1).

Clearly, this approach is difficult to carry out, even on a simple pedigree such as this one.
Fortunately a much simpler, although subtler method is available. It was invented and developed
by Sewall Wright (1921a, b, c), although the version presented here is Malécot’s (1948, 1969), who
re-worked Wright’s methods in terms of probabilities rather than partial regression coefficients.

V.2 Inbreeding Coefficients and Genotype Frequencies

The solution to the problem posed in Figure 5.1 will be easy if we can calculate the inbreeding
coefficient fz of individual H. The inbreeding coefficient of an individual is the probability that
the two gene copies present at a locus in that individual are identical by descent, relative to an
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appropriate base population. Two genes are identical by descent if, and only if, they are descended
from the same individual gene copy. Now of course we must stop somewhere as we trace back the
ancestry of the two genes. Otherwise any two gene copies would be certain of being identical by
descent, provided that life has a monophyletic origin. The function of the base population is to set
the context of the problem. In the base population, all gene copies are assumed not to be identical
by descent.

Once we know f for an individual, it is not hard to calculate the expected genotype frequencies.
There are two cases. A fraction f of the time, the two gene copies in the individual are identical by
descent. If so, then in the two-allele case both will be A if the gene from which they were copied in
the base population was an A. This will be so p of the time, where p is the frequency of A in the
base population. If the two copies that are identical by descent are descended from a copy that is
a, then both copies will be a, which will happen 1 — p of the time. A fraction 1— f of the time, the
two gene copies in the individual will not be identical by descent. They are then descended from
different copies in the base population. Under the particular assumption that the base population
was formed by random mating and is in Hardy-Weinberg proportions, p? of the time both gene
copies will be A. Putting all of this together, the expected genotype frequencies will be

AA PP (1—f) + pf
Aa 2p(1-p) (1—f) (V-2)
aa 1-p?(1-f) + Q-pf

Note that we have not only assumed that the base population is in Hardy-Weinberg proportions,
we have implicitly assumed that there is no mutation, since we assume that in the time since both
gene copies originated from the same copy, there has been no further mutation. The assumption
that two gene copies not identical by descent have, in effect, been drawn at random from the base
population implicitly assumes that there are no differential viabilities or fertilities.

Extension of (V-2) to multiple alleles is straightforward. If both gene copies are identical by
descent, the probability that the individual is an A; A; homozygote is p;. If the gene copies are not
identical by descent, then the probability of any genotype is simply its Hardy-Weinberg probability.
Then the genotype frequencies will be:

Aidi pP(1—f) + pif
(V-3)
AiAj 2pipj (1= f) (where i # j).

In the case of the pedigree in Figure 5.1, it will turn out that fir = 1/8. The base population is
the population from which the individuals B, C, and D were drawn. In that population, the alleles
A and « had gene frequencies p and 1 — p. So the probability that H is AA is simply

7T 1
h = p, V-4
Pt gp (V-4)

the chance that it is Aais 14/8 p(1—p), and the probability that it is aais 7/8 (1—p)2+1/8 (1—p),

which when expanded becomes

1 — —p+ $p° (V-5)



Notice that the average gene frequency of A among individuals produced by the same mating
scheme leading to H is simply p, since

7, 1 114

Z - Z (1 — = . -
g P +8p+28p( P) p (V-6)

More generally, the gene frequency of A among all individuals having inbreeding coefficient f is

PO f) +pf + gxw1-p(-f) = pl-f+pf = p (V-7)
The reader may verify that the same relationship holds for multiple alleles. Inbreeding does not
affect gene frequencies, on average. But it does affect the probability of co-occurrence of two A or
two a genes in the same individual.
Expressions (V-4) show how easy it is to compute genotype frequencies once we know f. If
there is a simple method for computing f itself, then the inbreeding-coefficients approach will be
decidedly superior to direct enumeration.

V.3 The Loop Calculus: A Simple Example.

In the pedigree in Figure 5.1, the fact that H is partly inbred is the consequence of the fact that
both the mother of H (namely F) and the father of H (namely G) share a common ancestor. Thus
it is possible to trace back from H through E to the common ancestor, C, and then from C'through
G back to H. A common ancestor creates at least one loop in the pedigree. A method of calculating
f was developed by Wright (1922) which works by finding and examining loops in the pedigree of
the individual whose f must be computed. Figure 5.3 shows the same pedigree, redrawn in the
form we will use it. If H has two gene copies which are identical by descent, this must reflect the
fact that the copy in gamete e is descended from the copy in gamete ¢, that the copy in c is copied
from the same gene copy in C as is the copy in ¢/, and the copy in g is descended from the copy
in G. These events have easily-computed probabilities, dependent only on the Mendelian rules of
inheritance. Let us denote the event that “the gene copies ¢ and ¢ are identical by descent” by
(¢ = ). Suppose that we denote the event “the gene copy in e is a copy of the gene copy in ¢”
by (e <« ¢). We distinguish between < and = because one gene copy may be identical by descent
to another without being a direct copy of it. Note that we have no use for individuals B and D in
this computation, so that they can be omitted from the pedigree. We want to compute

fa = Prob (e g)
(V-8)
= Prob [(e «+ ¢) and (¢ =) and (¢’ — g)].

But the events (e « ¢), (¢ = ), and (¢’ — g) are independent of one another, so that we can
multiply their probabilities.

fo = Prob (e « ¢) x Prob (¢ = ¢) x Prob (¢ — g). (V-9)

The probability that the gene copy in e is descended from that in ¢ is clearly 1/2, as that is the
fraction of time that the gene in e arises from the maternally-derived gene in E. The event (¢ = ¢/)
is a bit more complex. If ¢ and ¢’ are both descended from the left-hand (maternally-derived) gene
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Figure 5.3: A simple example of inbreeding. The same as Figure 5.1, except that the
gametes and the origin of the gene copies are shown, and extraneous individuals are
deleted from the pedigree. The braces under individuals emphasize that each gamete
contains at random one of the two gene copies at the locus in the parent individual.

in C, they will be identical by descent. This event has probability 1/2 x 1/2 = 1/4. But ¢ and ¢
could also be identical by descent through both being copies of the right-hand (paternally-derived)
gene in C, an event which also has probability 1/4. If they are descended from different copies in
C, they cannot be identical by descent. So Prob(c=¢) = 1/4+1/4 = 1/2. The event (¢ =)
is clearly independent in its occurrence from (e < ¢), as whether ¢ and ¢ are copies from the same
gene in C has to do with the random alignment of chromosomes in two successive meioses in C,
and whether (e « ¢) depends on the random alignment of chromosomes in a meiosis in E. The
event (¢ — g) is clearly of the same nature as (e < ¢), and has probability 1/2, and is independent

of the other two events. So L1 1
= — — - = 1 . —]_
fu 5% 3 %5 /8 (V-10)

This is the value previously stated, and justifies the formulas (V-4).

The computation of f makes the same assumptions as the direct enumeration method. For
the stated probabilities to be correct, there can have been no mutation. The assumption of no
natural selection plays a more hidden role: if there is natural selection, an individual receiving
(say) the left-hand gene copy in F may be more likely to survive to adulthood than if it received
the right-hand gene copy. This makes that individual more likely to be included in the pedigree,
and biases the probability Prob(e < ¢) away from 1/2. Interestingly, we must not only assume
that there is no natural selection acting at the locus with which we are concerned, but we must
also assume that there is no natural selection acting at any locus linked to it.

We have not discussed the way in which the definition of the base population has entered into
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Figure 5.4: A more complex pedigree.

the computation of fr. The base population is the initial population from which B, C, and D
were drawn. We assumed that if the gene in e came from B, or the gene in g came from D, or if
the genes in e and g came from different genes in C, then the two genes in H could be regarded
as drawn at random from the base population. This implicitly defines the base population as the
one from which B, C, and D were drawn, and assumes that population was in Hardy-Weinberg
proportions. If B, C, and D actually came from a different situation, for example a population of
Fy offspring from a cross of two pure lines, then the method of computation given here will not
work.

V.4 The Loop Calculus: A Pedigree With Several Loops.

The pedigree in Figure 5.4 will serve as an example of the use of the loop calculus in its fullest
form. Extraneous individuals have again been omitted (one parent each of G, C, and D).

Three loops lead from g to h which are relevant. The first loop is IGECBDHI. This cor-
responds to the events (g «— e «— ¢ «— b =V — d — h). The probability that the copy in g
is identical by descent to the copy in h through this route is (1/2)% = 1/64. The second loop is
IGEDHI. This corresponds to the events (g « e <« d = d’ — h). The probability that (g = h)
by this route is (1/2)* = 1/16. The problem arises as to how to combine these probabilities. The
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key to this problem is to notice that it is impossible for both (e < d) and (e < ¢) to be true at the
same time. So I cannot be inbred through both of these loops simultaneously. These are mutually
exclusive events, so their probabilities should be summed.
The third loop, IGEHI, presents a thornier problem. It corresponds to the events (g «— e =
e/ — h). The problem arises with the event (e = ¢’). If individual E, at the top of this loop, were
one of the original ancestors of the pedigree, there would be no problem. Then we could have e be
identical by descent to €’ only if both were copies of the same gene copy in E. Otherwise they would
be copied from different genes in the base population, and by definition could not be identical by
descent. However, F is itself a partially inbred individual. It is at the bottom of the loop FCBDE.
Half of the time, e and €’ are copied from the same gene copy in E. The other half of the time, they
represent both gene copies in E, and then their probability of being identical by descent is fg. So
, 1 1 1
Prob (e=¢€') = §+§f}3 = 5(1+fE). (V-11)
Then the contribution of loop IGEHI to fr is (1/2)3(1 + fg). Now the same arguments tell us
that fr = (1/2)3, so the loop IGEHI contributes (1/2)3[1 + (1/2)3] to f;. This loop represents an
event which is mutually exclusive with the events of the other two loops, so we can add the three
probabilities, getting
fi = mtwtrs+s)

_ 1 4 8 1
= @mtaTeaTa (V-12)

_ 14 _
= U — 0.21875.

The reader may have noticed some loops in Figure 5.4 which we have not counted. The loop HEDH
is not relevant. It is useful in part of the computation of fy, but that quantity is not needed in
the computation of f;. The events (h — €’) and (h — d’) have probabilities which do not depend
on frr, only on the Mendelian rules. Loops such as IGECBDEGI look relevant, but are not. They
would be useful only to calculate the probability that the gene copy in g is identical by descent
to itself! This we could obtain without necessity of following loops, and the answer would tell us
nothing of interest. Loop IHDBCEGI looks very relevant. It is: we have already counted it. It
is the same loop as IGECBDHI, which we already counted. Since one corresponds to one of the
ways that the in h could be identical to that in g, and the other to the analogous way that the
gene copy in g could be identical to that in h, these are the same event, and we should not count
the event twice. To avoid this duplication, we should always start from one parent (say G) and
proceed through the loop to the other (H). Finally, what about loop IGECBDEHI? This loop passes
through E twice, requiring that (e «— ¢) and (e’ < d). The only thing wrong with this loop is that
we have already taken it into account when computing the contribution from loop IGEHI. For in
that case we included a contribution of 1/4 fg which covered the event that the two gene copies
in F were identical by descent (the event (¢ «+ b = b — d) and that e came from the left-hand
gene copy in E and €’ from the right-hand copy. The other 1/4 fr made the loop IGEDBCEHI
redundant.

Loops must start from one parent of the individual and end at the other, must never pass
through the same individual twice, and may not change direction (up to down or down to up)
more than once. If the common ancestor at the top of a loop is itself inbred, its own inbreeding
coefficient must be taken into account by multiplying by 1/2 (1+ f) rather than 1/2. We will not try
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to develop the rules of the loop calculus further: what is important is that the reader understand
the logic of the procedure.

V.5 The Loop Calculus: Sex Linkage.

For computing the inbreeding coefficient at a sex-linked locus, the logic followed is the same, except
for a change in the Mendelian rules. We will never, in a standard X-Y sex determination system,
want to compute the inbreeding coefficient of a male for a sex-linked locus. Knowing that the lone
gene copy at this locus on the X-chromosome is identical to itself is of no interest. We will therefore
be confined to computing f for females.

The pedigree in Figure 5.4 will again serve as our example. The three loops originating from
I are again the relevant ones to consider, plus the subsidiary loop above FE. Let us consider first
the loop IGEDHI. Keep in mind that the locus under consideration is on the X-chromosome.
Clearly, the probability that (g «— e) is one-half, since an X-linked gene copy in g could have been
copied from the X-chromosome in e or from the X donated by the male parent of G. Likewise, the
probability that (e < d) is also one-half, as d carries one of the two X-chromosomes which end
up in E. But we cannot compute the probability that (d = d’), as it cannot occur. The gamete d’
carries a Y-chromosome from D to H, not a copy of the gene in question. Immediately, we can see
that this loop cannot be the cause of any identity between g and h. All loops containing two males
in succession must be regarded as broken, for the purposes of computing the inbreeding coefficient
at a sex-linked locus. The next of our three main loops, IGECBDHI, has the same two males, B
and D, so that it too cannot contribute anything to fg.

We are left with IGEHI. As already mentioned, the probability that (g < e) is one-half. The
probability that (e = ¢’) depends on fg, and is (1/2)(1 + fg), as before. The chance that (¢’ — h)
is one of those affected by sex-linkage. Since €’ is the X-chromosome going into male H, and since
h carries a copy of the same X-chromosome, Prob(¢/ — h) = 1. So

fr = (1+/e) 1) = 7 1+ fr). (V-13)

N —
] =

1
2

We now compute fr in the same fashion. It is essentially the same kind of loop as IGEHI,
except that B is not inbred. So fr = 1/4, giving

A= Ahed
_ 1 1 _ 5
= 1t1% = 1 (V-14)
— 0.3125.

Note that a sex-linked locus in [ has a greater inbreeding coefficient than does an autosomal locus.
This will often, but not always, be true. In general, the breakage of the male links in the pedigree
will produce fewer loops relevant to a sex-linked locus, with each of these loops contributing more
heavily to f because of the higher probability of transmission of X-linked genes through males. As
in the case of an autosomal locus, understanding the logic of the computation is more useful than
rote memorization of the rules.
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Figure 5.5: Diagram showing the logic of computing a coefficient of kinship involving
an offspring from those involving its parents.

V.6 The Method of Coefficients of Kinship.

A more systematic method of calculating inbreeding coefficients makes use of coefficients of kinship.
This is a translation of Malécot’s (1948) term “coefficient de parente,” which is also often rendered:
coefficient of parentage or coefficient of consanguinity. The coefficient of kinship of two individuals,
B and C, may be roughly defined as the inbreeding coefficient of the offspring of a mating between
B and C. The coefficient is defined whether or not B and C ever actually mate: it may even be
the case that they are the same sex. Given that possibility, it is perhaps better to redefine the
coefficient of kinship of B and C as the probability that a randomly chosen gene copy from B is
identical by descent to a randomly chosen gene copy from C. Let us call this quantity Fpc. Clearly,
if D is the offspring of a mating between B and C;

fp = Fge. (V-15)

To compute inbreeding coefficients in a pedigree, we therefore need only know the coefficients
of kinship of the pairs of individuals in the pedigree. It will turn out that these can be computed
in a systematic fashion, using a few simple rules. Figure 5.5 shows one of the two situations we
need consider. B and C have mated and given rise to an offspring, D. Suppose that we know Fgp
and Fpc, and wish to compute Fgp. Notice that the maternal (left-hand) gene in D is a copy of
a randomly chosen gene copy from B, and the paternal (right-hand) gene is a copy of a randomly
chosen gene copy from C. In choosing a gene copy from D, we therefore will get a random gene
copy from B half of the time, and a random gene copy from C' half of the time. Then

1 1
Fgp = §FEB + §FEC- (V-16)

The other case we must consider is when F'is the same individual as B. Formula (V-16), applied

mechanically, would yield
1 1
Fpp = §FBB + iFBC- (V-17)
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But what is Fgp? It must be the probability that two gene copies, drawn independently from
B, are identical by descent. Since these gene copies will represent the same copy half of the time,
and different copies half of the time,

Fpp = %(1 + fB)- (V-18)
fB can be computed from the coefficient of kinship of the two parents of B, as given by a relation
like (V-15).

For the initial individuals founding a pedigree, they are assumed to be non-inbred and have
coefficients of kinship zero. We can then use (V-13), (V-15), and (V-12) to compute those coefficients
of kinship which involve their immediate offspring, then those which involve their offspring, and
so on. Whenever one of the individuals involved is new to the pedigree, drawn from the base
population, we assume that its coefficient of kinship with all pre-existing individuals in the pedigree
is zero, and its inbreeding coefficient is zero. It will be useful to keep in mind that Fgo = Fep for all
individuals B and C. Table 5.1 shows the computation of the coefficients of kinship for the pedigree
in Figure 5.4. The computation is simple but repetitious, lending itself easily to programming
for a computer. There are, however, some pitfalls possible. In the pedigree of Figure 5.4, if we
compute Fgc by looking at the kinship coefficient of E with the ancestors of C (rather than of C
with the ancestors of E) the result may be incorrect. To see this, try it both ways. This method
was first suggested by Cruden (1949) and Emik and Terrill (1949). It is expounded in some detail
by Kempthorne (1957) and by Falconer (1989). It is efficient enough for medium-size pedigrees.

For very large pedigrees (tens of thousands of individuals) the method will generate too many
coefficients of kinship to be practical. In such cases, loop-finding programs such as that of Mange
(1964) will be more efficient if the inbreeding coefficients of only a few individuals are desired.
Alternatively, one may use random sampling techniques such as those of Wright and McPhee
(1925) or Edwards (1968) for a useful rough estimate of f.

The method of coefficients of kinship is easily extended to sex-linkage.

V.7 The Complication of Linkage.

So far, we have considered only a single locus. Suppose that we wanted to know the probabilities
of genotypes at two loci in an inbred individual. We can develop expressions for the genotype
frequencies in terms of the probabilities that the two loci are or are not inbred. If Fyy is the
probability that neither locus is identical by descent, if Fjg is the probability that locus A is
identical by descent but B is not, if Fp; is the probability that A is not identical by descent but
B is, and if Fy; is the probability that A and B are both identical by descent, then the genotype
probabilities can be written straightforwardly in terms of these quantities. If the base population
is at linkage equilibrium with frequencies p of A and ¢ of B, then

Prob (AABB) = p*¢* Foo + pg® Fio + p°q Fon + pq Fuy. (V-19)

The logic of (V-19) is the same as for (V-2). I will not explain it in detail here. Similar expressions
can be worked out for the other genotypes. The four coefficients Fyg, Fp1, Fig, and Fi; actually
require only one new quantity to be computed. Note that Fjg + F11 = fa, the probability that
locus A is identical by descent irrespective of the status of locus B. Likewise Fy; + F11 = fp, and
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Table 5.1: Sequence of computations of the coefficients of kinship of the individuals
in the pedigree in Figure 5.4. Whenever used, O denotes an individual outside the

pedigree.

Then

Generation 1

Generation 2

Generation 3

Generation 4

Fpg

Fpc = Fen

Fee =
Fgp = Fpp =
Fep = Fpe =

Fpp =
Fgp = Fpp =
Fpc = Fep =
Fgp = Fpe =

Fep =
Fep = Fpe =
Fec = Fea =
Fep = Fpc =
Feg = Fpa =

Fea =
Fup = Fpu =
Fuc = Fen =
Fup = Fpa =
Fugp = Fgun =
Fue = Fogu =

Jr = Fgu
fu = Fprk
fe = Fop

177
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if both A and B are autosomal (or both sex-linked), f4 = fp = f. Furthermore, all four of the F’s
can be written in terms of f and Fji:

Fio = f—TIn
Fnn = f—Fn1 (V—20)

Foo = 1—Fy—Fio—For = 1-2f+ F1y.

Once we compute f for an individual, by standard methods, we need only know Fi; to be able to
obtain genotype probabilities jointly at two loci.

There are two simple cases. If the two loci A and B are so tightly linked that no recombination
ever occurs between them, then whenever one locus is identical by descent, so is the other. In
that case, F11 = f, and Fy; = Fig = 0 with Fyg = 1 — f. Of course, in such a case the base
population is unlikely to be at linkage equilibrium, and we must revise equation (V-19) to take
gamete frequencies in the base population into account. On the other hand, if the two loci are
unlinked, so that 7 = 1/2, then it turns out that Fi; = f2. The events of identity by descent at the
two loci are independent, once the pedigree is specified. This is not a fact which will be immediately
apparent to the reader of these notes. If you consider the various logical steps involved in inquiring
whether locus A and locus B are identical by descent, you will soon convince yourself that in all
cases, the ancestor from which a copy at locus A is descended is determined independently of the
ancestor from which a copy at locus B is descended. I leave this to the reader as an exercise.

Unhappily, there is no simple method for computing Fi; by a loop-calculus approach when
the recombination fraction r is neither 0 nor 1/2. The complication comes from a fact which was
implicit in the discussion of the unlinked case: it is possible for A to be identical by descent through
one loop and for B to be simultaneously identical by descent through another. To use the loop
approach one has to enumerate over all pairs of loops above the given individual, and also compute
as well the probabilities of joint identity of descent through the same loop. The steps involved are
tedious but straightforward, and are practical in small pedigrees. Denniston (1975) shows how to
do this in the case where no other individual in the pedigree, above the particular individual we
are interested in, is inbred. It is also possible to develop methods based on coefficients of kinship.
However, the number of quantities which we must keep track of increases greatly. We must compute
probabilities such as F7 .k 1., the probability that locus A is identical by descent in random gametes
from I and J and that locus B is identical by descent in gametes from K and L, plus a number
of other sorts of quantities. Using this approach with even a moderate-sized pedigree will require
much computation.

V.8 More Elaborate Probabilities of Identity.

The standard coefficient of kinship tells us the probability that two genes drawn at random, one
each from individuals I and J, will be identical by descent. But it does not answer more complex
questions, such as the probability that the maternally-derived copies in [ and J are identical by
descent and at the same time the two paternally-derived copies are identical by descent. Such
quantities are of more than academic interest: they enable us to compute quantities such as the
probability that I is of genotype aa given that Jis aa. This is of importance in genetic counselling.
We may want to know the probability that a relative of an affected individual will be affected.
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To compute the joint genotype probabilities of pairs of individuals, we can use the set of 15
coefficients developed by Gillois (1964, 1965) and expounded by Jacquard (1974). Other expositions
of similar approaches include those of Cockerham (1971) and Denniston (1974). In simple cases
one may use the matrix-computation methods of Li and Sacks (1954), which were independently
derived earlier by Geppert and Koller (1938). Thompson (1974) has developed a general algebraic
approach to the calculation of simultaneous genotype probabilities of a number of individuals in a
pedigree, suitable for computation in small pedigrees.

V.9 Regular Systems of Inbreeding: Selfing.

When the same pattern of mating is repeated in each generation of a pedigree, we can take advantage
of this regularity in computing the inbreeding coefficient. In the next few sections, we will see
how this is done. Although regular systems of inbreeding are fun and of some importance, our
underlying objective will be to explain the machinery that we will then use to analyze inbreeding
in random-mating finite populations.

The simplest possible regular system of inbreeding is repeated self-fertilization, shown in Figure
5.6. In each generation, the single individual in the line self-fertilizes to produce the single individual
of the next generation. Suppose that we want to know the inbreeding coefficient of the individual
in generation ¢ in a self-fertilizing line, where generation 0 is drawn from the base population. Let
this inbreeding coefficient be f;. Since f; is also the coefficient of kinship of the two gene copies in

the gametes of generation t — 1,
1

ft = 5(14‘]‘}71)- (V-21)

This is simple enough, and it can readily be used to find a formula for f; in terms of ¢ and fy. But
an even simpler approach is to follow h; = 1 — f;. This is the probability that the two gene copies
in the individual of generation t are not identical by descent. A direct argument which gives us a
recurrence relation for h; is as follows. Half of the time, the two gene copies are descended from
the same gene in the individual of generation ¢ — 1. If so, they cannot be non-identical. Half of the
time, they are descended from different copies in generation ¢ — 1, in which case the probability
that they are not identical by descent is simply h;—1. So

1
hy = §ht71_ (V-22)

We immediately see that since h is being multiplied by 1/2 every generation,
1\’ 1\’
hy = (=) ho = | = V-23
= (3) 0= (3) (v-23)

t
fo = 1-h = 1—(%) : (V-24)

Clearly

As h declines to 0, f rises to 1.

In this particular example, we can also analyze the results by enumerating genotypes. Simple
consideration of the Mendelian rules will show that if the individual of generation ¢ is homozygous,
so must be the individuals in all subsequent generations. But if the individual in generation t is
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Figure 5.6: The system of repeated self-fertilization.

a heterozygote Aa, the individual of the next generation will be AA one-quarter of the time, aa
one-quarter of the time, and Aa half of the time. Table 5.2 shows the results we expect if we set up a
large number of self-fertilizing lines from a random-mating population initially at Hardy-Weinberg
proportions. Every generation, half of the heterozygous lines are converted into homozygotes. Note
that the overall gene frequency of A is not changed by inbreeding, although the proportion of A
within any one line tends to zero or one. The results fit equation (V-2), as they must, the proportion
of heterozygotes in generation ¢ being 2p(1 — p)(1 — f;) = 2p(1 — p)hy.

Thus the relative proportion of heterozygotes in generation 7, compared to the initial generation,
® 0.00375

0.48

So h; may be regarded either as the probability of non-identity-by-descent, or as the fraction of
initial heterozygosity still remaining among replicate inbreeding lines.

= 0.0078125 = (0.5). (V-25)

V.10 Regular Systems of Inbreeding: Full Sib Mating

Full-sib mating, which is a slightly more complicated system, will serve to illustrate most of
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Table 5.2: Proportion of self-fertilizing lines having various genotypes, when the base
population is in Hardy-Weinberg proportions with two alleles whose frequencies are 0.6

and 0.4.
Proportion of lines which are:
AA Aa aa
generation

0 0.36 0.48 0.16

1 0.48 0.24 0.28

2 0.54 0.12 0.34

3 0.57 0.06 0.37

4 0.585 0.03 0.385

5 0.5925 0.015 0.3925

6 0.59625  0.0075  0.39625

7 0.598125 0.00375 0.398125

00 0.60000 O 0.4000

the details of analysis of a regular system of inbreeding. Figure 5.7 shows a diagram of full-sib
mating, in which in each generation a pair of full sibs is kept as the source of the next generation.
As there are two individuals per generation, there are a total of 3 coefficients of kinship possible
within a generation. While the analysis could be carried through in terms of coefficients of kinship,
it will prove easier to work with three different quantities. These are illustrated in the lower part
of Figure 5.7. We work with probabilities of non-identity-by-descent of pairs of gene copies. The
quantity h; is the probability of non-identity of the two gene copies in a female in generation ¢. ¢, is
the corresponding probability of non-identity of the two gene copies in a male. k; is the probability
of non-identity of two genes, one drawn from the female and one from the male.

The first simplification in the analysis is to note that, provided that both the females and males
founding each line are drawn from the same base population (which we assume), the symmetry of
the situation demands that h; = ¢; throughout the process. Hence, from this point on, h; will be
redefined as the probability of non-identity of two genes from the same individual, irrespective of
its sex. We are now down to two quantities, h; and k;. Because the two gene copies in the same
individual definitely came from different parents, and are copies of random gene copies in those
parents, clearly

he = k1. (V-26)

However, the two gene copies chosen at random from different parents can be of four different
origins. Both may be the maternally-derived copies, or both the paternally-derived copies, or the
first maternal and the second paternal, or the first paternal and the second maternal. Each of these
possibilities has probability 1/4. In the first two cases, both came in the preceding generation from
the same individual, an event with total probability 1/2. But only in half of those cases would
the two gene copies from the same individual be copies of both gene copies in that individual, so
that (1/4)hy—1 of the time the two copies in different individuals are non-identical owing to descent
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Generation

Figure 5.7: The system of repeated full-sib mating, and three probabilities of non-
identity used to analyze it.

from non-identical copies in the same parent. One-fourth of the time they represent copies of the
same gene from the same parent, and cannot be non-identical. Half of the time, they came from
different parents (and were drawn randomly from those parents). Hence they will be non-identical
through descent from non-identical copies in different parents (1/2) k;—; of the time. Putting all of
these possibilities together, we get

1 1
ky = 1 hi_1 + 5 ke_q. (V—27)

The initial values, hg and kg, are clearly 1 if the initial male and female were drawn at random
from the base population. We can start with those values and use (V-26) and (V-27) to compute h;
and k; successively for as many generations as we desire. Figure 5.8 shows h; and k; plotted both
directly and logarithmically against time (which we measure in generations). It will be apparent
from the logarithmic plot that after a few generations, h and k decline geometrically (losing a
constant percentage of their current value each generation).

While we may be satisfied to know some arithmetic values of h; and k;, we may also be interested
in the ultimate rate of decay of h and k, which will be the rate at which f; approaches 1. There
is a short-cut method for finding the rate of decay, which we now briefly examine. We first note
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Generation

Figure 5.8: The decline of the probability of non-identity under repeated full-sib mating.
Circles give the probabilities of non-identity of genes in the same individual, squares
the corresponding probability for genes drawn from different individuals.

that, from (V-26), h;—1 = ki—o. Substituting k;_o for h;_1 in (V-27), we find that
1 1
ke = 3 ki1 + 1 ki—2, (V-28)
so that we can calculate each value of k from the two previous values. Now suppose that k has

reached the part of its curve in Figure 5.8 where it is declining geometrically. Then each k is a
constant fraction A\ of the previous k. So

kt = A ktfl = )\2 kt72
and (V-29)
ki1 = XNkio

Substituting these into (V-28), we get

1 1
Nk = 5 Mo+ 7 ki, (V-30)
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Figure 5.9: Same as the previous figure, except that the vertical axis is scaled logarith-
mically. Note how quickly the rate of decay of non-identity becomes constant.

Each term of (V-30) contains k;_o. Since it is never zero, it can be divided out of each term,

giving, after moving all terms to the same side of the equation, the following quadratic equation in

A
1 1
M Zx - =0 -31
5 =0 (V-31)

The solutions of (V-31) are (14++/5)/4. Since the A we are looking for must be positive, the relevant
solution is the larger one:
1+5

A= = = 0.80901699. (V-32)

Thus full-sib lines asymptotically lose nearly 20% of heterozygosity each generation. Although we
have computed the rate of decline of k, h must decline at the same rate, by equation (V-26). The
h in each generation is simply the k in the previous one.

HISTORY. This technique, of eliminating all but one quantity from the equations (V-26) and
(V-27), making two one-generation recurrence equations into one two-generation equation (V-28),
is of general applicability. It was used (in effect) by Sewall Wright in his 1921 papers, where he
analyzed not only full-sib mating, but nine other simple mating systems. The full-sib mating case
was first analyzed by Pearl (1913), incorrectly. His results were corrected by Jennings (1914) and

184



Fish (1914), and retracted by Pearl himself (1914). However, all of these approaches made use of
direct genotype enumeration. Jennings (1916) was able to extend this analysis to the case of a
parent-offspring mating system. It was only with the elaboration of the inbreeding coefficient by
Wright (1921a, b, ¢) that such computations could be carried out easily for a wide variety of mating
systems.

V.11 Regular Systems of Inbreeding: Matrix Methods

The equations (V-26) and (V-27) are simultaneous linear homogeneous recurrence equations.
The present method for obtaining A has neither been presented in general form, nor has it found
all relevant information. We now examine a technique using the algebra of matrices, which allows
complete and systematic solution of such recurrence equations. The reader who is unfamiliar with
matrix algebra may wish to familiarize themselves with it before reading this section. Alternatively,
no harm will come from skipping this section. Simple numerical computation with equations (V-26)
and (V-27) over a number of generations will usually be sufficient to illustrate the properties of
full-sib mating, without recourse to more elaborate approaches.

The equations (V-26) and (V-27) can be rewritten in matrix form:

hy 0 1 he—1
= (V-33)
kg : 1 k1
which is a matrix equation of the form
Xt = A Xt—1- (V-34)
It follows that
x; = Alxg. (V-35)

The matrix A has a characteristic equation which is obtained by subtracting A from all of the
diagonal elements of A, then taking the determinant of the resulting matrix. Since A is unknown,
the result is an expression in A, in fact, a polynomial. Computing this polynomial and equating it
to zero, we obtain the characteristic equation:

(0= ) (1 _ A) _ i (1) = o. (V-36)

This is simply

M- 2=, (V-37)
which is precisely (V-31)! In most cases resulting from inbreeding systems, there are as many
distinct roots of the characteristic equation as there are rows (or columns) of A. These roots are

known as characteristic values or eigenvalues. Let us assume that in the general case there are n
rows (columns) of A. If there are not n different roots A1, Ag, ..., A,, of the characteristic equation,
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this is usually because we have failed to take advantage of some symmetry in the pedigree, and one
or more of the quantities in the vector x; are superfluous. Suppose that we have pared down the
quantities in x; to the minimum possible, and have found the n roots of the characteristic equation,
which we take to be distinct roots, no two of which are equal.
The standard spectral theory of matrices then tells us that we can find n vectors y1,y2, ..., Yn,
which satisfy the equations
Ay, = N yi, i = 1,2,...,n. (V-38)

When we have found these vectors, we can write the initial vector xy as a linear combination of
these vectors. This means that we can find n constants ¢y, ¢s, ..., ¢, such that

Xg = C1y1 + C2y2 + ... + Ch¥n. (V—39)

A property of the vectors y; (which are called the eigenvectors or characteristic vectors of A), is
that in general we can write
X = AN y1+ o ey (V-40)

This gives us a way to compute any x; once we have computed the eigenvalues and eigenvectors
of A, and the constants cy,...,c,. In particular, as ¢ increases, the vector x; is more and more
closely approximated by the term

x; ~ ¢ A xq, (V-41)

where A\ is the eigenvalue of A which has the largest absolute value. In this case, the elements of
A are never negative, and each row of A never adds up to more than 1, as the elements of the row
are probabilities of mutually exclusive events. Two mathematical theorems (Gershgorin’s theorem
and Frobenius’ theorem) assure us that 0 < A; < 1 and that, since all other eigenvalues are closer
to zero than \q, the convergence in (V-40) will actually take place if ¢; > 0. Ay is worth notice. It
is the asymptotic fraction of heterozygosity which is retained each generation.

There is no point in belaboring this approach further. The reader interested in actual computa-
tions will find computer programs available to obtain the eigenvalues and eigenvectors of matrices
such as A. The point worth making here is simply that the manipulations of the recurrence equa-
tions in the previous section were not arbitrary or based on trickery: they were a way of obtaining
the characteristic equation and its largest root. We can find this root in any case of interest, by
finding A and getting its characteristic equation.

OTHER MATRIX APPROACHES. An alternative approach to regular systems of inbreed-
ing which also uses matrix algebra is the one developed by Bartlett and Haldane (1934) for an
autotetraploid case. It was stated generally by Fisher (1949 and subsequent editions). It involves
setting up a matrix with one column for each of the genotype compositions of a given generation.
Thus, in the case of repeated full-sib mating, there are 9 possible compositions in generation ¢ if
there are two alleles at the locus. The k-th column of this matrix contains the probabilities that
if we are now in the k-th genotype composition, in the next generation we shall be in each of the
possible genotype compositions. Fisher shows how to set up these matrices, and to simplify them
somewhat. It will always turn out that the largest eigenvalue of this matrix is the same as the value
A1 obtained by the approach of this section (see, for example, the comments of Wright, 1969, pp.
171-173). In theory these matrices give an even more complete analysis of the inbreeding system
than does the smaller matrix A. In practice, however, they are quite difficult to work with. They
are very large matrices in all but the simplest cases.
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Figure 5.10: The system of repeated double-first-cousins mating, and three probabilities
of nonidentity used to analyze it.

V.12 Repeated double first cousin mating.

Figure 5.10 shows the system of repeated double-first-cousins mating, which we take as the third
(and final) example of a repeated mating system. The method of analysis is analogous to the case
of full-sib mating. We need only three quantities: hy, ki, and ¢;. If we draw two gene copies from
the pedigree,

they can come from three sources. If both come from the same individual, their probability of
non-identity is h¢. If they come from individuals who are full sibs, their probability of non-identity
is k;. If they come from different individuals who are not sibs, their probability of non-identity is
l;. By carefully studying the pedigree, you will discover that all possible pairs of individuals from
the same generation fall into one of these categories. Since the mating system avoids mating of
sibs, the two gene copies in one individual come from different non-sibs in the previous generation.
The genes in sibs come half of the time from different parents, who are nonsibs. Half of the time,
they come from the same individual, in which case they come from different gene copies half of the
time. Finally, the two genes in nonsibs cannot come from the same individual. They will come
from sibs half of the time and from nonsibs half of the time. Thus we obtain:

hiy1 = £y
k‘t+1 = %ht —|—% Et (V'42)
b1 = %kt +% 4

We can use these equations to compute these quantities in successive generations. The initial values
of h, k, and ¢ are 1. After an initial period of a varying rate of decline, all three quantities decline
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geometrically, with a constant factor A by which each is multiplied in each generation. We can find

A by eliminating all but one of the three quantities h, k, and ¢ from equations (V-42). Then we

use equations (V-29) or their equivalent to obtain an equation in A which can be solved.
Alternatively, we can set up the matrix described in the previous section, and subtract A from

its diagonal elements. By equating the determinant of that matrix to zero, we obtain the equation
for A:

0—XA 0 1
I0-x 3 | =0, (V-43)
0 T 1=
or
1, 1. 1
s_ Iy o1 _ g 44
N gN = Ao =0 (V-44)

The largest root of (V-44) is A = 0.919643.

We can set up systems of size 8, 16, 32, etc., which are analogous to double-first cousin mating in
that they mate those individuals at each generation who are least closely related. These “maximum
avoidance of inbreeding” systems were analyzed by Wright (1933). All have characteristic equations
analogous to (V-31) and (V-44). For example, the equation for octuple third cousin mating is:

1 1 1 1 1
Mo M oSN - = -4
2 4 8 6" 3 (V-45)

V.13 Avoiding Inbreeding.

Interestingly enough, the systems of “maximum avoidance of inbreeding” do not have the lowest
ultimate rates of approach to homozygosity. With the same number of individuals, it is possible to
devise circular half-sib mating systems which, although they inbreed faster initially, have a lower
rate of approach to total homozygosity. This was shown by Kimura and Crow (1964), who treated
such systems in generality. Robertson (1964) provided a more general framework for this result.
He showed that, in general, regular systems of mating with a given number of individuals will have
a lower rate of approach to homozygosity the more closely related are the individuals who mate!

Of course, the best system of all for avoiding the loss of alleles from a population of fixed size
involves the most intense inbreeding of all. If we divide a population of size 20 into 10 full-sib lines,
and keep those lines isolated from each other, we stand a good chance of retaining a reasonable
fraction of the common alleles present initially. For even though each such line reaches fixation
for an allele, different lines may well fix for different alleles. So although each individual becomes
homozygous, we can restore a good fraction of the initial heterozygosity of the base population by
crossing different lines. By contrast, a repeated mating system which does not break the population
into isolated lineages is certain to fix for one allele or another sooner or later, however small its
rate of approach to homozygosity.

In spite of the need to conserve the dwindling supply of genetic variability in domestic animals
and plants, the system of isolated inbred lines is rarely used. This is because of the disastrous
effects of inbreeding on viability and fertility. We now examine these effects briefly.
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V.14 The Effects of Inbreeding.

The simplest effects of inbreeding are on the frequencies of phenotypes of recessive alleles. From
(V-2), if A is a recessive allele (the size of the letter notwithstanding) the frequency of homozygotes

is
pP’A—f)+pf (V-46)
which can be rewritten

P’ + fp(l—p), (V-47)

which shows that the frequency of homozygotes increases with f. How much it increases is a
function of the gene frequency p. When p = 0.1, the homozygote frequency will rise from 0.01 to
0.1 as f is increased from 0 to 1. This is an increase by a factor of ten. But when p = 0.001,
the increase will be from 0.000001 to 0.001, a factor of 1000. If a population has a great many
rare recessive mutants, inbreeding will make the frequencies of their phenotypes far greater. It is
a quite general observation that severely deleterious rare mutants tend to be recessive. There are
straightforward functional reasons for this. For loci which code for enzymes, a severely deleterious
mutant tends to be one which renders the enzyme inactive. When only half of the enzyme molecules
(or polypeptide chains) are inactive, there is still usually enough active enzyme around to give a
normal or nearly-normal phenotype. So severely deleterious mutants tend to be recessive more
often than dominant.

This is the basis of the effect of inbreeding in reducing fitness. There is much data on the effects
of inbreeding, but one set of figures will suffice. The frequency of congenital genetic diseases is about
1% at birth. But if the parents are first cousins (f = 0.0625), this figure rises to 2%, implying that
we would see a great increase in a mating which produced a completely inbred offspring.

In the case of rare recessive alleles, we have seen that inbreeding produces a great increase in
the frequency of homozygotes for that allele. This implies that most of the homozygotes result
from identity by descent rather than from randomly-occurring homozygosity. One example should
suffice. If a rare allele has p = 0.001, and if one mating in a thousand is a first cousin marriage (for
which f = 1/16 or 0.0625), then the average f is (0.001)(0.0625) = 0.0000625. The frequency of
homozygotes is (from (V-47))

(0.000001)(0.9999375) -+ (0.0000625)(0.001) = 1.062 x 1075,

The fraction of all homozygotes who result from inbreeding is

6.25 x 10~8

1062 x 106 %

So although only one mating in a thousand involves inbreeding, and those are only first-cousin
matings, almost six percent of all homozygotes for the recessive allele come from those matings!
These figures are of interest, in that they are reasonable for many genetic diseases in human
populations. One in a thousand is not untypical of rates of cousin marriage in Europe and the U.
S.

For an overdominant locus, there can also be a decrease of fitness as a result of inbreeding.
Suppose the fitnesses of three genotypes are:

AA Ao aa
05 1 0.5
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Mean fitness of a population is increased above one-half by the presence of heterozygotes. As the
level of inbreeding increases, heterozygotes will become rarer, so that mean fitness must decline.
Since the frequency of heterozygotes at any stage is their original frequency, multiplied by 1 — f,
this decline must be continual throughout the process.

Both of the preceding cases are part of a more general process. Suppose that the fitnesses of
the three genotypes AA, Aa, and aa are respectively waa, waq, and wge. The mean population
fitness is:

P’ A= f)+pflwaa + 201 =p)(1—flwaa + [1-p)*(1—f)+1—p)flwa

= pQwAA + 2p(1_p)wAa + (1_p)2waa
(V-48)
+ f [(p—p*)waa —2p(1 —p)waa + (1 —p) — (1 —p)?) Waq)

= wy — f p(l - p) [2wAa — WAA — waa]a

where w is (clearly) the average population fitness before the onset of inbreeding. The direction
of the effect of inbreeding and its size depend on the sign and magnitude of 2w4, — WaA — Waq.
This quantity is twice wa, — (WAA + Wqq)/2, which is the difference between the fitness of Aa and
the average of the fitnesses of AA and aa. So we can say that the decline of fitness with inbreeding
will be greater the farther above the average of the homozygote fitnesses is the heterozygote fitness.
We can thus immediately see that mean fitness will decline under inbreeding if (i) the locus is
overdominant, or (ii) the allele with higher fitness is dominant, or (iii) even if there is a slight
tendency to partial dominance of the more fit allele. Another prediction of (V-48) is that if we plot
mean fitness against f, it will decline (or perhaps increase) linearly with f. There are no terms in
f?in (V-48).

MULTIPLE LOCI. This linearity only holds for a single locus. If fitness were a sum of effects
from different loci, each effect’s average declining linearly with f, we would expect average fitness
of the genotype to be linear with f. But when loci do not interact, it is much more natural to
assume that the fitness of a genotype is the product of fitnesses at the different loci. For example,
if the probability of surviving a risk of death at locus A is w4, and the probability of surviving
a totally unrelated cause of death at locus B is wpp, the probability of surviving both should be
waaswpp. If the loci are also at linkage equilibrium, then it can be shown that the mean fitness of
individuals in the population can be computed by taking the products of the mean fitnesses at the
separate loci. This means that the mean fitness is a product of terms, each a linear function of f.
In taking the products of a series of expressions like (V-48), we introduce higher powers of f, so the
decline (increase) of fitness is no longer linear. This calculation is fraught with hidden assumptions.
One is that the occurrence of identity by descent at different loci is independent. This assumption
may not be met even for unlinked loci if there is any variation from individual to individual in f.
It is perhaps best to move on without attempting to untangle this particular difficulty further.

Note that there is nothing in the calculation in (V-48) which is specific to fitness. We could
as easily be considering any character which is controlled by a single locus and assumes numerical
values. We will return to this point when we consider the effects of inbreeding on quantitative
characters.
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V.15 Some Comments About Pedigrees

Pedigrees, particularly regularly constructed ones, are fascinating structures from a logical and
combinatorial point of view. Two of their properties are worth special comment.

First, it is not possible to sex-label all pedigrees. That is to say, we can draw some pedigrees
in which we cannot assign sexes to individuals without finding two individuals of the same sex
mating. The reader may wish to stop here and try to invent such a case, then continue reading.
The simplest example I know involves three parents and three offspring. The parents are called
A, B, and C. Suppose that all three pairwise matings occur, each producing an offspring. So A
mates with B, A mates with C, and B mates with C. Since B mates with both A and C, those
two individuals must be of the same sex. But A has mated with C, so they must be of different
sexes. This is clearly a contradiction. It is resolved by removing our assumption that it is possible
to sex-label this pedigree.

Second, a conjecture of Sewall Wright’s is worth mentioning. In all the cases we have studied,
continuation of the mating system leads to complete inbreeding. Wright noticed that in certain
cases this did not occur. These cases turned out to be ones in which the number of ancestors of
an individual rise faster than linearly as we move back in time to previous generations. Thus in

the case of full sib mating the number of ancestors of an individual are 2, 2, ..., 2, ... as we move
back in time. But if we had a mating system in which the number of ancestors was (say) 2, 2, 4,
4, 8, 8, ... we would find that no matter how long the inbreeding has been going on, the level of

inbreeding will approach an upper limit short of complete inbreeding. No counterexample is known
to Wright’s rule. Nevertheless, no rigorous (i.e., correct) proof of it exists, in part because of its
generality. I leave it to one of you to prove it.

Exercises

1. If we have a dominant trait whose gene frequency is 0.3, what will be the frequency of the
trait when f =07 When f = 0.27 When f = 0.57 When f =17

2. James Roosevelt was one son of Eleanor Roosevelt and Franklin Delano Roosevelt, who were
fifth cousins. What was his inbreeding coefficient? (Note — fifth cousins are people who have
one parent each that are fourth cousins to each other, and similarly for fourth, third, and

second cousins.)

3. Compute f; in this pedigree: What is f; when the gene is sex-linked?
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4. What is the inbreeding coefficient of individual I in the following pedigree (written in human
genetic form):

5. What is the inbreeding coefficient of the bottom individual in this diagram (arrows run
downwards and all circles are individuals — note the self-fertilization):

o
i

T

6. For this regular inbreeding system, which runs from left to right, obtain the recurrence rela-
tions necessary to analyze it:

O— OO0
Wy

C/ \C/ \C/ \

7. For a locus with a recessive allele a at a frequency of 0.01, suppose that we divide the
population into two parts and then inbreed each subpopulation until the inbreeding coefficient
is f. In terms of f, what is

(i) the expected frequency of aa in one subpopulation?
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(ii) the expected frequency of aa in the Fj cross between the two subpopulations (individuals
one of whose parents come from one population and one from the other)?

(iii) the expected frequency of aa in the Fh between the two subpopulations (individuals
whose parents are two different Fj individuals)?

Complements/Problems

1.

Suppose that we have a parent-offspring regular system of inbreeding, of the following sort:
Individuals #1 and #2 mate to produce individual #3. Then #2 and #3 mate to produce
#4, then #3 and #4 to produce #5, and so on. Produce equations for changes in probabilities
of identity by descent. Obtain the asymptotic rate of decline by finding A.

. What are the recurrence equations for a regular full-sib inbreeding system when we are con-

sidering a sex-linked locus?

. Take the double first-cousins system in Figure 5.10 and turn the picture upside down. What

system of inbreeding is it?

. Suppose that in an infinite random-mating population, a fraction s of (diploid) individuals,

chosen at random in each generation, reproduce by self-fertilization, the remainder mating at
random. Obtain a recurrence equation for the probability of identity of descent of the two
gene copies in an individual chosen at random. How does this f; change through time?

. If we take 20 individuals from an infinite, random-mating population and start 10 full-sib

lines, continue inbreeding each line for a long time, then cross two of these lines, will the
heterozygosity of this hybrid individual be (a) greater, (b) less, or (c¢) the same as that of a
random individual from the original population? (Hint: thinking will be more useful than
algebraic computation on this one.)

. Does the result of the previous problem mean that two inbred lines started from a random-

mating population will allow us to restore the full variability of the original population by
creating a hybrid population by crossing the two lines? Why or why not?

Suppose that we store a large quantity of semen from a prize bull, and carry out the following
“parent-offspring” mating system: in each generation a cow is artificially inseminated with
some of the semen, and a female offspring is produced. This offspring in turn is artificially
inseminated with some of the semen to produce a female offspring in the next generation, and
so on. What will be the equations of change in the inbreeding coeflicient of these individuals?
To what value will f tend through time, and how quickly?

. Suppose that we start a self-fertilizing line from an Aa heterozygous individual. Suppose

further that the viabilities of AA, Aa, and aa are in the ratios of 1 —s:1:1—s. In each
generation one of the surviving offspring is chosen to continue the self-fertilizing line. Find
equations for the change of f;. To what limit does f; tend? How does this depend on s? How
does mean fitness change with time? How does this compare with the naive result which we
would get by applying (V-18) and (V-48)? Explain any discrepancy.
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10.

11.

12.

Suppose that we have sampled N individuals from an infinite population whose genotype
frequencies were in the proportions (V-2). Suppose that we assume that the sample of size N
contains the three genotypes precisely in the proportions given by (V-2). If we compute the
chi-square statistic to test departure of the genotype frequencies in the sample from Hardy-
Weinberg proportions, what will this quantity be, as a function of N, f and p? How large a
sample would be needed, to detect an inbreeding coefficient of 0.057 of 0.017

What is wrong with the preceding calculation as a means of finding the expected value of the
chi-square test for departure from Hardy-Weinberg proportions, based on a sample of size N
from a population whose genotype frequencies are given by (V-2)? (Hint: consider what you
would get if N = 1, and ask in what ways this differs from the result of the previous problem.
Think.)

Suppose that we consider two uniting gametes in a population with given p and f. Let X =0
if the maternal gamete is a, X = 1 if it is A. Let Y = 0 if the paternal gamete is a, Y = 1 if
it is A. In terms of p and f: What is the mean of X7 The mean of Y? The variance of X7
of Y7 The covariance of X and Y7 The correlation coefficient of X and Y7

J.B.S. Haldane considered a system of repeated backcrossing of a an individual heterozygous at
one locus to a pure line homozygous at that locus. If there is another locus, also heterozygous
in the experimental line and also homozygous in the pure line, linked to that locus with
recombination fraction r, what are the equations for the probability that the second locus is
homozygous in generation t? The cross each generation is AB/ab x ab/ab, with the offspring
that are saved for the next generation being only those that have genotype Aa. What does
this result imply about how large a region around locus A will still be heterozygous after ¢
generations? Is there a simple formula for its expected length?
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Chapter VI

FINITE POPULATION SIZE

V1.1 Genetic Drift and Inbreeding: their relationship

You had two parents, they each had two parents, they each had two parents, and so on. If you go
back 10 generations, you had 1024 ancestors. At a remove of 20 generations, 1,048,576 ancestors.
At a remove of 40 generations (about 1000 years), you must have had over a trillion ancestors!
Now, it is quite clear that not that many people have ever lived. How do we resolve the paradox?
Quite simply: some of those people were the same individuals, counted many times since they occur
many times among your ancestors. Your parents must have been related to each other. Clearly any
outbreeding species whose numbers are finite will be subject to the same argument. It therefore
becomes of interest to ask how rapidly this sort of inbreeding proceeds. To do this, we make a
conceptual model of the process. In this model, we have a population whose size remains constant
at IV individuals. These are assumed to mate at random, without respect to their relationship to
each other. While real populations have a more subtle mating system than this idealization, we
will see that, like the Hardy-Weinberg assumptions, this model serves as a useful starting point for
discussion of more realistic cases.

Before turning to this task, it will be instructive to consider this finite population of size N from
another standpoint. Suppose we took one particular locus, and looked at all the copies of that gene.
There are 2N of them, and we could label these 1,2,3,...,2N. Now consider the next generation of
individuals (in our idealized model population we have discrete, nonoverlapping generations, unlike
actual human populations). Is it possible that each of these 2N gene copies is represented exactly
once? Yes, but that is unlikely. To happen, each parent would have to be the parent of exactly two
offspring, and the two gametes it donates must contain copies of the two different gene copies in
that parent (thus an Aa heterozygous parent must give an A allele to one offspring, and an « allele
to the other). If there are N parents, each with two offspring, each one has only a 50% chance of
giving one copy of each of its two genes to its offspring. So the probability that each gene copy
in the parent generation is represented exactly once among the offspring (even assuming that each
parent will have exactly two offspring) is (1/2)", which becomes vanishingly small very rapidly as
we consider larger and larger values of N. For N = 30 it is less than one in a billion.

Now suppose that we started out with 2N different alleles at a locus, each represented exactly
once. The expectation under the Hardy-Weinberg assumptions is that each of these alleles will
remain indefinitely in the population with its initial gene frequency, 1/(2N). But clearly this is
not to be. Some alleles will immediately be lost from the population, by failing to be represented
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in the next generation. Since there must continue to be 2N copies of the gene if population size
remains N, the remaining alleles must now be represented more than once each (on the average).
The process will then be repeated in the following generation. It will be somewhat harder to lose
alleles, since the surviving alleles may be present in more than one copy. Nevertheless some will be
lost, and the remainder will be increased in average numbers.

In effect, what is happening as the number of alleles out of the original 2N falls, is that fewer
and fewer of the gene copies originally present are represented. Ultimately, only one of the original
gene copies is represented: the population is fixed for one allele. When it is, two things have
happened: the gene frequencies of the alleles have changed, and the copies present are all identical
by descent. This makes the point that the random change in gene frequency which is caused by the
randomness of Mendelian segregation and by random variations of offspring number is the same
process as the increase of identity by descent in a random-mating population. The former process is
called random genetic drift. Hagedoorn and Hagedoorn (1921) first called attention to its potential
evolutionary importance, as did Chetverikov (1926). However, neither of these authors attempted a
mathematical treatment. The mathematics of genetic drift was first carefully worked out by Sewall
Wright (1929¢, 1931). In the following sections more detailed citations will be given.

The reader who has followed the above arguments closely may well be suspicious of one of the
steps followed. In the first place, the argument concerning genetic drift seemed special to the case
where initially we started with 2N different alleles. A moment’s thought will show that it is not.
If the gene copies in the population are ultimately descended from one of the initial gene copies,
then whatever the initial number of alleles, and whatever their frequency one will ultimately fix at
the expense of the others.

We have seen that random genetic drift and inbreeding seem to be different aspects of the same
process. We now proceed to look into the mathematics of both phenomena and their intercon-
nection. We have not been explicit about the fitnesses of the genotypes. Although genetic drift
and inbreeding are always occurring in a finite population, their analysis is far more complex when
natural selection, migration, or mutation also occur. For the remainder of this chapter we assume
that these forces are absent.

V1.2 Inbreeding due to finite population size

Let us consider a population of haploid organisms with constant population size N. In a haploid,
there is no Mendelian segregation, so all genetic drift must be due to variations in offspring number.
If each of the N individuals had exactly one offspring, then the composition of the population would
be exactly reproduced from one generation to the next (barring mutation, and assuming that we
are following a single locus). To model the processes of genetic drift and inbreeding, we will have
to make some particular assumption about how offspring numbers vary. The assumption we shall
make is that each of the N offspring in the next generation is produced by a parent drawn at
random independently. This amounts to saying that the pedigree of the group is constructed by
drawing in the N individuals of the next generation, then connecting each one to one of the N
possible parents, drawn at random and without regard to other links in the pedigree.

This scheme is not chosen simply for its inherent randomness: it corresponds to a life history of
the group which has some biological plausibility. Suppose that each parent had a vast number of
offspring, but all had the same (vast) number of offspring. Now suppose that this pool of juveniles
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is subject to mortality by pure random accident, irrespective of genotype and of parentage. The
mortality ceases only when the population of juveniles has been whittled down to N. Now consider
these N survivors. The first one (we number them arbitrarily) is an offspring of one of the N
parents, chosen randomly. The second one is also the offspring of a randomly chosen parent, and
what is more important, the fact that the first offspring we examine is descended from parent
#17 tells us nothing whatsoever about whether or not the second offspring also comes from parent
#17. That is a result of the vast numbers of juveniles produced by each parent, and the fact that
mortality occurs to each juvenile independently. Once it is known that one of the offspring of #17
has survived, the second offspring must be regarded as chosen from among all the other juveniles.
But this does not make the next one appreciably less likely also to come from parent #17, as we
have ruled out only one of the vast number of juveniles produced by that parent. Our assumption
that there is no variation from parent to parent in the (vast) number of juveniles each produces is
important, since were it not true, once we knew that parent #17 had provided the first offspring,
that information would indicate that this parent was more likely to have produced a large than a
small number of juveniles, and thus would also have a higher than average chance of providing the
second offspring as well.

Now the model is sufficiently well-specified to permit us to calculate inbreeding coefficients. The
reader may be upset at the very notion of inbreeding coefficients in a haploid organism. However,
it is meaningful to compute coefficients of kinship between genes in different individuals. Since
we assume that the initial population is also the base population, the initial coefficient of kinship
among different individuals is taken to be zero. Letting f; be the coefficient of kinship of different,
randomly chosen individuals in generation ¢, we will obtain a recurrence relation between f; and
ft—1. We consider two cases. First, the two individuals may be descended from different individuals
in the previous generation. Second, they may be descended from the same individual. In the latter
case f = 1, since they must of necessity contain copies of the same gene. The relative frequencies
of these two cases can be obtained by considering that each offspring’s parent is drawn at random
independently (and “with replacement”) from the N parents. Thus if we look at two distinct
offspring, once we know from which parent the first of them is descended, the chance that the
second one comes from the same parent is simply 1/N. If the two individuals came from different
parents, an event with probability 1 — 1/N, we may regard them as drawn from two randomly
chosen distinct individuals. In that case their coefficient of kinship is simply f;—;. Putting all of
this together, we find that

1 1
fe = ~ T (1 - N) Je-1. (VI-1)

While this recurrence relation is not difficult to solve, it is made completely transparent by con-
sidering the probability of non-identity hy = 1 — f;. We can either substitute 1 — h; and 1 — hy—
for f; and f;—1 in (VI-1), or we can reason directly as follows: with probability 1/N the parents of
the two individuals are the same, in which case h = 0. With probability 1 — 1/N the parents are
distinct and randomly chosen, so that A = h;_;. Then

he = <1 _ %) he 1. (VI-2)

So 1/N of the non-identity is lost every generation. Since hy = 1,

he = (1—%>t (VI-3)
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Each generation, the population goes 1/N of the remaining distance towards complete inbreeding.
It is worth emphasizing that since the gene frequency in a population may wander back and forth,
there is no smooth uniform tendency to lose variation in a single population. The approach to
complete inbreeding given by (VI-2) and (VI-3) expresses an average of what happens over many
populations simultaneously evolving populations.

V1.3 Diploids

If we are discussing inbreeding coefficients it would be convenient to be working with diploid
populations. The following is a simple diploid model equivalent to the above haploid case. Consider
a population of hermaphroditic diploids. In each generation the following process takes place: each
individual produces a vast (and equal) number of eggs and a vast (and equal) number of sperm.
The individuals all spawn into a common gamete pool, like some sessile marine forms. The gametes
are thoroughly mixed, so that each of the vast number of juvenile zygotes formed may be regarded
as formed by union of a randomly-chosen egg with a randomly-chosen sperm. As in the haploid
model, density-dependent mortality acting at random without regard to genotype or parentage,
reduces the large number of juveniles to N surviving adults, who will be the parents for the next
generation.

This model has the property that if we examine the surviving adults, each may be regarded as if
its two parents were drawn from the previous generation independently and at random. Note that
it is quite possible for the two parents of an individual to be the same, since the individuals are
hermaphrodites, and no prohibition against self-fertilization has been introduced into the model.
Also note that when two gene copies are in the same individual, their parents may be regarded as
drawn at random, and the same is true when the two gene copies are in different individuals. In
effect, each of the 2IV gene copies in the population comes from a randomly-chosen parent. By the
rules of Mendelian segregation, this means that each of the 2N gene copies is copied at random from
one of the 2N gene copies of the previous generation. The resulting inbreeding is straightforward:
if we let h; be the probability of non-identity of two different gene copies (irrespective of whether
they are in the same or different individuals),

1 1 1
hy = N (0) + (1 - ﬁ) hi—1 = <1 - ﬁ) ht—1, (VI-4)

so an hermaphroditic diploid organism, mating at random with selfing allowed in a finite population
of size N loses 1/(2N) of its remaining non-identity, and hence of its heterozygosity, in each
generation. In this respect a diploid population of size N is equivalent to a haploid population
of size 2N: when the number of gene copies at locus is the same, so is the rate of inbreeding. Since
hg is usually taken to be 1, we have that

hy = (1 _ %)t (VI-5)

and

fe =1 = (1—%>t. (VI-6)



Table 6.1: Half-life of population heterozygosity (or non-identity) using both exact
(VI-7) and approximate (VI-8) formulas, for various population sizes.

Half-life
N  Approximate  Exact
1 1.386 1
10 13.863 13.513

100 138.629 138.283
1000 1386.294 1385.948

In equations like (VI-3) or (VI-5), we can easily find the number of generations which will be
required for half of the heterozygosity to be lost. In the diploid case, setting hy = 0.5 in (VI-5) and

solving for t:

“log, 2
tos = — e (VL7)

log, (1 - 3x)
Now when N is large, since log, (1 — z) ~ —=,
_ —log,2
~ 1/(2N)

to.s = —2Nlog,2 = 1.386]V. (VI-8)
This shows that the time scale for loss of heterozygosity is proportional to population size. This
fact, and the accuracy of the approximation (VI-8), are verified by the figures in Table 6.1. Note
that the error is never more than four-tenths of a generation.

V1.4 Genetic drift: the Wright-Fisher model

HAPLOIDY. We have obtained formulas for the rate of inbreeding due to finite population size.
We now want to examine the other side of the finite-populations coin: genetic drift. The model we
will introduce was stated by Sewall Wright (1931) and R. A. Fisher (1930) and hence is called the
Wright-Fisher model (or sometimes the Wright model). It is precisely the model(s) of the previous
section. The difference is that we are following gene frequency, not inbreeding. For simplicity we
will deal only with cases of two alleles, although the Wright-Fisher model is readily extended to
multiple alleles.

Consider first the haploid case. We have a fixed population size, N, so that there are only
N + 1 possible gene frequencies: 0/N,1/N,...,N/N. Thus, in investigating the gene frequency of
the A allele we can just as easily follow the number i of A alleles in the population. Now let us
assume that in some population there are presently ¢ copies of A and N — i copies of its allele
a. What will happen to the gene frequency of A in the next generation? Recall that we have N
offspring, and that each will contain a copy of a randomly chosen gene from the current generation.
If p = i/N is the current gene frequency of A, the next generation will represent N tosses of a coin,
with probability p that each toss comes up heads (A), for each offspring has the same independent
and random possibility of being a copy of one of the currently-existing A genes. From this we can
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see that unless p = 0 or p = 1 in the current generation, the gene frequency in the next generation
could assume any of the N + 1 possible values 0/N, ..., N/N. For however unlikely it is, it is still
possible that all of the N coins will come up heads, or all tails, or any outcome in between. We
thus do not have a deterministic single outcome, except when p =0 or p = 1.

The best we can hope to do is to characterize the probabilities of the various outcomes. We
wish to calculate P;;, the probability that if there are i copies of A this generation, there will be
Jj copies in the next generation. Note that this is a conditional probability, the probability P(j7)
of j given i. By our coin analogy, which is a precise one in the admittedly idealized world of the
Wright-Fisher model, we want the probability of obtaining j heads when in N tosses the probability
of heads is p = i/N. This will be straightforward: it is the binomial probability

Py = <Jj> p’ (1—p)N

- T (@j <1‘ %)Nj

(Recall that the notation (J;[) is the number of combinations of N things taken j at a time).
Interestingly enough, formula (VI-9) works not only for the cases where both alleles exist, but also
for the cases where ¢ = 0 or ¢ = N. Then we find Py = 1, but all other ; = 0, and Pyy =1
but all other Py; = 0. This is what is expected: once A or a becomes fixed in a population, it will
remain so forever, as there is no mutation in this model.

(VI-9)

DIPLOIDY. Before proceeding to see what we can find out from the F;;, it will be useful to briefly
consider the diploid case. Recall that each gene copy in the diploid offspring is independently drawn
from a randomly-chosen gene copy in the previous generation. So if we ask only about the gene
frequency in the next generation, without regard to how these genes are arranged in genotypes,
the result is equally simple. We have 2N tosses of a coin whose probability of heads is p, so the
probability of getting j copies of A out of 2N is simply

2N . .
P; = <j>p’(1—p)2NJ

2N i\’ L 2N=j
- sav=m (av) (1~ 2v)

Thus the diploid case is the same as the haploid case, provided we compare cases with equal
numbers of copies of the gene, rather than with equal numbers of individuals.

(VI-10)

We could, if we wished, also compute the probability of getting m AA’s, n Aa’s, and (N —m—n)
aa’s in the next generation. The reason we will not bother to do so is that the genotype frequencies
in this case are an epiphenomenon of the underlying variables, the gene frequencies. If we wanted
to find the probability that an individual in the next generation is AA, this depends only on the
gene frequency in the current generation, being of course p?. Since gene frequencies are the only
variables which affect the status of future generations, we can follow their evolution without ever
asking about genotype frequencies.
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A MARKOV PROCESS. The P;;, taken together with the initial number of A alleles, completely
specifies the process of genetic drift. Because it is random it is called a stochastic process. This
particular process has the property that its future behavior depends only on its current state (its
current gene frequency), not on where it has been in the past. This means that it is a Markov
chain, named after the Russian probabilist A. A. Markov, who first investigated the behavior of
such systems. The states of a Markov process (in this case the different possible numbers of A
alleles) can be classified according to how often the process is expected to visit the state. In this
case we have two types of state. The states i = 0 and ¢ = 2N are absorbing states (we are thinking
of the diploid case, but the result is entirely analogous in the haploid case). Whenever the process
enters either of these states it will stay there forever. The other states are all transient states.
They are visited only a finite number of times, after which the process never returns to them. In
all states for which 0 < p < 1, there is a probability p?>"V of going to state i = 2N and a probability
(1 — p)2N of going to state i = 0 in the next generation. Sooner or later, therefore, the population
must fix or lose allele A.

We can use matrix algebra to investigate the behavior of a Markov chain with finitely many
states. The reader who is allergic to matrices may wish to skip the rest of this section, as the basic
result will be simply that we cannot solve enough of the problem to be of much use.

The basic recurrence equation is as follows. Let p,(:) be the probability that in generation ¢ the
process is in state k. Then

pt =3 0 Py (VI-11)
J

The logic of this equation is straightforward: to find the probability that the event is now in state
k, we sum over all possible places the process could have been in the previous generation the
probability that the process was there, times the probability that it then moved to the state of
interest. In matrix terms, if we let p® be the row vector (p(()t), ...,pgt]z,), and if we let P be the
matrix [Pj;],
ptth = p®p
(VI-12)
— pO pt+1,

The vector p(? is the vector specifying the composition of the population in the initial generation.
Many of the interesting properties of the Wright-Fisher model are reflected in the sequence p®,
t = 0,1,... of state distributions. The vector p{®) gives the distribution of the different states at
time ¢, over hypothetical replicates of the Wright-Fisher model, all of which are assumed to start in
the same state and are assumed to be subject to the same transition probabilities. As t increases,
the distribution of states ultimately falls into some equilibrium distribution (po, ..., p2n). Removing
the time indices ¢ from (VI-12), this equilibrium distribution must satisfy the matrix equation

p=pP. (VI-13)

This is the matrix equation p(I—P) = 0, which has an infinite number of solutions, for if a given
vector p satisfies it, so must all multiples of p. To narrow down to the solution we want, we must
add the side condition that the elements of the solution p sum to one. When we do that, we can
readily show that the solution p is a vector with its first and last elements nonzero, and all others
zero. In other words, it is of the form (z,0,0,...,0,1—x). We will see in the next section that z can
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be determined without recourse to matrix algebra. So far, all we have shown is that at equilibrium,
every population must be fixed for one allele or the other, which is hardly surprising.

EIGENVALUES AND EIGENVECTORS. The general method for working out the vectors
p® in cases like (VI-12) is to find all eigenvalues and left eigenvectors of the matrix P. Then if
x(*) is the k-th left eigenvector of P, and ) is its associated eigenvalue, if we can represent the
initial distribution of states p(?) by a linear combination of eigenvectors

2N
p@ =) e x®. (VI-14)
1

The vector p® can then be computed by multiplying each term by the ¢-th power of the corre-
sponding eigenvalue:

p® = ch AL xR, (VI-15)
k

If we had expressions for the eigenvalues Ag, the coefficients ¢j (corresponding to a particular
initial vector in which we were interested), and the left eigenvectors x*) | we could write an explicit
expression for the elements of p®). This would give us much information. The eigenvalues \j, are
in fact known. They are:

1 1 2 iy i
=1, 1, 1—— 1—— 1—— 11— — I-1
)\17 ’ )\ZN ) ) 2N7 < 2N) < QN)’ ) H < 2N> (V 6)

i=1

and were obtained by Feller (1951). The right eigenvectors of P may also be obtained (see Karlin,
1966). But there are no known expressions for the left eigenvectors, except for the first two. Those
are the eigenvectors corresponding to the absorbing states: (1,0,0,...,0) and (0,0, ...,0,1). No one
has ever obtained an expression for the third eigenvector, which is the next most interesting one.
So the effort to compute p® has so far come to nought, and the same holds for more complex
quantities such as the t-step transition probability matrix P?, or the first-passage times for various
states.

However, since we have the transition probabilities P;;, it is possible for small N to compute the
quantities p,(:) numerically, by the simple expedient of repeatedly multiplying the vector p(®) by the
matrix P in a computer. Figure 6.1 below shows an example of the case N = 10 where there are
initially 6 copies of A (out of 20 possible). Three different times are shown. Note particularly that
when almost all replicates are fixed, the few remaining unfixed are spread out in a nearly uniform
distribution over all the unfixed states 1,2,...,2N — 1. This is a general pattern no matter what
the initial gene frequency (provided it is not 0 or 1).

V1.5 Inbreeding coefficients, variances, and fixation probabilities.

FIXATION PROBABILITY. The foregoing section is perhaps excessively gloomy. We cannot
find the exact distribution of gene frequencies among replicate populations in the Wright-Fisher
model at time . But we can easily find the mean and variance of the distribution as a function of ¢,
and this gives us much information. Let’s start with the mean, where the going is easier. Suppose
that x; is a random variable representing the gene frequency in a population of size N which has
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Figure 6.1: Distribution of gene frequencies (given as number of copies of the A allele
out of 20) among replicate populations in a diploid Wright-Fisher model with N = 10
and initial frequency pg = 0.3 after 2 (top), 10 (middle), and 40 (bottom) generations.
Note that when almost all populations are fixed (T = 40) the remaining populations
are distributed nearly uniformly over the unfixed classes.

been undergoing genetic drift starting at gene frequency pg. We want to find the mean (expectation)
of x;. Suppose that we knew the expectation of z;_1, and wanted to find the expectation of x; from
this. The expectation of x;_1, which we denote E(z;_1), is the mean over many replicates. In each
such replicate, if the current gene frequency is x;_1, the gene frequency in the next generation can
be written as x; = x;_1 + e, where e is the change of gene frequency in that replicate population.
Now the expectation of e is zero for each given replicate. This is because when we toss a coin 2N
times with heads probability x;_1, the expectation of the fraction of heads will simply be x;_1.
This property of the binomial distribution can be proven algebraically, but we will not bother to
do so here. So taking a given value of the x;_; for a single replicate, and averaging over all possible
outcomes in the next generation:

E(.I‘t) = Tt-1- (VI—l?)
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Now we can further take expectations over all values of z;_1, and we find
EE(z:) = E(zi-1) (VI-18)

so that
E(z;) = E(z4—1) = ... = E(z1) = po. (VI-19)

The mean gene frequency over replicates stays at the same value, the initial gene frequency. This
has one immediate implication: the probability of fixation of A is the same as its initial frequency.
When all populations have become fixed for one allele or the other, the mean gene frequency of A
will be the same as the fraction of populations which have fixed A. So this must be the same as
the initial gene frequency, by (VI-19).

This accords well with intuition. The process of genetic drift results in all gene copies ultimately
being derived from a single copy in the initial generation. The genetic identity of the alleles in those
initial copies has no effect on their chances of being the progenitor, since there is assumed to be
no natural selection occurring. Therefore the chance that an A allele will be the one chosen to be
the progenitor of the population is simply the proportion of initial gene copies which are A. In this
sense, although genetic drift makes great changes of gene frequency within any one population, it
does not discriminate in favor of one allele as against another, so that over many replicates of the
same process it causes no average change in gene frequency.

VARIANCE. While the mean gene frequency remains unchanged, the variance increases through
time. Initial gene frequencies in different replicates are initially the same, and thereafter become
more and more different. Suppose that a population currently (in generation t) has gene frequency
x; of A, and we consider all possible outcomes of one more generation of genetic drift. In a typical
outcome the gene frequency increases from x; to x441, which we write as x; + e. The random
change e has a mean and variance which are readily computed. The new gene frequency x;y1 will
be generated by a binomial distribution and will have mean z; and variance z;(1 — x;)/2N. So the
mean value of e is zero, and therefore its mean square equals its variance, which must also be the
variance of z; 1 given .

Var (e) = E(e?) — [E(e)]? = E(e?) = z4(1 —x;)/2N (VI-20)

Now, the mean square of x4 given x; is

E(z?) + 2E(xse) + E(e?)
2 4 E() (VI-21)

E(z7,) = E(z¢ +e)?
= 27 +2x7,E(e) + E(e?)
= 27 + z(1—x)/(2N).

This is the mean of z? 1 over all outcomes immediately after the gene frequency is x;. To find the
overall expectation of x? +1 we would have to take expectations over all values of x;:

E(z7,,) = E(2f) + E(z)/(2N) — E(a7)/(2N)
(V1-22)
= E(z}) (1—5%) + E(z)/(2N).
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Now the expectation E(z;) is simply pg, as we have already established, and the variance of z; is
E(z?) — pg. So

p2 4+ Var(zi11) = (p2+ Var (z4)) <1 - %) + po/(2N). (VI-23)
Solving for Var (z¢11),
1
Var (z¢4+1) = Var(x) <1 - W) +po (1 —po)/(2N) (VI-24)

The simplest way to solve this recurrence relation is to follow the behavior of po(1 — pg) — V().
This turns out to be

po(1 = po) — Var (z41) = [po(1 — po) — Var (z2)] (1 _ i) (VI-25)

2N
This shows that Var (z;), which is initially zero, approaches the value py(1 — pg), the difference
between them being multiplied by (1 — (1/2N)) each generation. Clearly

1 t+1
ol =) = Var 1) = (1 =) (1= 57 (V1-26)

and generally
1\
Var (z;) = po(1 —po) [1 — (1 — ﬁ) ] . (VI-27)

Notice that this formula is zero when ¢ = 0 (as it should be), it is po(1 — pg)/2N, the binomial
variance in 2N trials, after one generation (as it should be), and ultimately it becomes po(1 — pp).
This latter is precisely the variance of a distribution which has the value 1 pg of the time and 0 the
rest of the time.

If the behavior of the variance of gene frequencies reminds you of that of the inbreeding coeffi-
cient, moving 1/2N of the remaining distance to its final limit each generation, this is no coincidence.
Equations (VI-6) and (VI-27) show that

Var ()
po(1 — po)

1\!
= fr =1 — (1 — W) . (VI-28)
There is a direct correspondence between inbreeding coefficients and variance of gene frequency.

The above derivation should also remind you of the discussion of the Wahlund effect in Chapter
I, where we noted that the variance of gene frequencies among populations was expected to be
directly related to the reduction of their average heterozygosity, caused by each population drifting
towards fixation or loss. The heterozygosity in one population is 2z:(1 — x;), whose average over
infinitely many replicate populations will be 2po(1 — pg) — 2Var (z;), which, substituting from
equation (VI-27), is seen to decline proportionally to (1 — 1/(2N))!. Thus this derivation also
predicts the decline of expected heterozygosity as individual populations drift to fixation or loss.

Figure 6.2 shows the outcome of computer simulation, in eight replicates, of random genetic
drift in a diploid population of size 10. Both the individual gene frequencies and the means and
variances are shown.
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Figure 6.2: Simulated genetic drift in 8 replicates of a diploid Wright-Fisher model
with N = 10 and py = 0.3. The upper graph shows the gene frequencies in the eight
replicate populations (lines) as well as the mean gene frequency over replicates (circles).
The lower graph shows the mean heterozygosity within replicates (line with circles) and
the variance of gene frequencies among replicates (line without circles)

It is possible to continue this approach into examination of higher and higher moments of the
gene frequency distribution. Although no general expression for the distribution exists, formulas
exist for its mean, variance, skewness, and kurtosis. There seems little point in examining the latter
two properties here, for as we go beyond the second moment (the variance), the formulas become
more and more complicated and the quantities less and less meaningful.
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V1.6 Effective population number: avoidance of selfing, two sexes,
monogamy.

EFFECTIVE POPULATION NUMBER. The particular model of the life cycle which was
used in the previous section will rarely apply. When it does not, a useful technique will be to
compare the rate of inbreeding (or of increase of gene frequency variance) in the more realistic
model with that in the idealized model we have discussed. A convenient way to express this is to
find that population number in the idealized model which will give the same rate of inbreeding (or
the same rate of increase of variance) as we observe in a more realistic model. In what follows we
will always compare rates of inbreeding, so that what we will compute will be inbreeding effective
population numbers, rather than variance effective population numbers. These will sometimes differ,
but do not in the cases covered in this chapter. The reader will find some further discussion of this
point in Crow and Kimura (1970).

SELFING NOT ALLOWED. In the idealized model, it was entirely possible that an offspring
could be the result of selfing as the result of random collision of an egg and a sperm from the same
hermaphroditic individual. If such selfing is impossible, but mating otherwise continues at random,
one imagines that the rate of inbreeding will be reduced. By how much is not obvious. Examining
this point will make it clear to what extent inbreeding due to finite population size depends on
randomly-occurring selfing.

If selfing is prohibited in an hermaphroditic (monecious) population of size N, when we look
at two distinct gene copies, their probability of identity by descent may be different depending on
whether or not they are from the same individual. After all, gene copies from the same individual
cannot be derived from the same individual in the previous generation, whereas copies from different
individuals can. Let us examine the change in probabilities of identity through time. Actually, we
will use probabilities of non-identity. Let h; be the probability of non-identity of distinct gene
copies from a single randomly-chosen individual. Let k; be the probability of non-identity of copies
chosen at random from two distinct individuals which are themselves chosen at random.

Since distinct copies from a single individual must have come from randomly-chosen distinct
individuals in the previous generation.

ht+1 = k’t. (VI—29)

As for two copies from different individuals, they have probability one-half of having come from
the same gene copy in that parent (in which case they cannot be non-identical), and probability
one-half of having come from different copies in that parent. Otherwise they must have come from
different parents. So

P %ht + (1 _ %) k. (VI-30)
Substituting (VI-29) into (VI-30) in the usual manner, we get first
kiy1 = (1 — l) ke + th_l (VI-31)
N 2N
then as the asymptotic multiplier A of non-identity, the solution of
1 1
/\2—<1—N>/\—ﬁ =0 (VI-32)



Table 6.2: Comparison of exact and approximate value of effective population size when
selfing is prohibited.

Ne

N  Approximate Exact

2 2.5 2.6180

5 5.5 5.5495

10 10.5 10.5249

100 100.5 100.5025

1000 1000.5 1000.50025

so that
1 2 1 2 1 1
A 124542 — 1+
N = N \/ : NTNMTN N : N (VI-33)

It is not hard to show that A is approximately 1 — 1/(2N + 1) except for very small N. Since in
the idealized model A = 1 —1/(2N), the effective population number is

N, ~ N+1/2. (VI-34)
Table 6.2 compares (VI-34) with the exact value of N, computed using
N = 1/[2(1 = \)] (VI-35)

and (VI-33). Note the extreme accuracy of (VI-34). It should be clear that an increase of effective
population size by half an individual will hardly have any effect on the rate of inbreeding unless
N is very small. So randomly-occurring selfing is not a major source of inbreeding with finite
population sizes.

SEPARATE SEXES. Now suppose that in addition to preventing selfing, we divide the N
individuals into Ny females and N, males. Each offspring is produced by a randomly chosen
female and a randomly chosen male. To analyze the rate of inbreeding, we can use the same two
quantities h; and k; as before. It might seem that we ought to specify from which sex a gene
comes. But the females are simply the first Ny offspring produced, and the males the next IN,,
(this implicitly assumes that the locus we follow is not sex-linked). Since h; is the probability of
non-identity of the two gene copies from an individual, again we have

hir = ke, (VI-36)

the fact that the two parent are necessarily of different sexes not affecting the probability of non-
identity of their genes.

When two gene copies are in different individuals, they have chance 1/4 of both coming from
females, in which case they have a 1/N; chance of coming from the same female, and within that
a 1/2 chance of coming from the same gene. There is a similar set of probabilities for males. Half
of the time the two gene copies come from parents of different sexes. So

171 1 171 1 1
kiy1 = - |=ohet+ (11— )k = het (1= < ) k| + 2k I-
i O ) K e~ O ) L B
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Table 6.3: Approximate effective population number for different numbers of females and males.

Ny N, N,

199 446
5 95 195
10 90 36.5

25 75 75.5
50 50 100.5

This can be rearranged into

1 1 1 1
hip1 = (= 4+ e+ (1= ——— |k I
i <8Nf+8Nm> t+< AN, 4Nm> t (VI-38)

Comparing (VI-36) and (VI-38) respectively with (VI-29) and (VI-30), we can see that they will
be the same set of equations if we can find a population size N* such that
1 1 1

_ - VI-39
N* ~ IN; TN, (VI-39)

so that (VI-38) will become (VI-30), but with N* instead of N. It has been conventional to define
N* as the effective population size of the population, but this involves a slight inconsistency, for
we are then declaring the no-selfing case to be the standard. To continue using the simple Wright-
Fisher model as the standard, we can (to good approximation) add 1/2 to N*, so that the effective
number is (inverting the fraction in VI-39)

AN{N,, 1

N, ¥ ———— 4 — 1-4
Nf+Nm+2 (VI-40)

To compute N, more precisely, one could use (VI-39) to get N*, then replace N in (VI-33) by that
value. Table 6.3 shows how N, computed from (VI-40), is affected by different sex ratios when a
population of constant size is divided into different numbers of females and males: Note that the
effective population number is closer to twice the numbers of the sex in shortest supply, but when
both are equally frequent, it is N + 1/2, just as it was when the individuals were hermaphrodites.

MONOGAMY. Another way in which the Wright-Fisher model departs from reality is the
absence of monogamy. Some non-human species form monogamous pairs for life. In the models
discussed so far, if one offspring comes from, say, parents #7 and #29, the next offspring might well
come from parents #7 and #18. We can instead imagine a population with N/2 females and N/2
males, which are randomly formed into pairs (without replacement). Each offspring is produced by
choosing one of the N/2 pairs at random and having it produce the offspring. Once again, the only
relevant distinction gene copies will be whether or not they are in the same individual. Without
going into great detail, the resulting equations are:

hiy1 = ke (VI-41)
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and k = L[l.lh —I—lk:]—l—(l—#)k:
t+1 N2 L2 727t T gh N2/ M
(VI-42)
= ﬁht—l—(l—%)kt

Comparison will show that these are precisely the same as equations (VI-29) and (VI-30) so,
surprisingly, enforcing monogamy has no effect on effective population number.

We have thus found that avoidance of selfing has little effect on effective population number,
that enforced monogamy has no effect, but that unequal sex ratios can have a substantial effect,
reducing the effective number.

HISTORY. Most of the work reported in this section was first done by Sewall Wright, in his
classic 1931 paper. The terminology of effective population number was introduced later by Wright
(1938b). The computations regarding monogamy seem to have been done first by Moran and
Watterson (1959), as this case was overlooked by earlier workers. Crow and Kimura (1970) discuss
the distinction between inbreeding and variance effective numbers more carefully.

VI.7 Varying population size, varying offspring number.

VARYING POPULATION SIZE. When population size changes through time, the rate of
inbreeding, or of increase of gene frequency variance, will also vary. It is a simple matter to find
that population number which would, over the same period of time, lead to the same amount of
inbreeding in a simple Wright-Fisher model. Consider two Wright-Fisher models, one of constant
size N., the other having a series of sizes in successive generations: Ni, N3, N3, ... There is no
difficulty in defining the latter model: one simply assumes that in generation ¢, from among the
infinite numbers of zygotes produced by random union of gametes of the previous generation, only
N; survive (at random) to adulthood. In the constant size-population, after ¢ generations the
probability of non-identity by descent is reduced from 1 to

hy = (1— ! )t. (VI-43)

2N,

In the varying population, this probability is

e () () () Vi

To find the effective population number, we must equate (VI-42) and (VI-43) and solve for N..
This we can do by first taking the ¢-th root of both expressions

t—1 1/t
2]1\[6 = [H <1— 211\[)] (VI-45)
=0

i

1—

and then solving:
Ne = (VI-46)




Table 6.4: Effective population number after bottlenecks in population number of varying length.

Number of generations at:  Effective population number

N; =10 N; = 1000 N, (approximate) N, (exact)
1 99 502.51 496.25
5 95 168.07 164.74
10 90 91.74 89.86
25 75 38.83 38.13
50 50 19.80 19.56
75 25 13.29 13.21
90 10 11.10 11.07
99 1 10.10 10.10

A useful approximation may be developed as follows: when all of the N; are large, we can approx-
imate (by a binomial expansion)

1\ 1
(1 — 2Ni> ~ 11— N (VI-47)

Putting this into (VI-45), after some rearrangement and discarding terms with 1/(V;N;),

1
N, = —— (VI-48)

(%) /1

(]

This formula computes the reciprocal of the average of reciprocals. This is a well-known quantity:
it is known as the harmonic mean of the N;. A well-known property of harmonic means is that
they are closer to the minimum of the quantities than is the ordinary arithmetic mean. We have
seen this property before: in the previous section, the effective population number with two sexes
was twice the harmonic mean of the number of the two sexes.

Table 6.4 gives some idea of the effects of varying population number: in it we suppose that
population number is 10 for a certain number of generations, and 1000 for the rest of a stretch of
100 generations. The exact effective population number is also given.

Note the relatively strong effect of even a few generations of reduced population size. Note that
when half of the generations are at IN; = 10 and the other half at N; = 1000, the effective population
number is much less than their average, which would be 505. Note that the approximation (VI-

48) is quite good. Since its accuracy depends on (VI-47), which is accurate for large N;, the
approximation is better for larger IV;.

VARIATION IN FITNESS. Changes in population size might result from variation in fitness
from generation to generation. When fitness varies within a generation, this also affects effective
population number. If the variation is genetic, and is due to the genes whose drift or inbreeding
we are examining, then we are examining the interaction of genetic drift and selection. We reserve

this complex subject until the next chapter. For the present we deal with the case where the fitness
variation is not inherited.
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Suppose that we have a population following a Wright-Fisher model with selfing allowed, except
that at the stage where games are produced, each individual produces an infinitely large but different
number of gametes. Suppose that the i-th individual produces a number of gametes proportional
to the fitness w;. It is clear that this can affect the effective population number, since if w; is very
small for all but one individual, so that this individual does most of the reproducing, the rate of
inbreeding will be much increased. We can compute the effective population number as a function
of the mean and variance of the w; within the generation. Since random selfing is allowed, we need
only one quantity, h;, to analyze inbreeding in this case. The probability that a random gamete
comes from the i-th individual is w;/ >, w;. The chance that both of two gametes came from
individual 7 is w?/(}; w;)?. The overall probability that two gametes come from the same parent
is >, w?/(Y2,; wi)?. The equation for change of the probability of nonidentity is:

2
1 2

Comparing this to the usual formula

1
Bt — <1—2Ne>ht, (VI-50)

N, = (Zw)2/<2w2> (VI-51)

the variance of fitness is the difference between the expectation of the squares and the square of
the expectation, which is >, w?/N — w?, so we can rewrite this as

we find that

N. = N?w?/(NVy, + Nw?). (VI-52)

which reduces to
N. = N/(1 +V,/w?) = N/(1+C2). (VI-53)

where C2 is the squared coefficient of variation of fitness. Notice from (VI-53) that variation in
fitness reduces the effective population number: if the standard deviation of fitness is half its mean,
effective population number is reduced by 20%. Careful consideration of this derivation will show
that we can only use the expressions for w and V,, if we assume that the sum of the w; is a fixed
quantity in each generation.

We may prefer to express the variation in offspring number from individual to individual directly,
rather than in terms of V,,. Suppose that in a given generation, n; is the number of gametes
contributed to the surviving offspring (those that reach adulthood) by the i-th parent. The number
of ways to choose two distinct gene copies in the offspring is 2N (2N — 1). n;(n; — 1) of these are
choices of copies from the same parent. The total probability of choosing two gene copies from the
same parent is S )

o 3 iy — 1
P —2N(2N ) (VI-54)
This quantity is the equivalent of 1/N;, in the discussion of cases where INV; varies between gener-
ations. As we have seen a good (approximate) way of computing the effective number when Ny
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varies is to compute the harmonic mean of the N;. This is

L _ E[l] _ E[Zim(m—l)} _EXEn] -EXin] _ S ERI-2N

INGN 1) |~ aN@N-1 anev—p VP

Ne

Ny

Now the variance of offspring number of a random individual from a random generation is
Vi, = E[n? —E[n)* = E[n? - 2% (VI-56)

since the constancy of total population size necessarily implies that E(n) = 2. Solving this for
E(n?) and substituting, this into (VI-55), we can solve for N,, getting:

ON(2N —1) 4N —2

N, = = .
N@A+V,)—2N ~ 2+V,

(VI-57)

This formula needs a bit of interpretation. Note that V,, is the variance of the number of offspring
of a randomly chosen individual, in the sense of the number of gametes contributed to the next
generation. Thus an offspring produced by random selfing counts as two offspring. Note that as
V,, increases, the effective population number declines. In one extreme case, where all individuals
contribute exactly two gametes to the next generation, V,, = 0, so that N, = 2N — 1. This
emphasizes that effective population number need not always be less than census number. When the
variance of offspring number is determined by random sampling from a pool of gametes contributed
equally by all parents, we have the case of the Wright-Fisher model. There are 2N gametes sampled
from the pool, and on each draw a given parent has probability 1/N of having one of its gametes
chosen. The variance of offspring number is simply the binomial variance

V, — 2N (%) (1_ %) _ 9o % (VI-58)

Substituting this into (VI-57) gives N, as expected. Note one important difference between (VI-52)
and (VI-57). In the former case, variation in offspring number can never increase N.. This is
because the random sampling of 2N gametes from the gamete pool creates a certain irreducible
variance in offspring number. Formula (VI-56) does not assume this random sampling, so V,, can
be smaller than 2 — 2/N, which is the smallest V;, achievable under the model of (VI-52).

We can regard changes in population size and variation of offspring number as examples of the
same phenomenon: variation of the number of gametes contributed to the next generation between
random individuals chosen from random generations. When this variation exceeds the expected
from the Wright-Fisher model, there is a reduction in effective population size.

As with most results in this chapter, both (VI-48) and (VI-57) are due to Sewall Wright (re-
spectively 1931 and 1938b). Formula (VI-52) is a variation on a result of Alan Robertson (1961).

VI.8 Other effects on effective population number.

There are many other phenomena which can affect effective population number, and too little space
here to discuss them all. T hope to briefly touch on two: overlapping generations and linkage.

OVERLAPPING GENERATIONS. When generations overlap, this may affect the variation
of offspring number. One simple model of overlapping generations deserves special mention: the
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model of P. A. P. Moran (1958). The model has many variants: we will consider the variant which
is closest in spirit to the haploid Wright-Fisher model. We have a monecious haploid population
of N individuals. In the Moran model, instead of all parent individuals dying simultaneously upon
the birth of the offspring generation, one parent dies at a time. Time is divided into units, and at
each unit of time, one individual chosen at random dies. Before it dies, a parent chosen at random
(with replacement — selfing is allowed) produces the offspring which will replace it. Thus each time
unit may see either a small change in the genetic composition of the population or none at all. It
is not hard to show that if we choose two different gene copies from the population, and call their
probability of non-identity at time ¢, hy,

2 2 1 2
_ (-2 (i) o= (1-=)n I
= (D) 2 D - (2

The value 2/N? is much smaller than 1/N, but the two cannot be compared, since one time unit in
the Moran model is far less than a generation. Since an individual lives an indeterminate amount
of time, we can only compute an average generation time. Since death and reproduction each occur
every time unit with probability 1/N, the average generation length turns out to be the same as
the average lifespan: N time units.

Equating the amount of reduction in h; in a generation with the corresponding value in a haploid

Wright model,
1 2 \V
e

If N is large, the right-hand side of (VI-60) is nearly (1 — 2/N), which means that
N, ~ N/2. (VL-61)

The effect of overlapping generations is to cut the effective population size in half. This is not a
general rule, although overlapping generations usually result in some reduction of effective pop-
ulation size. There is a substantial literature on this subject (Kimura and Crow, 1963; Nei and
Imaizumi, 1966; Felsenstein, 1971; Crow and Kimura, 1972; Hill, 1972¢). Hill’s paper is worth
particular notice because it expresses the effective population number with overlapping generations
in terms of the variance of offspring number. This variance is the real reason for the effect of
overlapping generations on effective population number. In the Moran model given above, it is not
hard to show that the number of offspring of a given individual, over its lifetime, follows a roughly
geometric distribution with mean 1. This distribution has a variance of about 2, which is twice as
much as the binomial distribution of offspring numbers implied by the Wright-Fisher model. It is
precisely this factor of two which causes the reduction of N, in the Moran model.

LINKAGE. The effect of linkage on effective population number is more complex than the effect of
overlapping generations. A few heuristic examples will have to serve here. The effect is not, strictly
speaking, one of linkage alone, but rather of linkage of the locus in question to nearby loci at which
selection is occurring. This can greatly exaggerate the effect of background variation in fitness.
We have already seen in equation (VI-52) the effect of variation in fitness on effective population
number. But this variation was assumed to be non-genetic: if the fitness of an individual was w;
this generation, the fitnesses of its offspring were assumed to be drawn at random. Nei and Murata
(1966) have shown that heritability of the fitnesses in the genetic background can exacerbate the
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effect of fitness variation in increasing inbreeding. But when the background loci are linked to the
locus in question, the effect can be much more dramatic. This has been investigated by Hill and
Robertson (1966), in the course of computing the effect of linkage on limits to artificial selection.
Maynard Smith and Haigh (1974) have called attention to essentially the same phenomenon, calling
it the hitch-hiking effect. When an advantageous mutant occurs at low frequency in the population,
then rises to high frequency, it carries with it alleles which happen to have been present at nearby
loci in the original set of chromosomes containing the favorable alleles. If the loci are weakly linked,
their random initial linkage disequilibrium rapidly breaks down: the association with the favored
allele causes increase of alleles at nearby loci only for as long as the association persists. The more
closely linked are the loci, the more dramatic the effect of the selected locus on its hitch-hiking
neighbor. The result is large random changes in gene frequency: in effect a great reduction in
effective population size. Wagener and Cavalli-Sforza (1975) have proposed that hitch-hiking can
explain much of the variation in gene frequency of genetic diseases (cystic fibrosis and Tays-Sachs
syndrome, for example) between human populations. As hitchhiking involves natural selection on
linked loci, it will be covered further in chapter VIII.

V1.9 Hierarchical population structure.

In the preceding sections we always used the population from which the initial generation is assumed
to be drawn as our base populations. Now we want to explore the consequences of considering dif-
ferent base populations. Suppose we have an infinitely large total population, denoted by 7', which
consists of infinitely many subpopulations. We let S stand for a randomly selected subpopulation.
Now let

hy = the probability of non-identity of gene copies from a randomly selected individual,
hs = the probability of non-identity of distinct gene copies sampled
from a random subpopulation,
and hpr = the probability of non-identity of two distinct gene copies sampled

at random from the total population.

Note that since there are infinitely many subpopulations, gene copies sampled from the total
population at random are certain to come from different subpopulations.

Now define three quantities:
Hir = hi/hr,

His = hi/hs, (VI-62)

Hsr = hg/hr.

It is an algebraic necessity that
Hir = His Hsr. (VI-63)

The interest in this computation lies in the definition of the quantities H;r, Hrg, and Hgp. Suppose
that the total population 7" was the base population for computation of inbreeding. Then by
definition hy = 1, so Hjyr is simply the probability of non-identity of individual I. What is
not perhaps as easy to see is that even when T is not the base population, Hyp tells us what
the probability of non-identity of I would be if T" were the base population. We will not try to
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prove this, since to do so we would have to redefine the H’s in terms of correlations rather than
probabilities. It is at least reasonable to make this interpretation of Hyp, since clearly hy/hp is a
measure of whether I is more inbred than 7', and such a measure is what is required. When S is
a population ancestral to the current population but descended from the original base population,
the principle is easily established, as

Prob (The two genes in S are descended from distinct genes in the base population)

= Prob (They were descended from distinct genes in 7' and Those were in turn
descended from distinct genes in the base population)

= Prob (They were descended from distinct genes in T")
x Prob (Randomly chosen distinct genes in 7" are
descended from distinct genes in the base population)

So if H, is the measure we are looking for measuring the non-identity of S relative to T" as the
new base population:

hs = H, hr (VI-64)

So that Hgr is the quantity we seek, H,. There is an implicit assumption here which we must
mention: that the two gene copies in S may be regarded as descended from randomly chosen copies
in T if they are descended from distinct copies in 7. This is what allows us to take the product of
probabilities.

We can regard Hjr, Hrs, and Hgr as probabilities of non-identity (at least when they are
between 0 and 1). They can be written in terms of the corresponding values of F:

(1—Fir) = (1= Fis)(1 = Fsr). (VI-65)

The quantity Fspr measures how much more inbred two genes from the same subpopulation are
than two genes from different subpopulations. It can be regarded as a measure of the extent to
which the subpopulations are differentiated from each other. We can get some sense of the meaning
of Fgr from the following. Suppose that we start with an infinitely large population within which
the probability of identity by descent of two random gene copies is fy0. We divide it into an
infinite number of subpopulations of size N, and each then undergoes inbreeding (and genetic
drift) according to a simple diploid Wright-Fisher model for ¢ generations with no intermigration.
Initially the probability of identity of two distinct genes in the same subpopulations is f,,g. After
t generations it is (from (VI-5))

t
fur = 1= 0= fuo) (1= 3 ) - (VE66)

If we choose two gene copies from different populations at time ¢, their probability of identity is not
a function of ¢, for each was descended from some randomly-chosen copy in the zero-th generation
of its subpopulation, and those had probability f,,o of identity. So if fi; is the between-population
inbreeding coefficient in generation t,

for = foo = fuo (VI-67)
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Now considering the subpopulations at time ¢ as being the subpopulations .S, and the total collection
of subpopulations as being T,

hr = hS = 1_fwt
(VI-68)
hT = 1_fbt = 1—fw0.
So from (VI-66)
Frs = 1—-Hyps = 1—hr/hg _—
FIT = 1_HIT = 1_h1/hT
(VI-69)
t
= 1 (- /(- fu) = 1= (1= 3k)
Fsy = 1—hg/hr = 1 —hy/hr — 1_(1_ﬁ)t'

These tell us the following: since Fypr = Fgr, gene copies from the same individual are no more
inbred than are copies from different individuals, so that the inbreeding coefficient of individuals
in a Wright-Fisher model relative to their own subpopulation is Frg = 0. The quantity Fsr is a
measure of the accumulated inbreeding, or alternatively the amount of genetic divergence of the
populations. This computation makes explicit that all of the inbreeding which accumulates as
a result of genetic drift is the result of random changes in gene frequency: the individuals in a
subpopulation are not inbred when their own population’s current composition is used as the base
population.

Exercises

1. How many generations will it take for a diploid Wright-Fisher model population to lose 90%
of its initial heterozygosity?

2. Why isn’t the process of genetic drift like that of tossing a coin repeatedly with probability
of heads p? In that case we would expect in the long run to get a fraction p of heads, rather
than ultimately getting a run of heads (fixation of A) or of tails (a). Where does the analogy
break down?

3. In a sample of size N = 1 from a random-mating population of size, in which there are found
to be one A and one a gene, what will you compute from the gene frequencies to be the
expected proportions of the three genotypes? Why does the observed genotype depart from
Hardy-Weinberg expectation? Ask and answer the analogous question for N = 2. What is
the average fraction of Aa individuals in a sample of size N = 2 produced by a Wright-Fisher
model,

(i) Given that we find p4 = 0.5 in that sample?

(ii) Given that p4 = 0.5 in the population?

(This can be done by enumerating all possibilities. Be careful to weight them by their prob-
abilities of occurrence.)
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10.

11.

12.

13.

A new mutant occurs as a single gene copy in a diploid population of size N. What is the
probability that it will drift to fixation?

. As a rare allele happens to drift to fixation, heterozygosity obviously increases at first, then

decreases. How can this be reconciled with the notion that f always increases through time?

. Is there any of the cases we have covered in this chapter which is the same, for a particular

value of N, as repeated full-sib inbreeding? Find it and compare the numerical results given
in this chapter with those given in chapter V.

In an organism like fur seals, perhaps 10% of the bulls do all the breeding in each generation.
By how much does this affect effective population number?

. A flock of finches flies to an island and there founds a large population. It is at population

size 10 for the first 5 generations and then suddenly grows to a large population size and stays
there. What fraction of the heterozygosity at an unselected locus will be expected to have
been lost in passing through this bottleneck? Would this mean that most loci would lose all
their variability in this event?

. Suppose that a large diploid population is reduced to a single mating pair, then population

sizes doubles every generation thereafter until the original population number is reached. How
much inbreeding accumulates during the crisis? How does this compare with the amount of
inbreeding which would have accumulated if after the reduction to a single pair, the population
had instantly returned to its original size? You can use equation (VI-48) as a starting point.
(No, I am not going to specify the original size except to say that it is large).

Suppose that in a large population of size N, in each generation one-half of the individuals
happen to find good nesting sites and have an average fertility of 3, while the other half of
the individuals find inferior nesting sites and have an average fertility of 1. Each generation
the parents die off, and there is no correlation between the goodness of the nesting site of the
parent and that of its offspring. What is the effective population size as a function of N ?

Among human males in this country, under the traditional naming system, family names
behave as if they were Y-linked. What does genetic drift theory tell us about how rapidly
diversity of names should disappear if the population stays the same size? if it grows expo-
nentially at a constant rate?

If a population starts out at size N and grows by 2% per generation without limit, how
much inbreeding will ever accumulate in it? Use an approximation for large N, summing a
geometric series.

Suppose that in a population with N adults, each parent produces 4 offspring, and 50% of the

offspring (taken at random) die before maturity. What will be the effective population size?
(Remember that it need not be true that exactly two offspring from each parent survive?).
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Complements/Problems

1.

10.

11.

If we have a population of diploids who reproduce according to a Wright-Fisher model, but
all reproduction is asexual apomixis (clonal reproduction), what are the equations for f; and
gt be if the population is of size N7

. See if you can obtain (VI-5) using the probabilities of identity f; and g;.

. How long will it take a diploid population following a simple Wright-Fisher model to lose all

but 1/e = 1/2.71828 = 0.36789 of its initial heterozygosity, if N is large? (Express this as a
multiple of N).

. In the diploid Wright-Fisher model, find the expression for the probability of getting k AA

and ¢ Aa individuals (out of N) in the next generation, given that there are currently ¢ AA
and j Aa individuals out of N. Prove from this, if you can, that formula (VI-10) is correct.

. In a population of size N which has been produced according to a Wright-Fisher model, if we

have k A alleles and 2N — k a alleles, what is the probability that in that same population
there are i AA, j Aa, and N —i — j aa genotypes?

. Show that if, in the notation of section VI.3, if we define the mean number of A alleles as

2N
nag = Z k p](gt)
k=0

that n4 does not change with ¢ in the Wright-Fisher model.

. If we have a 3-allele Wright-Fisher model with the initial frequencies of the 3 alleles being ¢,

q2, and g3, what are the probabilities of fixation of these three alleles? What is the equation
corresponding to (VI-10) in the three allele model?

. Why didn’t we try N =1 in Table 6.27

. Suppose that we have a simple Wright-Fisher model with initial frequency of A being py.

Consider the following three assertions:

(i) In the first generation (the offspring of the initial generation), the expectation of the
genotype frequency of AA is p.

(ii) In this first generation, the inbreeding coefficient is f; = 1/(2N).

(iil) In this first generation, the expectation of the genotype frequency of A4 is p3(1—f1)+po f1-
Are these consistent? If not, where is the fallacy? Are we conditioning on something in one
of these cases?

Check (VI-57) by direct computation in the case where in each generation, a randomly chosen
individual has N offspring, and all the rest of the individuals in that generation have no
offspring.

From (VI-57), what can we conclude about how much of the inbreeding in a finite population
reproducing according to a Wright-Fisher model comes from random variation in offspring
number, and how much comes from the random nature of Mendelian segregation? (Try
abolishing one of these effects).
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12. What does it mean when Hrg, Hpr, or Hgp > 17

13. In a case of a population, T, composed of two subpopulations of equal sizes, compute fr as
a function of the within- and between-subpopulation inbreeding coefficients f,, and fp.
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Chapter VII

GENETIC DRIFT AND OTHER
EVOLUTIONARY FORCES

VII.1 Introduction

We have already seen the effects of genetic drift when it is the only evolutionary force acting. Its
effects are to change gene frequencies in a random and unpredictable manner, resulting in fixation of
one allele or another. The other evolutionary forces we have examined (natural selection, migration,
and mutation) tend to change gene frequencies in a determinate way, or to push them towards
an equilibrium value and hold them there. Genetic drift is the one force which can act as the
“thermal noise” in the evolutionary machine. The relative strength of this “noise” compared to the
nonrandom forces will determine to what extent the random effects of genetic drift will override
other evolutionary forces. The general objective in this chapter will be to try to find simple rules
indicating when each evolutionary force will prevail in the face of random genetic drift. (If physicists
are listening, it is particularly important to say “random genetic drift” since in their subject “drift”
is the name of a nonrandom force).

A subsidiary objective will be to introduce the mathematical technology for treating the in-
teraction of random and systematic processes. This will be done by example, without more than
a sketchy treatment of any but the simplest cases. The first evolutionary forces we will treat,
mutation and migration, can be investigated in detail by considering only means and variances of
gene frequencies (or alternatively, by considering probabilities of identity by descent). When we
consider natural selection, this sort of treatment is no longer possible, and we must use the more
complicated branching process and diffusion-equation methods.

It is worth reminding the reader that in section VI.3 we saw that there is no general formula
for the probability, in a haploid Wright-Fisher model, that a population goes from having ¢ copies
of the A allele to having j copies in t generations. Starting with an initial frequency i/N of the A
allele, we cannot predict the distribution of possible ¢-generation outcomes exactly. This is at the
root of the difficulty. Unable to solve exactly for the behavior of a Wright-Fisher model with no
mutation, migration, or selection present, we have little hope of achieving exact solutions in the
more complicated case when those forces are present. Thus we must rely on partial or approximate
solutions. Fortunately, these are available, as they were when only genetic drift was present, and
they are quite accurate approximations.
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VII.2 Drift Versus Mutation

THE INFINITE ISOALLELES MODEL. The simplest model we can make of the interaction
of drift and mutation involves a Wright-Fisher model with N diploid individuals. To simplify
things, we allow selfing at random. The model of mutation is different from that used in Chapter
III. It is known as the “infinite isoalleles” model. Isoalleles, because all alleles are assumed to be
selectively equivalent, there being no fitness differences. Infinite, because each mutation is to a
completely new allele. There are thus an infinite number of possible alleles. The same allele never
recurs twice in different mutations. Thus we need only know whether two different mutational
events occurred in the ancestry of two gene copies to know whether they are different alleles. The
model is intended as a rough approximation to what would be seen in a stretch of DNA sequence,
where most mutations will be in different sites.

This model of mutation makes it particularly easy to work out the consequences of mutation
and random genetic drift. We deal in this section only with that information which can be gleaned
from means and variances, which fortunately is quite a lot. A more complete set of information
can be gained by the diffusion method, as we will discuss later in this chapter. Equivalent to a
consideration of means and variances of gene frequencies is a consideration of identity by descent.
Suppose that we were to ask what was the probability F; that two gene copies, randomly chosen
without replacement from the same population, are identical by descent. If the occurrence of
mutations had no effect on whether we counted genes as identical by descent, then the quantity F;
would follow the same course that it would in a Wright-Fisher model without mutation.

We could simply use (VI-4) to get

FtJrl == % + <]. - %) Ft, (VII—].)
the usual Wright-Fisher model formula.

But now suppose instead that each time a mutant were to occur, the new allele was no longer
counted as being identical by descent to any of the copies of the allele from which it arose. After,
all it is our prerogative to define identity by descent any way we choose, so we may as well try
that. The consequences are straightforward. We have to modify (VII-1) as follows. That equation
regards two genes as identical by descent provided that they either descended from the same gene
copy in the preceding generation, or else came from distinct gene copies which were themselves
identical by descent (these possibilities correspond to the two terms of (VII-1)). Now we must add
an additional requirement: that neither of the two genes we choose can be a new mutant. We have
ruled out the possibility that the new mutants could be identical by descent to any of the other
genes in the population, or to each other. The occurrence of mutation is supposed to be random,
unconnected with which parental gene is being copied. Each copy of the gene in generation ¢ 4 1
has an equal and independent chance u of being a new mutant. It now follows directly that the
right-hand side of (VII-1) must be multiplied by the probability that neither of the two gene copies
is a new mutant, so that

Fiyp = (1—u)? [% + (1 — %) Ft] . (VII-2)

With the occurrence of mutation, we now find a new behavior of the quantity F;. It no longer
automatically rises towards 1. In fact, it will always reach an intermediate equilibrium value
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Table 7.1: Equilibrium probability of identity by descent for two distinct gene copies
drawn from the same population in an infinite isoalleles model. The exact values are
from equation VII-4 and the approximate values from equation VII-6.

N = 100 1000
U
Exact: 0.71398 Exact: 0.19975
0.001 Approx.: 0.71429 Approx.: 0.20
Exact: 0.96153 Exact: 0.71426
0.0001 Approx.: 0.96154 Approx.: 0.71429

between 0 and 1, provided that N is finite and w is not zero. We can solve for the equilibrium
by realizing that at it Fy4q1 = F; = F. Then we can remove the subscripts on F' in (VII-2) and
rearrange to get

F [1 — (1 —u)? <1 - %)} = (1- u)Q% (VII-3)
so that (1 B u)2

F = N —a—weeN -

(VII-4)

We will be interested mostly in case where u is very small (10~% being a typical value for a single
base, and 10~° for a whole locus). So we can ignore terms in u? compared to those in u, so that
we can replace (1 —u)? by 1 — 2u to get the approximation (after a little rearrangement)
1—2u
F~ — VII-5
1—-2u+4Nu ( )
The terms 2u will then be far smaller than 1, so that we can drop them to obtain the further

approximation

1
F ~ — 1I-
1+4Nu (VIL-6)

Table 7.1 gives some numerical comparisons of (VII-4) with the approximation (VII-6). Note how
good the approximation is. Note also that the predominant feature of (VII-6) is a very good
approximation: that the probability of identity by descent is a function of N and u only through
their product, Nu. Thus the equilibrium identity by descent is maintained approximately the same
by doubling N and halving u (or vice versa).

FINITE NUMBERS OF ALLELES. So far our model of mutation has been the infinite
isoalleles model. It might seem that the fact that an infinite number of alleles are possible allows
a much greater amount of variability to exist than if there were only a few possible alleles. This is
not so. Suppose that there were only K different alleles, and mutation among these is symmetric.
If a mutation carries a gene from one allelic state to one of the others, chosen at random, then we
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can easily modify the argument to allow this model. In equation (VII-2) the term (1 — u)? is the
probability that neither gene is a new mutant, for if so they cannot be identical. But that is only
true under the infinite isoalleles model. Under the K-alleles model, when one of the alleles mutates
it cannot end up being the same allele as the other, but when both mutate this is possible. So the
(1—u)? becomes (1 —u)%+u?/(K —1). But an additional term also arises, for now two genes which
were different alleles before mutation can be the same after mutation. This yields the recurrence
relation

Fip = [(1—w?+u?/(K=1)] [g5 + (1 = 35)F]
(VIL-7)
+ [2u(l —u) /(K = 1) +u*(K = 2)/(K = 1)’] [(1-45)(1—F)]

(I leave it to the reader to work out all the terms). If we proceed a bit roughly and drop terms in
u?, and in u/N, this boils down to the approximation

1 K

which gives the equilibrium solution on setting F;;; = F; and solving to obtain

1+ 4Nu/(K — 1)

F = .
1+ 4NuK/(K — 1)

(VII-9)

Of course, a more accurate but far more complicated formula can be produced directly from (VII-7)
by including all terms.

When u is small (VII-8) is quite a good approximation, and we can use it to investigate the
effect of the number of possible alleles, K. Note that when K is large the term 1/(K — 1) in the
numerator will be very small, and the term K/(K — 1) in the denominator is nearly 1, so that
(VII-8) must approach (VII-6) as K becomes large. Note also that as 4Nu becomes large the
numerator is nearly 1/K the denominator. This is as it should be, for in this case the two genes
we draw from the population will have quite unrelated mutational histories, with many intervening
mutations. The chance that they end up being the same allele is thus 1/K, which is what it would
be if each represents one of the K alleles drawn at random and drawn totally independently of each
other.

The qualitative rules for when mutation will maintain variability in the face of genetic drift are
hardly affected at all by having only K possible alleles. Here are some values of F' from (VII-8):
Note that when K is of even moderate size the probability of homozygosity is nearly unaffected
by increases in K. A more careful consideration of the Table and of (VII-8) will also show that
the Principle stated above is still valid when K is finite. We can still intuit the behavior of the
selectively neutral isoalleles model in terms of the numbers of new mutants per generation being
greater than or less than one.

THE ELECTROPHORETIC LADDER. In the past it was difficult to distinguish alleles.
Using protein electrophoresis, alleles that did not differ in the charge of the protein were indistin-
guishable. Ohta and Kimura (1973) have investigated the effect of this “electrophoretic ladder”
on the number of distinguishable alleles. With the availability of population samples of DNA se-
quences, all alleles can be distinguished. We will discuss further models and methods of analysis
for these data in Chapter X.
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Table 7.2: Equilibrium homozygosities for finite alleles models with different numbers of alleles

K

ANy | 2 4 8 16 00

0.1 | 0.9167 0.9118 0.9103 0.9096 0.9091
0.5 | 0.75 0.70 0.6818 0.6739 0.6667
1.0 | 0.667 0.5714 0.5333 0.5161 0.5000
10.0 | 0.5238 0.3023 0.1954 0.1429 0.0909

RATE OF SUBSTITUTION OF ALLELES. So far our discussion of the interaction of
mutation and genetic drift has dealt only with equilibrium conditions. With the infinite isoalleles
model, the equilibrium of the quantity F' does not represent a true equilibrium of allele frequencies.
There is constant turnover of alleles, as new mutations replace pre-existing ones. It is clearly
of interest to know how rapidly this turnover occurs. This is a particularly relevant question to
protein evolution, since Kimura (1968a) and King and Jukes (1969) have proposed that the bulk
of evolutionary amino acid changes in proteins result from the substitution by genetic drift of
selectively neutral mutants.

The computation is surprisingly simple. There are two general ways of establishing the same
result. The first is a prospective argument. In the current generation we expect there to be 2Nu
neutral mutants occurring (provided u counts the rate of only the selectively neutral mutations).
How many of these are destined to be substituted for the existing alleles? It should be kept in
mind that what we are interested in is whether the particular amino acid or nucleotide substitution
becomes incorporated into the whole population. Further mutants will occur, so that a given mutant
allele may never reach a frequency of 100%. The question we seek to answer is: will the whole
population become descended from this particular mutant? If so, then the DNA will show a that
the population has undergone a substitution at that site. Thus we must ignore further mutations
when asking whether a given mutant becomes “fixed”. This allows us to take our result directly
from the discussion surrounding equation (VI-19) above. The 2N copies of the gene in question
each has an equal probability of fixation. So each mutant has a probability 1/(2N) that it will
be the progenitor of future populations. The expected number of mutants arising in the current
generation which will substitute throughout the population is therefore 2Nux1/(2N) = u. So the
rate of substitution of neutral mutations is equal to the neutral mutation rate per haploid genome.

The reasonableness of this result will be more apparent if we consider the other way of obtaining
it: retrospectively. Consider a gene in the current population. Ask how many mutations have
occurred since T generations ago. Following the line of ancestry back from a current gene copy,
we find that in each generation there was only one gene copy directly ancestral to that gene. Thus
there was exactly one opportunity in each past generation for mutation to occur that would affect
this particular gene copy. So the average number of mutations affecting this gene will be u in each
generation. Thus we can think of the rate of neutral mutant substitution as being u because of an
exact cancellation of two effects of population size, one increasing the number of mutants occurring
and the other decreasing their chances of fixing, or alternatively we could see the absence of a
population size effect as the consequence of there being only one ancestral copy for each gene copy
in a population.
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A convenient way of seeing what this means in any given case is to notice that the expected
number of new mutations each generation is 2Nwu (as there are 2N genes and a fraction u of these
are expected to mutate). So the effective number of alleles at equilibrium depends mostly on the
number of new mutants arising each generation. This number expresses the balance of forces be-
tween genetic drift and mutation, and makes it clear that two populations with different sizes and
mutation rates may nevertheless be expected to have the same amounts of variability, provided that
they have the same expected number of new mutants per generation. We may state a qualitative
Principle:

Substantial genetic variability will be maintained in a popu-
lation by mutation provided 2Nwu > 1, that is, provided there
is more than one new mutant at the locus per generation.

It is important to understand what (VII-6) does and does not mean. It gives average homozy-
gosities under genetic drift and mutation, but these are only expectations. If we draw individuals
repeatedly from the same population, we will not necessarily obtain the expected proportion of
homozygosity. Any one population may go through periods when all but one allele have been
lost, and periods when a spate of recent mutations have drifted to high frequencies, leaving it very
polymorphic. As we follow the population through time, F' will vary above and below expectation,
averaging out to the value given in (VII-6). By the same token, if we examined a series of popu-
lations simultaneously, where each was isolated from its neighbors and none exchanged migrants,
then we would find the gene frequencies and the homozygosity F' to vary from population to pop-
ulation, averaging out to its expectation. Thus (VII-6) gives an average over time (once the initial
conditions are lost) and also an average over replicate populations.

RESPONSE TO POPULATION SIZE BOTTLENECKS. Another aspect of the time-
dependent behavior of a neutral mutation model which may be of interest is how rapidly the level
of polymorphism responds to changes in population size. Suppose that we have a population of
large size which has been at that size for a very long time, so that 4Nwu is large. If we reduce
population size, how rapidly will variability be lost? Suppose F; is small, and we have just reduced
population size so that N is now small. By equation (VII-2), in the next generation

Fiyp ~ (1- u)Q% ~ % (VII-10)
so that if N is small F}y; may increase substantially in one generation fairly quickly (i.e. if N =10
it will increase by about 0.05 per generation). Once F; comes to its new equilibrium at a large
value, little variability is present. Suppose now that the population size grows back to its old value,
so that now 4Nwu is large again. How rapidly will F; drop back down to its old value? From (VII-2),
if [y ~ 1, F;41 ~ (1 —u)? which will usually be very close to 1. Thus F is decreasing by only 2u
per generation, so that it could take millions of generations to recover the variability. The effect of
a bottleneck of population size is thus to rapidly reduce variability, but the rate of recovery after
restoration of the population size is slow, as we must wait for new alleles to occur by mutation and
to drift to high frequency.

This may seem biologically reasonable, but counterintuitive. The mathematics is, after all, sim-
ply that of equation (VII-2). This is a simple linear recursion. How can it approach its equilibrium
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more slowly on one side than on the other? This paradox is resolved if we note that the departure
from the equilibrium value of (VII-2), is multiplied each generation by

(1 —u)? <1—%>.

When N is small, this is dominated by the terms in N, and change is rapid. But when N is large
enough that a substantial amount of variability is expected at equilibrium, 2u > 1/(2N), and the
mutational factor is the dominant one. The reason approach to equilibrium from the two sides
differs so much in rate is that N is much different in the two cases. We have compared apples to
oranges.

Nei, Maruyama, and Chakraborty (1975) have presented computations for the effects of bot-
tlenecks of population size. These are particularly relevant to human populations, which are now
much larger than they were only 100 generations ago.

REFERENCES. The equations for the neutral mutation model were first worked out by Malécot
(1948), although apparently without any idea of presenting this process as a model of the mainte-
nance of protein variation in natural populations. Kimura and Crow (1964) obtained similar results
independently, as a byproduct of an investigation into the effects of genetic drift on the mainte-
nance of multiple alleles in a population by natural selection. Kimura (1969) presented an analysis
of the effects of assuming a maximum of K alleles. The rate of substitution of neutral mutants
was first given by Kimura (1968a) when he proposed neutral mutation as the main source of both
protein polymorphisms in natural population and the reconstructed rates of amino substitution
through evolutionary time. Lewontin and Hubby (1966) had earlier mentioned neutral isoalleles as
a possible explanation of the electrophoretic variability they observed.

We have here been concerned only with a pure Wright-Fisher model. In most cases, more com-
plex models of population reproduction (overlapping generations, varying population size, variation
in offspring number, etc.) one can simply replace 4Nu by 4N u throughout the argument without
difficulty. Chia and Pollak (1975) present a detailed discussion of varying population size which
verifies that one can use the effective population size NN, if the population size does not vary greatly.
As we shall see in chapter VIII, linkage is another matter. Linkage of one neutral locus to another
is irrelevant, but the presence of a locus with naturally selected variation near a neutral locus can
greatly reduce or greatly increase the effects of genetic drift.

VII.3 Genetic distance

Suppose that we observe two populations, one with gene frequencies z1, ..., x; of k different alleles,
the other with gene frequencies y1, ..., yx. We may wish to estimate Fgp for the two populations as
a measure of genetic divergence, under the assumption that they have diverged from some initial
gene frequencies zi, ..., 2z, which we do not know, by a process of genetic drift in isolation. If
they have, then we should be able to use the current gene frequencies to estimate the accumulated
inbreeding. If we have a good estimate of the population sizes, then this will allow us to calculate
the time since divergence of the populations. Measures which estimate Fgr or some function of it
are called genetic distances. Their elaboration was a favorite sport of population geneticists in the
early 1970’s. The reader will find some discussion of various distance measures in the symposium
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edited by Crow and Denniston (1974). The literature of genetic distances is very tough sledding
because scarcely anyone in it states clearly what problem they are designed to solve.

In fact, there seem to be two classes of genetic distances. One measures whether the het-
erozygosity between populations is substantially greater than that within populations. The other
measures whether homozygosity within populations is substantially greater than that between pop-
ulations. You might imagine that these are identical questions, but they are not. For example, if
the homozygosity within populations is 0.10, and between populations it is 0.05, the homozygosity
is twice as great within as between. But the heterozygosities are then respectively 0.90 and 0.95,
so the heterozygosity between populations is only 0.95/0.90 = 1.0555 times as great as within
populations!

In fact, it is not obvious that every genetic distance must use heterozygosity or homozygosity
— in general these are not “sufficient statistics” that contain all the relevant genetic information.
Some of the genetic distances mentioned below will not be functions of the heterozygosity or the
homozygosity. Nevertheless, they are useful quantities to examine.

CHANGES OF HETEROZYGOSITY AND HOMOZYGOSITY. If the expected het-
erozygosity and expected homozygosity within populations are respectively h,, and f,,, and those
between populations are respectively hy and f, we can ask about different evolutionary forces, and
seek to make a measure of divergence time between two isolated populations. Initially the two
population are the same, so that superscripting each with its generation number, fl(uo) = flfo) and

5{3 ) = héo. With both genetic drift and an infinite isoallele model operating, we can find equations
for two populations of equal effective size N: From equation (VII-2) the expectation of f,, will be:

1 1
(+1) — 1 _ pE+)) (1 — )2 __— )@ -
I 1— hy, (1—w) [2]\76 + (1 2Ne> A ] (VII-11)

By considering that any two genes randomly sampled from different populations were descended
from two genes randomly sampled from those same populations one generation earlier, we see that
they are just as likely to be the same allele as they were, provided that neither has mutated:

WD = Y = (1= w2 (VII-12)

Note that the derivation of equations (VII-11) and (VII-12) does not assume that the initial
population is in any particular equilibrium state, or that the sizes of the two populations (both N)
continue to be the same as they were before the populations split. This approach can thus be used
for populations that may have recently split into small isolates, where we may be able to ignore
mutation.

DIVERGENCE BY GENETIC DRIFT ONLY. There are two cases of particular interest.
Suppose that there is no mutation (v = 0). Then the equations reduce to

AD - — <1—%) ht) (VII-13)
p{Y = p® (VII-14)
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In that case, if the two populations start out identical to each other, so that h}(}o) = hg,? ) we find
that since hét) = hg,? ),

1\
() _ _ (t) ;
hy, (1 5 e> hy (VII-15)
A measure of how much greater heterozygosity is between than within is then
1\!
(9= 02) /1 = 1= m g = 1 (1= 55 (ViL-16)

It increases by an amount ¢/(2N,) per generation at first. Thus if we could somehow measure 1 —
55) / hét) we could solve for ﬁ to obtain a measure of genetic distance between isolated populations
that would for a while increase linearly with time. Note that (VI-69) shows that this measure of
genetic distance simply computes Fgr.
On might think that this makes finding good measure of genetic distance is easy: simply find
the average heterozygosity within populations for the finite set of loci we are observing:

1
Hy, = 1-3 (Z a? + Zy?) (VII-17)
i i
and the average heterozygosity between populations

Hy = 1=z, (VII-18)

assume that these estimate hg) and hy(t), and then compute the genetic distance between popula-
tions as

D = 1— H,/H, (VII-19)

This seems straightforward, but some questions arise. The quantities h,, and h; are not the het-
erozygosities within and between populations, they are the expected heterozygosities. Even if we
assume that the infinite isoallele model is exactly correct, we need to use many loci, should we
average the values of H,, and Hy, then compute D, or should we average the values of D for each
locus? Also, if we have population samples of different sizes at each locus, how should we weight
these? Once these questions are entertained, the door is opened to an endless array of genetic
distance measures. We will not attempt to untangle this literature here.

DIVERGENCE BY DRIFT AND MUTATION. The second major approach to genetic
distance is due to Nei (1972). It allows for the effects of mutation, but at the cost of having to
assume that N, has been the same for a long time in the progenitor of the two populations as it is
in them. It yields a result that is mostly useful when the neutral mutation rate is the same at all

loci. If we assume that the base population had a level of homozygosity fl(uo) that is at equilibrium
under neutral mutation, then (VII-11) reduces to

(tH) _ g0 f0) (VII-20)
Combining this with (VII-12) we find that

fb(t) _ (1_u)sz(t—1> — (1-u) b<0> (VII-21)

229



and since f&o) = b(o)’ we also get that

A= A —w)? 0 = (1 —uw)?rd, (VII-22)
so that, taking logarithms
(®)
—log, b = —t log.(1 —u) (VII-23)
(t)
Juw
Since u is usually quite small, —log, (1 — u) ~ u so that
—log, <]{—b> ~ ut (VII-24)

Thus one approach to genetic distance measures the difference in heterozygosity between popu-
lations, the other the difference between homozygosity between them. The first is expected to cope
well with differences in size between the base population and the two populations that originate
from it. But it does not allow for mutation at the loci. The second approach (Nei’s approach) allows
for mutation, but assumes that mutation rates are the same at different loci, and that population
sizes have not changed since the populations diverged.

SOME WIDELY-USED MEASURES. A practical genetic distance of the first sort (though
not using heterozygosities or homozygosities) is that due to Cavalli-Sforza and Edwards (1967):

Desg = 4 [1 -y \/ﬁ] . (VII-25)

The prescribed method of combining results at different loci is to average the values of D.
Nei’s distance measure (Nei, 1972) is in practice:

Dy = —log, [ny/ ((Zx$>l/2<;y§>m>] (VII-26)

7

The prescribed method of combining results at different loci is to average the values of > z;y;,
Soa?, and Yy

The behavior of Dcgg has been intensively investigated by Heuch (1975). Nei’s distance is
discussed in his books (1975 and 1987). I have also (Felsenstein, 1985) investigated the behavior
of a number of genetic distances under divergence by genetic drift. It is worth pointing out that
each of these measures is not expected to perform well when the situation is that appropriate for
the other one.

It is well when reading the genetic distance literature to keep the following points in mind:

1. All genetic distance measures which are derived with the intention of measuring the inbreeding
due to genetic drift are roughly proportional to each other when gene frequency differences
between populations are small. In this case it does not matter much which one you use if you
want to know whether populations A and B are much more different in gene frequencies than
are A and C.
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2. All seem to have various problems when gene frequency differences are large. 1 have investi-
gated numerically (Felsenstein, 1985) the way they break down as gene frequencies become
large.

3. Some genetic distance measures are actually measuring other quantities than Fsr: for example
measures of the probability that two genotypes chosen at random in the populations are the
same. It seems sufficient that a formula be zero when all the x; equal the y;, and positive
otherwise, that it be called a “genetic distance”. In this sense, you too can have your own
genetic distance measure:

1/(2H)
] , (VIL-27)

Dy = [Z(J«“z — i)
i

where H is the number of Hairs in your nose, or if you don’t know that, your House number

(rounded to the nearest integer), or the last three digits of your Home telephone number.

4. All genetic distance measures which estimate Fsp do so under the implied assumption that all
genetic change is due to random genetic drift. If the gene frequencies in the two populations
are diverging due to natural selection, or are being held at constant values by balancing selec-
tion, the genetic distance measure ceases to be related to divergence time of the population.
It may be taken to be an empirical measure of “genetic distance”, but if so, care should be
taken to make clear to the reader of the resulting paper why the distance measure is in any
way preferable to formula (VII-27) above.

There is much more to say about genetic distances — we have only scratched the surface here.
In the Problems/Complements at the end of this chapter you will find some questions about the
behavior of these two classes of genetic distance measures when their assumptions are violated. But
it is not clear that going deeply into the properties of genetic distance measures is worthwhile, since
there are now more powerful methods of inferring population parameters that do not use them, as
we will see in chapter X.

VII.4 Drift Versus Migration.

A ONE-ISLAND MODEL. As there is a balance between mutation and genetic drift, so also
is there a balance between migration and genetic drift. We can investigate this most simply in a
one-island model. We have an island with NV diploid individuals reproducing according to a simple
Wright-Fisher model. Nearby lies a continent which has a constant gene frequency p. Immigrants
from the continent affect the island gene frequency, but the continent is too large for the emigrants
from the island to alter its gene frequency. We will assume that the immigrants arrive as gametes
(this is biologically dubious but mathematically convenient). Since the island follows a Wright-
Fisher model, we assume that there is an infinite pool of gametes before the density-dependent
death of all but N individuals. A fraction m of the gametes are replaced by immigrants. So if p;
is the frequency of allele A among the gametes before immigration, afterwards it is

p; = (1—m)p +mp. (VII-28)

The gametes combine at random to form diploid individuals, and all but N of these die dur-
ing the density-dependent mortality on the island before adulthood. The gametes in the pre-
immigration pool of the next generation are contributed equally by these surviving adults, so that
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per+1 Will be the same as the gene frequency in the adults of generation ¢. This will be the result
of binomial sampling of 2/NV genes from a pool with gene frequency p;. The expected value of the
post-sampling gene frequency is just p; , so that from (VII-28),

E(pt+1) = (1—=m)E(p) + mp (VII-29)

(since we can take the constant (1 — m) outside of the expectation, and p is itself also a constant
and therefore has expectation p). We will concentrate on the “stationary state” in which all of this
has gone on for long enough that the effects of the initial frequency pg on the island have been lost.
In the stationary state we can assume that E(p;y1) = E(p). From (VII-29) we then have

E(p) = p. (VII-30)

The expected gene frequency on the island is thus the same as on the continent. This is a reasonably
intuitive result (if you think about it). Most genes on the island came from the continent. If we
trace back the ancestry of a gene, at each stage there is probability m that the ancestor was on
the continent. Sooner or later every gene on the island turns out to be of continental origin. So
it cannot be surprising that the expected gene frequency on the island is the continental gene
frequency.

VARIATION OF GENE FREQUENCY. Of course the island will not be exactly at gene
frequency p. This is only the expected gene frequency. Genetic drift will continually move the
island gene frequency away from its current value. Migration from the mainland will continually
pull the island gene frequency back towards p by diluting out the island genes with mainland genes.
The interesting question is: how far will the island genes be from p? This can be addressed by
asking about the variance of the island gene frequency around its expected value p. The easiest
way to investigate this seems to be to look at the deviation of each population’s gene frequency
from p. Let x = p — p be the deviation of a population from the expected gene frequency p. Since
we obtain the x’s by subtracting a constant (p) from the p’s, the variance of the p’s will be the
same as the variance of the z’s. Note that when we talk of the variance we are, as in the previous
section, discussing the variance among independent replicate populations each undergoing the same
process, or else the variance in the gene frequency of a single population through time.
From (VII-28) we find that

pray = (L=m)(p+ze41) + mp (VII-31)

where the asterisk denotes the value of the deviation from p after migration but before genetic
drift. So
ri g = (1—m)zq. (VII-32)

and therefore

i, = (1=m)(z} +e) (VII-33)
where e; is the change in gene frequency caused by random sampling of 2N gametes from a pop-
ulation whose gene frequency is zf. As in Section VI.4 above, it is easy to demonstrate that e;
has expectation zero, and also that it is uncorrelated with zy: knowing that x} in a particular
population is positive tells us nothing about whether ef will be positive. All of which is by way of
hand-waving our way to the following:

E(f,%) = (1—m)? B>+ 2afe +¢}) = (1—m)>E(2;®)+ (1 - m)’E(e})  (VIL-34)
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Since the cross-product E(zje;) will be zero if e; is uncorrelated with z}, as we claim. Notice that
E(e?) in a population is pj(1 — p})/2N, the binomial sampling variance based on a current gene
frequency of p;. When the expectation is taken over all replicates (which may have different values
of pf) (VII-34) we get

E(x;}) = (1-m)*E(z*) + (1—m)® E[(p+2})(1 - p—})/2N]. (VII-35)

Note that since z} has expectation zero by (VII-30), E(z}?) is simply the variance of x} and
therefore also the variance of pf. This is the quantity we are interested in, the variance (over all
replicates) of the gene frequency at the adult stage of the life cycle. We call this V;. From (VII-35),
making use of the fact that z has expectation zero, we get

Vi = (1—m)Vi + (1—m)* [p(1 —p)/2N — V;/2N]. (VIL-36)

The rest is straightforward: we are interested in the variance of the adult gene frequencies when a
stationary state is reached (i.e. when the initial conditions have become of no importance, when
the mean and variance of pf have reached equilibrium values, although individual population gene
frequencies continually vary and do not reach equilibrium). This we get by solving (VII-36) for
Vip=W=V:
V(1-01-m?1-1/2N)) = 5(1—-p)/2N (VII-37)
so that 51— p)
p\lL—p
V.= 8o (1-m)2 (2N —1) (VIL-38)
Note that (VII-38) checks with intuition in those cases where we know the answer. When m = 0, so
that only genetic drift is operating, V' = p(1 — p), which is the variance among a set of populations
each of which has probability p of being fixed for A. (This is not quite kosher since, when m =0, p
is not the expectation of the p;, but let that pass). When m = 1, so that every generation the
island consists of only immigrants, V' = p(1 — p)/2N, which is simply the binomial variance we get
from drawing a sample of N immigrants.
When m is small and N is large, we can simplify (VII-38). When terms in m? and m/N are
ignored,

V ~ p(1—p)/(4Nm +1). (V1I-39)

Note the term 4Nm, which looks suspiciously like the 4 Nu which appeared in our discussion of
the infinite isoallele model. Now we are ready to answer the question as to when immigration will
override the effects of genetic drift. When there is no immigration 4Nm = 0 and we find that the
variance of gene frequencies among different realizations of this process will be p(1 — p), indicating
that all islands will be fixed, some for A, some having lost A. Only when 4Nm is an appreciable
fraction of 1, so that 4Nm + 1 is appreciably greater than 1, will immigration from the mainland
pull the island gene frequency closer to the mainland gene frequency p. When 4Nm + 1 is large,
there will be little variation of the island gene frequency around the continental value. Note that
2Nm is the expected number of genes among the adult survivors of population size regulation
which are immigrants, so that (although it is gametes which migrate in this particular model), the
level of immigration is roughly equivalent to N'm individuals per generation.

We want a crude rule to serve as a rough guide, so that we will regard the immigration rate at
which 4Nm =1 as being close to the rate at which Nm = 1, so that we can state another principle:
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Migration will have a substantial effect in counteracting the effects of local
random genetic drift provided that there is one or more immigrant individual
into the population each generation.

Like the principle stated in the last section for mutation, this is only a rough guide, but is
surprisingly useful in practice.

VIL.5 Drift vs. Migration: the Island Model

THE MODEL. may recall the discussion in Chapter IV of different models of migration. In our
discussion of the interaction between genetic drift and migration, we have so far used only the simple
one-island model. Now we want to look at the n-island model. One limitation of the one-island
model was that the genetic drift on the island caused gene frequency changes, but these were not
exported back to the mainland. Now suppose that there are n islands, each reproducing according
to a simple diploid Wright-Fisher model with population size N. Let us introduce migration by
assuming that, in the gamete stage of the life cycle, a fraction m of the gametes in each population
is removed and replaced by gametes randomly and independently sampled from the other n — 1
populations. Mating follows the migration. We allow mutation to occur before mating, according
to the infinite isoalleles model. Thus the model of reproduction is:

Metosis magration mutation mating
Adults — Gametes — Gametes — Gametes — Adults
(V) (c0) (c0) (c0) (V)

Why are we bothering to look at this case? We have a group of populations, in each of which
genetic drift is being counteracted by mutation. If there were no migration, each population would
come to contain different alleles, in a balance between mutation and drift. But migration will spread
the same alleles into different population. It will increase the number of alleles present in any one
population, but at the same time will make the populations more similar. At what point, at what
amount of migration will the set of n populations begin to behave like a single large population of
Nn individuals? This question has no particular meaning in the one-island model. The n-island
model is the simplest in which we can investigate it.

Note that if the number of islands is infinite (n = o0), the calculations of the previous section
apply. The average gene frequency of all islands then stays precisely constant at the initial frequency.
We can call this p. Equation (VII-28) and all the other equations of that section apply. Drawing a
random gene from the archipelago is the same as drawing it from a continent whose gene frequency
never changes.

To analyze the case where n is not infinite, we make use of two quantities, Fj and Fp. These are
the probabilities of identity of two genes drawn at random (respectively) from the same population
(Fw) and from different populations. The recursion formulae for Fy and Fp are (using primes for
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these quantities in the next generation)

F, = (1- u)? {[(1 —m)?2+m?/(n —1)] [ﬁ + (1 — ﬁ) FW] +[1—=(1=m)?—-m?/(n— 1)]FB}

Fl = (1- u)2{ (1= m)? + 2m(1 = m) (222) +m? (1 22 )| Py

+ [2m(t = m) (= 1) + m? (228 )] [ + (1 - o) Fw}}

(VII-40)
The terms (1 — u)? are straightforward: if either of the two genes we look at, either from the same
population or from two different ones, has mutated since the previous generation then they cannot
be the same allele, since an infinite isoalleles model of mutation is assumed. The quantities involving
m are more complicated, and we will not go into their derivation in detail. Suffice it to say that the
first term in square brackets in the first equation, (1—m)? +m?/(n— 1), is the probability that two
genes which we draw at random from the same population are descended from genes which were
in the same population in the previous generation. This would be so if neither was an immigrant,
which has probability (1 —m)?, or if both are immigrants from the same population, which has
probability m?/(n — 1). The other terms involving m can be obtained in a similar straightforward
fashion. For the equation in Fp they contain also the events involving one gene being a migrant
but the other not. Finally, the term 1/(2N) + (1 — 1/(2N))Fw arises because two genes who were
from the same population may have been from the same gene, which has probability 1/(2N), and
if they were not then they had probability Fjy of being identical alleles. Of course, if the two genes
we consider had ancestors in different populations, then these must have been different individuals.

EQUILIBRIUM SOLUTION. For the moment, we're interested in the equilibrium state in
which F}, = Fy and Fz = Fg. We have two equations in two unknowns, and these can be solved
to obtain explicit formulas for Fyy and Fp in terms of m, u, n, and N. The results are rather
complicated formulas which are not easy to look at. Instead, let us approximate, considering only
those cases in which m, u, and 1/N are small. This will quite often be biologically realistic. The
squares and products of these small quantities, m?, u?, mu, m/N, and u/N, can be ignored as
compared to m, u, and 1/N themselves. When this is done we get the considerably simpler-looking
approximate equations (dropping primes since we assume that the quantities Fyy and Fp are at
equilibrium)

Fv = 5% + (1-2u—2m—355)Fw + 2mFp

(VII-41)
Fp = [1-2u—2m/(n—1)]Fp + [2m/(n—1)] Fw.

The second equation immediately yields (dividing every term by Fy and solving for the ratio

Fp/Fw) . - 1)
B m/(n—

P = w1 (VII-42)

The quantity Fp/Fy is a measure of how similar genes are between populations, as compared
with how similar they are within populations. We call it p. It is closely related to Nei’s measure of
genetic distance, which would be —log, p if enough loci were able to be measured to determine p
accurately. If genes from different populations are totally unrelated, then Fg = 0 so that p = 0.
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When the genetic contents of the different islands are so thoroughly similar that we are no more
likely to find the same allele simply by virtue of looking in the same population, then Fy = Fp so
that p = 1.

The first result we obtain from the analysis is that this measure of the similarity of population
is independent of N (to good approximation). It reflects only the balance between the rate at which
alleles are exported into another population (governed by m) and the rate at which they become
new alleles (governed by u). Note that the quantity m/(n — 1) is the immigration rate from one
population to one particular other population, so (VII-42) reflects the ratio of migration rates to
mutation rates.

The second result follows easily from the first equation of (VII-41). We notice from (VII-42)
that Fp is by definition equal to Fyyp. Making this substitution in the first equation of (VII-41),
we get a simple linear equation for Fy so that

1
Fy = . VII-43
W T T¥4Nu+4Nm(1 - p) ( )

Now this has a very familiar look to it. It is essentially a modified version of the equation for F
in the one-population isoallele model, (VII-6). The relationship between these two equations has a
reasonably straightforward verbal interpretation. We simply have to recognize that in the n-island
model new alleles are introduced into a population by two routes. One is mutation, an event which
occurs with probability u and also occurs in the one-population model. The second route is by
migration, which brings in alleles which may or may not be different. Note that p is a measure
of how much different the alleles in the other populations are. Since Fp = pFyy, it is as if the
immigrant alleles, whose probability of identity with a random resident is Fp, were a mixture of
residents and new mutations. If they were such a mixture, with p being the proportion of them
which are not mutants, then we would have p Fyy + (1 —p)0 = p Fyy as their probability of identity
with the residents. All of which is by way of justifying the assertion that when immigration occurs,
it brings in new alleles at a rate which is equivalent to a mutation rate of m(1 —p). So the presence
of migration has the effect of increasing the effective mutation rate from u to u + m(1 — p). When
we make that replacement in equation (VII-6), we get precisely the equation for the present model,
(VII-44). Note that p itself depends on m and u.

A NUMERICAL EXAMPLE. Equations (VII-42) and (VII-43) provide a good approximation
when m, u, and 1/N are all small. Table 7.3 shows a series of values of Fyy and p obtained from
the numerical solution of the exact equations (VII-41) for the equilibrium values. The Table is
organized with reference to the case where N = 200, n = 10, m = 0.001, and v = 10~*. The
different parts of the Table show the effects of varying each of these parameters. The numbers
in parentheses are the results of the approximate formulae (VII-42) and (VII-43), presented to
show that they are reasonably close to the exact solutions. Let us consider the effects of varying
each parameter. When we increase N, the population size of an island, we increase the genetic
variability maintained in a single population, which is to be expected since we are weakening the
effect of genetic drift. But we have almost no effect on p, as predicted from the approximate formula
(VII-42) which does not contain N. Thus as the similarity between genes from the same population
decreases, the similarity of genes in different populations decreases at the same rate. On the other
hand, when we increase n, the number of islands, p drops toward zero. This it does because the
amount of migration between any two given populations is m/(n — 1), which declines to zero as n

236



Table 7.3: Effects of varying different parameters in an n-island infinite isoallele model
when the parameters are (unless otherwise specified) N = 200, n = 10, m = 0.001,
v = 107%. The values in parentheses are those computed from the approximations
(VII-42) and (VII-43), presented to show their level of accuracy.

Changes in N:

N Fw P
10 0.9775 (0.9776) 0.5267 (0.5263)
100 0.8132 0.5267
200 0.6852 0.5267
500 0.4655 0.5267
1000 0.3033 0.5267
2000 0.1788 (0.1789) 0.5267 (0.5263)

Changes in n:

n Fw P
2 0.8675 (0.8675) 0.9093 (0.9090)
) 0.7641 0.7147
10 0.6852 0.5267
20 0.6231 0.3452
50 0.5729 0.1697
100 0.5532 0.0919
1000 0.5338 (0.5342) 0.0099 (0.0099)

Changes in u:

u Fw P
1076 0.9921 (0.9921) 0.9911 (0.9911)
1075 0.9310 0.9176
1074 0.6852 0.5267
1073 0.3962 0.1002
0.01 0.1007 0.0111
0.1 0.0104 (0.0122) 0.0012 (0.0011)

Changes in m:

m Fw P
0 0.9259 (0.9259) 0 (0)
106 0.9252 0.0011
1074 0.8680 0.1002
1073 0.6852 0.5267
0.01 0.5742 0.9187
0.1 0.5572 0.9925
0.9 0.5555 (0.5558) 1.0000 (0.9990)
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is increased. Thus as n increases the islands becomes less and less similar. As this happens, new
immigrants become more and more equivalent to mutants. The similarity of alleles in a population
drops toward a limit, which can be found simply by replacing u by w 4+ m in the one-population
isoallele model (VII-6). If we compute 1/[1 + 4N (u + m)] in this case, it is 0.5319, very close to
what is observed when n is large.

When u is varied, as expected there is less and less gene identity within a population. The
quantity p also drops as mutation provides a stronger and stronger force differentiating populations.
Finally, the effect of increasing the rate of migration m is to increase the genetic similarity between
populations, as one might expect. As migration becomes a stronger force, the set of n populations
becomes more and more nearly a single random mating population. When m = 1 — 1/n, so that
m = 0.9, each gene in a population came from one of the other populations chosen at random,
so that our archipelago of islands is one random-mating population. In that case the amount of
variation in a single population is precisely what would be predicted from an infinite isoalleles
model with Nn individuals. The approximation formulae (VII-42) and (VII-43) do a good job for
parameters in the ranges we have considered. As expected, they begin to lose accuracy when m,
u, or 1/N become large.

The reader should be clear about the significance of quantities like Fy and p. They are not
expected to have these values in any one population or even when averaged over pairs of genes drawn
from any one archipelago. In the derivation of the equations for these quantities we considered
only the probability that two genes drawn from a random population and from a random replicate
realization of the process were identical. It is much the same as in the infinite isoalleles model: the
probabilities are only expectations. An individual realization of the process could, as a result of
random genetic drift, come to contain only the same one allele in all populations, despite the fact
that Fyy < 1. The values of Fy and Fp are averages over all possible pairs of genes sampled from
all possible replicates of the process. As such they indicate only the expected course of events and
not the fluctuations we should expect around those averages.

We have dealt only with equilibrium situations in this section. With three evolutionary forces
operating, there will be a variety of time scales on which the system will respond to perturbation.
If all variability is lost, the rate at which new variability reenters the whole system will obviously
be governed by the mutation rate u. If the populations become excessively differentiated, the rate
at which migration re-mixes the genetic contents of the populations will be governed by m. If
the populations become excessively similar (although containing variability) the rate at which they
differentiate by genetic drift will be governed by 1/N. A complete analysis of rates of return to
equilibrium is beyond our scope here: there is insufficient space to discuss it.

RATE OF LOSS OF VARIABILITY WITHOUT MUTATION. However, a body of work
is available on the rate of approach to equilibrium in one set of cases of particular importance.
These are when there is no mutation (u = 0). Then the variability in the populations will be lost
as Fy and Fp approach one. The questions which arise immediately are: (1) at what rate will
the whole archipelago fix for the same allele, and (2) as the variability of the set of populations
is being lost, will the residual variability represent mostly between-population variability, or will
all populations have similar genetic composition? We will only sketch the methods used to answer
these questions, as they are fairly straightforward. When v = 0 equations (VII-41) can be used
to show that the equilibrium values of Fy and Fp are both 1. Substituting Hy = 1 — Fyy and
Hp =1 — Fp into these equations, we find that they give two linear recurrence equations in two
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unknowns. These can be solved by matrix methods in the manner discussed above in Chapter V,
section 11. Both Hy and Hp decline towards zero, and the rate of decline becomes geometric, so
that after a while H{,V ~ AHy and Hp ~ AHp. The value of the largest root of the characteristic
equation of the matrix which is found tells us the answer to the first of the two questions posed
above. The smaller is this A, the more rapidly variability (as expressed by either Hyy or Hp) is
lost. We can write out the quadratic equation with coefficients depending on N and m, and solve
it either analytically or numerically.

The result shows an interesting transition, and a behavior somewhat different from the isoallele-
mutation case just discussed. When Nm is large, the whole population drifts as if it were a single
random-mating population. If it were, then clearly the value of A would be 1 —1/(2Nn), since this
panmictic population would contain Nn individuals. As m is decreased, the rate of loss of variation
stays near this value for some time. But there is a rather sudden transition in a particular range
of values of m. Below this range, the rate of loss of variation begins to decline. Furthermore, it
comes to depend on m, but not on N, whereas before it depended on N but not on m. When

1
A~ 11— — VII-44
2Nn ( )
and when m is small 5
m
A~ 1-— . VII-45
p— ( )

Figure 7.1 shows this transition, by graphing the rate of loss of variability, 1 — A, as a function of
m. Clearly the critical range of values of m is near the intersection of the two asymptotes, at the
point when (VII-44) equals (VII-45). So it is where

1 2m
= 11-4
2Nn (n—1) (VIL-46)

which is where 1
ANm = 2 —=, (VII-47)

n

So we can state the principle that the population drifts as if one panmictic population provided
Nm is large, but geographic structuring of the population impedes the spread of one or another
allele if Nm is small. This is certainly consistent with the behavior of the one-island model.

As an aside, it may be worth noting that a good approximation to A over all ranges of m is

1

A== o
2Nn+W

(VII-48)

It is very much as if when m is large the population drifts with an effective population size near
Nn, and when m is small it drifts with an effective population size of (n —1)/(4m). An even better
approximation for all values of m is the sum of these two effective sizes.

All of the above statements may be verified by consideration of approximations to the full
equation for A, but we shall not do this here. The remaining aspect of the approach to fixation
of an m-island model is the extent of geographic differentiation of the islands. This turns out to
be completely concordant with the above rules. When the population has effective population size
Nn, it shows little geographic differentiation, as judged by the ratio Hy/Hp, which will then be
near unity. But when geographic subdivision is effective in impeding genetic drift, then there will
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Figure 7.1: Rate of approach to fixation in an island model with n = 10 and N = 100.
The squares are the result of exact calculation of eigenvalues from (VII-40), the curve
is the approximation (VII-48).

be substantial differentiation, with far more heterozygosity if two genes are drawn from different
populations than if drawn from the same population.

The populations then become differentiated from each other, and the whole species then has its
mean gene frequency drift until it is 0 or 1. The differentiation arises much faster than the whole
species drifts. It arises in a number of generations which is a small multiple of the local population
size N. A good approximation to the extent of differentiation is that Hyy/Hp ~ 4Nm/(4Nm+1).

REFERENCES. The n-island model was first envisaged by Sewall Wright (1931), who dealt
only with the case n = co when effectively it will behave like a one-island model in many respects.
P. A. P. Moran (1959) first pointed out the transition in the rate of approach to homozygosity as
m is varied. Maynard Smith (1970) gave an approximate solution, very much like the one here,
to the island model with infinite isoallele mutation. Maruyama (1970) gave a less approximate
treatment. The exact solution was given by Nei and Feldman (1972) and also by Latter (1973),
who approximated the time dynamics of the model more fully. The intuitive discussion presented
here owes much to the treatments by Maynard Smith (1970) and Spieth (1974). Robertson (1964)
presented a general rule relating the extent of geographic differentiation to the rate of approaches
of the whole species to fixation.

VII.6 Drift vs. Migration: the stepping stone model.

THE MODEL. We have gone into the island model in some detail because all the phenomena
seen there also occur in the more complex spatial models. The island model has no geography: each
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population is in effect equidistant from each other population. There are many models of geographic
population subdivision. The best investigated of these are the stepping stone models. We now look
briefly at some of the results from this model. Our lengthy discussion of the island model will help
us distinguish those effects due to the subdivision of the species into local populations from those
which also require a particular geographic arrangement of the populations.

We concentrate first on the simplest case of the stepping stone model. We imagine that there
is an infinite chain of equally spaced populations, each of size N. The model of population repro-
duction is a Wright-Fisher model with immigration, as it was in the island model. The difference
is that of the m immigrant gametes, a fraction m/2 comes from the neighboring population to the
left of the population, and a fraction m/2 comes from the neighbors on the right. This is shown
diagrammatically in Figure 4.3. The chain of populations is assumed to be infinitely long.

Let us consider the equilibrium state of an infinite isoalleles model in an infinitely long stepping
stone model. As before, this will not be an equilibrium of individual allele frequencies, but of the
amounts of variability as measured by probabilities of allele identity. The probabilities we use are
the Fj;, the probability that a gene drawn at random from population 7 will be the same allele as
one drawn at random from population j, the sampling being without replacement if i = j.

AN ASIDE: THE GENERAL MIGRATION MATRIX MODEL. For any arbitrary geo-
graphic structure there is a general equation which the Fj; must satisfy at equilibrium. Using the
a sequence of lifestages in which the juveniles migrate:

sampling MEeL0SLs mutation mating maigration
Juveniles —  Adults — Gametes — Gametes — Juveniles —  Juveniles

(00) (V) (00) (c0) (c0) (00)

the equation is

1— F
Fj = (1-u)? ZZMiijé [er + Ope < 2NM>] . (VII-49)
koL

This complex-looking equation is actually rather simple. The factor (1 —u)? comes, of course, from
the isoallele mutation model. Mj; is the probability that a gene found in population ¢ came in the
previous generatian from population k. When ¢ = k it gives the probability that the gene is not
a new immigrant. Mj, is defined similarly. The quantity in brackets is easily interpreted. dy, is
called the Kronecker delta function. It is simply a bookkeeping device. It is zero when k # £ but
one when k = £. This means that when k # ¢ the quantity in square brackets is simply Fyy but

when k =/ it is
LYY g
N ON ) ke

This quantity should be familiar to us by now. Thus the double summation in (VII-50) simply
keeps track of all possible places in which the two genes could have been in the previous generation.
M; M, is the probability that genes now respectively in i and j came from k and ¢, and the
quantity in square brackets is their probability of identity if they came from k and ¢.

THE STEPPING STONE MODEL AGAIN. In this general migration matrix model with an
arbitrary number of populations and an arbitrary migration scheme given by the M;;, there is no
simple expression giving the solution of (VII-50). But in the one-dimensional linear stepping stone
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model, things simplify. Each gene can only have come from three possible places, the population
where it was found and its two neighbors. So there are nine terms in the double sum:

Fy = (1—u)? (m2/4)Fi*—1,j—1 + (m2/4)Fi*—1,j+1 + (m2/4)Fi>t|—1,j—1 + (m2/4)F;i|—1,j+1
+ (m/2)(A—m)F, ; + (m/2)A—m)F7, ; + (1—m)(m/2)F;_,

+ (L=m)(m/2)F;, + (1-m)’F;].

(VII-50)
We have assumed that the populations are numbered in order by integers: -3, -2, -1, 0, 1, 2, ...
Recall that the three possible migration events of a gene have probabilities m /2, 1 — m, and m/2
respectively. The asterisks on the F’s indicate that each of these is a quantity like the one in square
brackets in the preceding equation, being either F' or 1/(2N)+[1—1/(2N)|F depending on whether
or not the two subscripts of I’ are equal.

Now we can both simplify and approximate. We simplify by assuming that at equilibrium
the probability of allelic identity is dependent only on how far apart are the two populations. So
Fij = I'i41,j+1 = Fi+2,j+2 = ... = i—1,j—1 = F’Z‘_g’j_g, ete. If we let Fij = fi—j the set of values
of the f’s will tell us all the values of the F’s. So we need only solve for the f;, the probability of
identity between two genes drawn from populations i steps apart. In addition to this simplification
we also approximate by assuming that m, u, and 1/N are small, and ignoring products and squares
of these small quantities. After all of this (VII-50) becomes the set of equations

fo = (1—2m—2u—ﬁ)fo+2mf1+ﬁ
fi = mfo+ (1 —2m—2u)f1 +mfy
. (VIL-51)

Tk - mfr—1+ (1 —2m — 2u) fi, + m fr11.

We have used in the first of these equations the fact that f; = f_1, so that we only need to know
f; for positive values of i.

Notice that all but the first equation are identical in pattern. If we consider what will happen
to fr as k becomes large, it is intuitively clear that f, will decline to zero. The farther apart are
two genes, the more certain that mutation will have occurred to one or the other since they last
had a common ancestor. We can assume that the decline of fj is geometric, so that (for large k)
fra1 =~ Afr =~ A2 fr_1. Since from (VII-51)

mfrr1 — 2(m+u) fr + mfr_1 = 0, (VII-52)
after substituting A2 f,_1 for fr,1 and A\fy_; for fi, we obtain the quadratic equation
mA? —2(m+uA+m = 0 (VII-53)

so that

+ 2 _ 2
y o mtu V(m+u)?2—m . (VIL54)
m
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The relevant root is the smaller one. (The full solution of the difference equation (VII-52) is a
linear combination of powers of the two roots, but the larger root is greater than 1 and it can be
shown that it must have a coefficient of 0, as fj declines to 0 as k increases). We can approximate

the smaller root when u < m by
1—+/2u/m (VII-55)

so that fg, which should (for large k) be proportional to A\¥ is approximately

fx =~ fo exp[—k+/2u/m)], (VII-56)

This argument has been a bit fast and loose, making many assumptions and approximations. But
we have gone through it because it is one result which can be obtained fairly easily. The expression
for fi, which is in terms of fy, can also be substituted back into the first equation if we use our
approximation to compute fy from f; and we can then use (VII-51) to obtain an expression for fj.

A

12

FURTHER RESULTS. Many variants of the stepping stone model have been treated in the
literature. The methods needed to solve for equilibrium levels of variability or for rates of approach
to homozygosity are rather tedious and difficult. Rather than attempt to present them here, we
will simply present the main conclusions which have come out of this body of work. References to
the work will be found at the end of this section.

As we have seen, in the infinite isoalleles model in a one-dimensional infinite stepping stone
model, the identity of alleles in two populations will decay at the same rate as exp[—k+/2u/m]
for large distances between the populations. This exponential decline is not quite true for a two
dimensional stepping stone model. A two-dimensional stepping stone model is defined similarly to
the one dimensional case. It is assumed that a fraction m of gametes in a population are replaced by
gametes from the four neighbors. Each neighbor in the grid of populations contributes a proportion
m/4 of the gametes. If we express the probability of identity as a function of the distance between
the two populations, we find that when k is large, f is

fr = ¢ foe kv itu/m / vk (VIL-57)

where the constant c is a rather messy expression depending on both u and m, but not on N.

In both cases, more exact formulas are available for computing the fj, but they yield little in
the way of insight. We have dealt only with infinitely long one- and two-dimensional stepping stone
models. Models of finite extent (lines, circles, rectangles or tori of populations) have also been
analyzed and show similar patterns. Note that although there is no analogue in the n-island model
for the rate of decline of allelic identity with distance, there is one direct parallel. Like Fp/Fyy,
fx/fo depends only on the relation between u and m, and not on N to any extent.

RATE OF LOSS OF VARIABILITY. A clearer picture is obtained by eliminating mutation
from the models, and asking at what rate the allelic identity f; approaches 1 (i.e., how rapidly
does the population fix for one allele). Like the island model, after an initial period the rate of
decline of variability, both within a single colony and throughout the species range, settles down to
a constant rate. The rates of decay of variability show a transition behavior similar to that seen in
the island model. Note that we can most meaningfully discuss the approach to fixation in a species
of finite extent (a line, circle, rectangle, or torus of populations), for in an infinitely long stepping
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Figure 7.2: Rate of approach to fixation in a one-dimensional stepping-stone model with
n = 100, N = 1000.

stone model the whole species can never fix for one allele. When m is large, the whole species drifts
as if one panmictic population, with very little geographic differentiation. When m is small, there
is local geographic differentiation during the fixation process. The process of fixation then consists
primarily of the spread through the species of a patch of nearly-fixed populations. Each population
is fixed one way or another, and the patches of fixed populations each spread or shrink until all
populations are fixed for one allele.

This transition from the one behavior to the other is qualitatively like that seen in the n-island
model. We can define an effective population size for this process of genetic drift, and approximate
it for large and small m. As in that case, the effective population size is well approximated by the
sum of these. Figures 7.2 and 7.3 show the transition undergone by the rate of decay of variability
(more properly, the rate of approach of the F’s to 1 per generation).

In the one-dimensional case, when there are n populations in a line, the effective population

size is approximately

n2

.ZVe ~ m + Nn (VII—58)
while in a two-dimensional rectangle of n; x no populations we have

2n1n2
N =~

+ anng (VII—59)

Note that when m becomes large the second term in each of these expressions predominates. It
is the total number of individuals in the species. When m is small the first terms, which do not
depend on the local population size N, dominate. A particularly interesting phenomenon occurs
when we look at the point at which the transition to effective panmixia occurs. We can find this
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Figure 7.3: Rate of approach to fixation in a two-dimensional stepping-stone model
with n; = ny = 100 and N = 100.

by finding the value of m at which the two asymptotes in Figures 7.2 and 7.3 intersect. This is the
same as the point at which the two terms of (VII-58) or of (VII-59) are equal. For one dimension the
transition occurs when Nm = n/(272). For two dimensions we require Nm = 2. Note the difference
in behavior of the one- and two-dimensional cases. When we have a rectangle of populations, it
will drift as one panmictic population whenever there are (substantially) more than two immigrant
individuals (four surviving immigrant gametes) expected per generation. This will hold no matter
how many populations there are in the rectangle. Nm > 2 is enough to “thoroughly mix” even
a very large species. But in the one-dimensional case, when we increase n, we also increase the
amount of migration needed to make the species drift as if one large population. So for a fixed
amount of migration, a long enough line of populations will show local genetic differentiation during
the fixation process. But a large enough square or rectangle may not show genetic differentiation
unless Nm < 2. Note by comparing these results to (VII-48) that the n-island model behaves much
more like a two-dimensional than a one dimensional model. This seems to be related to the fact
that in both the island and the two-dimensional model there are many routes from one population
to another via chains of other populations, while in the one-dimensional model there is only one
route.

RELATION TO THE EQUILIBRIUM WITH MUTATION. Now we can relate these
results about the rate of genetic drift to the equilibrium variability under an isoallele model. When
the mutation rate is so small that we expect far fewer than one mutant per generation in the whole
species (i.e., 2Nnu << 1), after each mutation there will be a prolonged period of genetic drift.
Thus the species will be quite likely to drift to fixation or loss of the allele before the next mutation
occurs at the locus in question. Thus if we ask whether we will see geographic differentiation with «
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very small, this will be nearly the same as asking whether we see geographic differentiation during
the process of approach to fixation of one allele. Nearly, but not quite, the same. When we ask
about geographic differentiation with small u, we must also include those cases in which the species
has reached fixation. If we use the ratio f/fo as a measure of geographic differentiation, we will
find that since we are by and large examining totally fixed species, fi >~ fo ~ 1. Thus this measure
will show little geographic differentiation. A gene from a distant population is just as likely to be
the same allele as one from the same population.

But there is another, equally relevant measure of genetic differentiation, related to the ratio
Hy /Hp discussed in the section on the island model. This is (1 — fy)/(1 — fx), which compares
the heterozygosity within a population to that between populations. Now the instances in which
the species is totally fixed contribute no heterozygosity to either 1 — fy or 1 — fi. So in examining
this quantity we are, in effect by asking only about those generations during which heterozygosity
exists, looking only at those cases not yet fixed. This quantity, which will be substantially less
than 1 when there is more heterozygosity between than within populations, behaves just as it does
when there is no mutation. There will be found to be a transition between local differentiation and
effective panmixia as m is increased, and it will occur at the same value of m as discussed above.

When 4Nnu > 1 (one dimension) or 4Nninou > 1 (two dimensions) the entire analogy between
the equilibrium and the approach to fixation breaks down, and we can no longer look to fixation
rates for insight into geographic differentiation of populations.

REFERENCES. We have so far deferred citing the actual literature on the stepping stone model.
It was first formulated by Kimura (1953) and independently by Malécot (1950), who obtained the
first approximate solutions. Earlier Sewall Wright (1940, 1943, 1946) propounded a model of
individuals distributed in a spatial continuum, as did Malécot (1948, 1969). We have not covered
the continuum models since they involve a questionable assumption (Felsenstein, 1975), but they
were the first models of genetic drift in a truly geographically subdivided population.

Kimura and Weiss (1964; Weiss and Kimura, 1964) presented a more detailed analysis of the
infinite-length stepping stone models. Malécot (1950, 1951) obtained solutions for the equilibrium
in some finite-length cases, and Maruyama (1970) first obtained the rate of loss of variability in
finite-length stepping stone models. Maruyama has also written many papers providing detailed
solutions and approximations to a wide variety of stepping stone models. Readers will find references
to these and related papers in his monograph (1977) and also in my own review paper (1976) which
contains some erroneous formulas. The transition in behaviors of the stepping stone model was
first discussed by Kimura and Maruyama (1971) and also by Maruyama (1972). The interpretation
in terms of effective numbers is my own.

VII.7 Drift versus Selection: Probability of Fixation of a Mutant

When genetic drift acts in opposition to mutation or to migration, it is possible to gain a clear
picture of events by investigating the behavior of means and variances of gene frequencies, or
equivalently of probabilities of allelic identity. When natural selection and genetic drift are the
forces present, the methods become more complex, leading us ultimately to the diffusion equation
methods, the most sophisticated mathematics used in population genetics. We will ease into this
morass by considering first the simplest models containing both drift and selection. These treat
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the probability that a rare advantageous allele introduced into a large population will successfully
fix.

PROBABILITY OF FIXATION. Consider an allele introduced as a single copy into a very
large population which is reproducing according to a Wright-Fisher model (discrete generations,
random mating, no mutation), and which is otherwise totally fixed for the other allele. One might
think that if the population were large enough, the course of change in gene frequency would
follow the expectation which we get from the deterministic models of Chapter II. But a moment’s
reflection will suffice to see that this cannot be so. If the gene is very rare (and it is) and has
relative fitness 1 + s when heterozygous, then the results of section I1.5 tell us that we expect the
gene frequency to be multiplied by approximately 14 s per generation. This means that if we now
have one copy of the allele, then in the next generation, is s = 0.2, we should have 1.2 copies. This
is clearly impossible.

The paradox is partially resolved when we realize that the relative fitness 1 4+ s is only an
expectation. On the average the carriers of our allele A will have 1 4 s times as many offspring
as the homozygotes for a. But an individual Aa individual may have no offspring, or a few, or a
great many. It is only necessary that the mean number of survivors work out to 1 + s (relative to
aa). If there is any chance at all of having no surviving offspring, then it is possible for the allele
A to be lost in the first generation. Even if it survives, it is quite possible for the survivors to
themselves all have no surviving offspring. It is clearly quite possible that a new mutant allele will
die out as a result of these chance events, even though it is selectively advantageous and occurs in
an infinite population. We will try to find the probability that the allele survives long enough, and
comes to exist in enough copies, to ultimately complete the process of substituting itself for the
existing allele. We return later to the question of how this random process may be reconciled with
our notion that when the population size is very large there should be little or no genetic drift.

THE BRANCHING PROCESS. We take as our starting point the probabilities pg, p1, p2, ---
that an individual A allele in an adult Aa gives rise to 0, 1, 2, ... copies of the A gene among
the adults of the next generation. We then return to compute these probabilities after doing the
analysis in terms of them. We seek the probability of long-term survival of the A allele. The
easiest way to find this is to consider instead the probability A that the A gene is ultimately lost.
These two probabilities (of loss and of survival) must sum to unity. Given a single Aa individual,
A will be ultimately lost if it has no offspring in the next generation, an event whose probability
we have assumed to be given by pg. But it may also be lost if it gives rise to only one A in the
next generation. That event has probability p;. Knowing that there is only one A in the next
generation, so that it must be in a Aa individual, we can see that since by assumption the relative
fitness of Aa remains constant at 1 4 s, the probability that that single Aa offspring contains an
A gene which is ultimately lost is A\. So we can put this together to say that the chance that our
original A gene dies out through a series of events which start by only one offspring containing A
being produced is the product piA. Note that in trying to compute A we are in the process finding
a formula for it that itself involves A. This will work out.

It is also possible for there to be two copies of A in the next generation. Since the A allele
is extremely rare, it is overwhelmingly likely that these A-bearing adult offspring are both Aa
individuals. The probability that there are two A-bearing offspring is ps. Now to have the A allele
be lost, neither of those A genes can give rise to a lineage which ultimately survives. The critical
assumption we now use is that, since these two individuals are each diluted out in a very large
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population, they do not interact in any way with each other, nor do their descendants. If this
assumption holds, then the event of the dying out of one A line occurs independently of whether
the other A line dies out. Each of these lines is again a line started from a single gene. So the
probability that each one dies out is A, and the probability that both die out is (by independence
of these two events) A2. Thus the probability that the original A gene has two descendants and
that neither of these ultimately has surviving A-bearing offspring is paA2.

By simple extension of this argument we can see that the probability that the lineage of A’s
ultimately dies out after first having 3 offspring is p3A3, and so on. We have now computed \ in
terms of itself as:

A = po+pid+ A2 +psA® 4 A+ (VII-60)

the summation continuing to the largest number of offspring the original gene could possibly have.
This process, in which a single particle (in our case, a gene) can reproduce different numbers of
offspring, each of which independently gives rise to a line of offspring according to the same process,
is called a branching process. The probability of death of a lineage founded by a single gene is found
by solving (VII-50) for A, if that is possible. There will always be a root A = 1 in (VII-50). When
the chance of survival is greater than zero, there will also be another root in which A < 1.

THE WRIGHT-FISHER MODEL WITH SELECTION. Now let us put some flesh on the
bones of equation (VII-50) by specifying values for the p;. We recall that the original A is in an
adult, that the population reproduces according to a Wright-Fisher model, and that the relative
fitness of Aais (1+s). To find the probability that there are n Aa adults in the next generation, we
must specify what we mean by a Wright-Fisher model when there is natural selection. Recall that
in a Wright-Fisher model, it is as if an infinite pool of gametes were produced, these combine at
random, and then N surviving adults are chosen by the lottery of density-dependent population size
regulation. To incorporate fitnesses into the scheme, we need only assume that in the production of
the gamete pool and in subsequent events up to but not including population size requlation, natural
selection (or migration, or mutation) is at work. Our life cycle diagram is:

meiosis, random Late density
Adults selection union selection  preadult regulation
(N) — Gametes — Zygotes — zygotes — Adults
(fertility (00) (00) (viability (00) (N)
differences) differences)

Thus having one copy of A with relative fitness of its bearers being 1 + s will lead, whether by
fertility or viability effects, to a proportion (1+s)/N of the late preadult zygotes being heterozygotes
Aa, where N is the population size, assumed large. On each of the N “draws” which determine
survivors’ genotypes, the chance of getting a Aa is (1 + s)/N. The average number of A genes
surviving is thus N(1 + s)/N =1+ s. Thus in a Wright-Fisher model under these conditions, the
number of Aa survivors is drawn from a binomial distribution with N trials and the probability
(1+ s)/N of success on each trial.

But we have assumed that N is very large. These conditions (very small probability of success
on each trial) are precisely those in which the number of surviving offspring will nearly follow a
Poisson distribution with mean number of offspring 1 + s. The validity of this approximation will
increase as we consider cases of larger and larger N. Thus the number of offspring Aa is k with
probability

i = e U1+ )k /R, (VII-61)
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these being the Poisson probabilities when the mean is 1+ s. To find A, we substitute these for the
pr in (VII-50). We find that

A= e ) 4o e 14 )X + e (1 45)202/2 + .. 4+ e )14+ 5)F /R + ...

= eI 1+ (1 + )N+ (1 +8)202/2+ o+ (1 +8)FNF /R + ]
(VII-62)
The power series 14z 4+ 22/2 + ... + 2F /k! + ... is simply the Taylor series expansion of €%, and we
can thus write (VII-52b) as
P — e—(l-{—s) e>\(1+s)
(VII-63)
= A-D(+s),

The value of A is found by solving (VII-63) for A, given the value of s. Unfortunately there is no

closed-form expression for .

AN APPROXIMATION. An approximate solution can be obtained when s is small by expand-
ing the right side of (VII-63) as a power series in (A — 1) and dropping terms beyond the square.
This involves the assumption that A is near 1. We get

A T+ A=1)(1+5s)+ (A= 1)%(1+5)%/2 (VII-64)
or
A=D1 [1—(1+s)—(A=1)(1+s)?/2] ~ 0 (VII-65)
which is solved either when A = 1 or when
2s
- = — VII-66
(1+s)? ( )

Our analysis shows that when s is small, the probability of survival of a new mutant (for that is
what 1 — X is) is nearly 2s. When s is negative, the only acceptable solution of (VII-65) is A = 1.

Clearly a new mutant in a very large population has a nonzero chance of spreading only when
s > 0. This is certainly consistent, in a qualitative sense, with the deterministic results for selection
in an infinite population. Table 7.4 compares exact solutions of (VII-63) with the approximations
2s and 2s/(1+s)2. The exact probability of survival is between the two approximations, somewhat
closer to (VII-66).

When s is small, clearly 2s is close enough to the probability of survival to serve as a working
rule of thumb. It is worth considering how small a probability of survival this is. When s = 0.01,
only one new mutant in 50 will succeed in spreading, despite the fact that all are advantageous.
Even with s as large as 0.1, large enough to guarantee fairly rapid change in gene frequencies in
the deterministic case, only one new mutant in six will establish itself. Obviously, genetic drift is a
powerful force when only a few copies of an allele are in existence. Only rarely will an allele, even
if advantageous, escape from the risk of loss due to the randomness of births and deaths, and of
Mendelian segregation.

But once an advantageous allele reaches a substantial number of copies, its continued survival
is better assured. If there are n copies of an allele, it can only be lost by all n lineages of A-
bearing individuals going extinct. The probability that this will happen is A", since we still assume
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Table 7.4: Comparison of exact probability of survival in a branching process with two

approximations.
Exact
s Probability 2s/(1 +s)? 2s
0 0 0 0
0.01 | 0.01973 0.01922 0.02

0.02 | 0.03896 0.03845 0.04
0.05 | 0.09370 0.09070 0.10

0.10 | 0.17613 0.16529 0.20
0.20 | 0.31369 0.27778 0.40
0.50 | 0.58281 0.44444 1.00
1 0.79681 0.50000 2.00

that the population is so vast that these different lineages do not interact, and survive or are lost
completely independently of one another. The probability that an allele represented initially by n
copies survives is

1— A" ~ (1-25)". (VII-67)

Once 100 copies of an allele exist, when s = 0.01, the probability that it is lost is only 0.14,
and once 1000 copies exist, the probability that it will be lost thereafter is less than 3 x 1072, This
provides us with some insight into the time dynamics of the process of establishment or loss of a
new advantageous mutant.

As 1 — 2s ~ e72% The quantity (1 — 2s)” can be approximately written as e~2". If 2ns is
substantially greater than 1, this means that the favored allele is very unlikely to be lost. This is
true when n > 1/(2s). Thus when the number of copies of the advantageous allele substantially
exceeds 1/(2s), the allele is virtually guaranteed to fix. This true even if it is as yet still at a low
gene frequency. So most of the loss of advantageous alleles takes place while these alleles are still
present in only a few copies (this is not as silly a statement as it sounds). This in turn must be
during the first few generations. An allele present in only one or a few copies is constantly at risk
of being lost and could not last long in that state. If it survives many generations it must therefore
be fortunate enough to have drifted to a larger number of copies.

NUMBER OF COPIES PRESENT. We can now get some insight by asking, not about the
probability of survival, but about the average number of copies which we expect to be present after
t generations. Starting with one mutant copy of A, we expect to have an average of 1 + s copies in
the next generation. These in turn each will have an average of 1 4+ s A-bearing offspring, and so
on. After ¢ generations there should be an average of (1 + s)! copies of A. Consider a large value
of t, say 1000 generations. If s = 0.01, then we expect an average of 20,959 copies of the allele to
exist after 1000 generations. But this is an average both over cases in which the allele has been lost
and those in which it still survives. The process of loss of the allele will have mostly run its course
long before 1000 generations. So, since 1 — 0.01973 = 0.98027 of the time the allele will be lost,
this average of 20,959 represents an average of numbers which are zero 0.98027 of the time! Thus
if there are any A alleles around at all (an event which happens only 0.01973 of the time), there
must be (on average) 20,959/0.01973 = 1,062,299. Thus the figure of 20,959 will not be typical
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of any particular population. A few populations will have 50 times that many alleles, but in most
cases there will be no A copies left after 1000 generations.

A more careful analysis of the branching process shows that loss does indeed occur within a
few generations of the initial occurrence of the allele, if it is going to occur at all. In those cases
in which there is survival of the mutant, it drifts upwards in numbers until a substantial number
of copies (as we have seen, about 1/(2s) of them) are available. Thereafter it increases relatively
smoothly by a fraction of s per generation.

This latter is precisely the behavior expected from the deterministic selection equations. We
are still left with the problem of how to reconcile the deterministic prediction with the results from
the branching process, as both are supposed to apply when N is large. The paradox is resolved
by focusing on the number of copies initially present. When there are only a few, the branching
process accurately indicates that most likely the favored allele will be lost, and that in any case
genetic drift will be a major influence on gene frequencies in early generations. But recall that we
have assumed a vast population. Even if the initial gene frequency is p4 = 0.01, this will represent a
large number of copies of A. In that case A is expected to increase its frequency smoothly, and have
little chance of being lost. Even if we have a new mutation coming into a population which lacks
it, if 2Nu > 1 there will be many copies of the mutant even during the first generation, and these
mutants will follow deterministic patterns as a result. Thus there is no contradiction between the
results of the branching process and of the deterministic treatment. However very large population
sizes (10?) will often be required to get this consistency, and otherwise the branching process will
more accurately reflect what happens when only a few copies of an allele exist.

REFERENCES. The branching process was introduced by Francis Galton and the Reverend
Thomas Watson (Watson and Galton, 1874) in the last century to model the extinction of family
surnames (the problem had been worked on earlier by I. J. Bienaymé, as pointed out by Heyde and
Seneta, 1977). It was first applied to the problem of extinction of a gene by R. A. Fisher (1922),
who treated only neutral genes. Haldane (1927) extended the treatment to advantageous genes
and obtained the approximation 2s. The number-of-copies argument of the previous paragraphs is
given by John Maynard Smith (1971).

VII.8 The Diffusion Approximation to Fixation Probabilities.

THE WRIGHT-FISHER MODEL WITH SELECTION. The weakness of the branching
process approach to fixation probability is that it assumes that all the different copies of the allele
reproduce independently of each other. This can be a good approximation only if the allele is
at low frequency in a very large population. In this section, we begin to develop the diffusion
approximation, which will work for any initial gene frequency of the allele.

Before doing so, it is worth looking at the Wright-Fisher model with selection. Is there any
hope of finding the fixation probability exactly? We assume that the life cycle is that given in the
last section. We will also restrict consideration to the case where only the viability stage of the
life cycle is affected by the genotype. We do not consider fertility differences, which we assume
do not exist. Suppose that the viabilities of AA, Aa, and aa are respectively waa, Waq, and wqg.
These give the probability that a zygote of a certain genotype survives to the life stage where
the density-regulation random sampling starts. The sampling itself is simply random choice of N
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individuals. Now suppose that we know the numbers of AA, Aa, and aa adults in generation ¢, and
wish to find the probabilities of various outcomes in generation t + 1.

The first thing to notice is that gametes are being produced, the proportion of A genes among
them is the same as the gene frequency of A among the adults that produced them. So the future
behavior of the population depends, in this case, only on the current gene frequency and not at
all on the current genotype frequencies. This allows us to shift our attention to the number of A
genes out of the 2N gene copies present in the adults. Suppose that there are ¢ copies of A. Among
the gametes, p = i/(2N) are A, since the gametes are produced without fertility differences. The
gametes combine at random to form the zygotes (which is of course the same as having each zygote
formed by two randomly-chosen adults). So the newly formed zygotes are in Hardy-Weinberg
proportions at gene frequency p. Natural selection acts on the infinite population of zygotes. After
selection acts, the AA, Aa, and aa survivors are in the frequencies p?waa/w, 2p(1 — p)wa,/w, and
(1 — p)%w,q /W respectively, where w is the mean fitness p?waa + 2p(1 — p)wag + (1 — p)*waq. The
N surviving adults are then determined by random sampling from these infinitely many survivors.
Thus the probability of finding n1, ns, and ng survivors of genotypes AA, Aa, and aa is the trinomial
sampling probability (the probability of these numbers of outcomes if we toss a three-sided coin)

N!
77,1! ’I?Q! n3!

n2
P(n1,ng,n3) = [p*wan/w]™ [22?(1 —p)wAa/u_f] [(1 = p)*waa/w]"™*  (VII-68)
In practice we are only interested in what the gene frequency among adults in the next generation
is. So we are interested in the total probability of all those combinations ny, no, ng in which we
have a total of j copies of the A allele, i.e., in which 2n; + ny = j. So if we have i copies of A in
the present generation, the probability that we have j copies in the next generation is

/2

P(jliy = > P(k, j—2k, N—j+k), (VII-69)
k=0

the three arguments of P on the right side being determined by the requirements that ny+ns+ng =
N and that 2ny + ny = j. Recall that p =i/(2N) in (VII-68).

There is a great deal more to say about the Wright-Fisher model with selection, but little space
here to say it. Equations (VII-69) and (VII-68) allow us to calculate the transition probabilities
P(j|i) of going to j copies of A from i copies. Versions of the model allowing fertility selection as
well can also be written down, but we will not do so here. It is worth pointing out that the sampling
which takes place in choosing N adults is not the same as sampling 2N genes from the zygotes. If
the zygotes had not undergone a round of selection, the two processes would be the same, since the
two genes in a single individual might as well be sampled independently. But if natural selection
gets the population out of Hardy-Weinberg proportions, there is a lack of independence between
the two genes in an individual: knowing whether one is A tells us something about whether the
other is A also. As an extreme example, if waa = wy, = 0 so that only heterozygotes Aa survive
selection, then all N adults must be Aa, so that sampling does not alter the gene frequency from
0.5 at all. Conversely, if no heterozygotes survive, then each surviving individual sampled contains
two A or two a genes, which means that the effect of sampling in changing gene frequencies is twice
as great as we might imagine just by looking at the number of genes.

EXACT FIXATION PROBABILITIES. Once we know the transition probabilities P(j|7),
we could hope to use them to work out the fixation probabilities. These will be a set of quantities
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ui, giving the probability that A becomes fixed given that we start with ¢ copies of A. For each
value of ¢ we have the following basic equation:

u; = ZP(j\z‘) u;. (VII-70)

These equations are analogous to equation (VII-60) in the branching process calculation. They
express the fixation probability as an average of the fixation probabilities u; from all gene frequencies
(or gene numbers) to which the population could change from its starting point in one generation,
with these being weighted by the probabilities P(j|i) that this particular one-generation change
will take place.

Two of the values of the u; are known in advance. When there are no copies of A present, the
gene cannot fix, so that ug = 0. When all genes in the population are A, the gene has already fixed,
so that ugy = 1. With the P(j]¢) known, and with these two “boundary conditions”, equation (VII-
70) specifies a set of 2N — 1 equations in 2N — 1 unknowns (two of the u; have been determined).
In any particular case for which fixation probabilities are needed, if N is not too large one can
determine the coefficients P(j|i) numerically, and solve for the u; by numerical methods. Even
with a computer it is difficult to deal with cases in which N > 50. Unfortunately, there is no
known algebraic expression in terms of N, wgq, WAq, and wg, which solves (VII-70) for the fixation
probabilities.

THE DIFFUSION APPROXIMATION. We are therefore faced with the necessity of ap-
proximating. The approximation we present here is the diffusion method, which we will also use in
the next section to determine equilibrium distributions of gene frequencies. We start by expressing
the fixation probability as a function of gene frequency rather than of numbers of copies of the
allele. Let U(p) be the fixation probability given that A starts out at gene frequency p. Then
u; = U(i/(2N)). We also replace the quantity P(j|i) by the probability of that particular change
in gene frequency. Let us call it P,(Ap). Then P(j|i) = P;/on[(j —7)/(2N)], although we will not
need to use this relationship. Equation (VII-70) now becomes

U(p) = Y _ Py(Ap) Ulp+ Ap) (VIL-71)
Ap

So far we have simply re-expressed (VII-70) without approximating at all. Note that the summation
over Ap is over all possible changes in gene frequency.

We now approximate U(p + Ap) by replacing it by the first three terms of its Taylor series.
Indicating derivatives with respect to p by primes,

2
Ulp+Ap) ~ Up) + ApU'(p) + @ U"(p) (VII-72)

When we substitute this into (VII-71) we get

U) = SR Uw) + 3 BAndp U) + 55 B(Ap)Apf U'(p).  (VILTS)
Ap Ap Ap

Noting that U(p), U'(p), and U”(p) do not contain Ap, we move them outside the summations:

Up) =~ Um) Y Rldp) + U)X Rodp) dp + 5U”(0) S Po(Ap) (Ap)> (VIET)
Ap Ap Ap
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Now note that ) P,(Ap) is simply the sum of the probabilities of all conceivable changes in gene
frequency. This must be 1. The quantity ) P,(Ap)Ap is the weighted average of all the changes
Ap in gene frequency. It is the expected change in gene frequency, E(Ap), which we will call
M(p). Finally, the term . P,(Ap)(Ap)? is the expectation of the squared change in gene fre-
quency, E[(Ap)?], which we call V(p). Note that we express M and V as functions of the current
gene frequency p because these expectations of Ap and of (Ap)? are different for different gene
frequencies. Now (VII-73) becomes

Up) =~ Ul) + U') M) + 30" () V() (VILT5)
M(p) U'(p) + %V(p) U"(p) =~ 0. (VII-76)

This equation is called (in a slightly more general form) the Kolmogorov Backward Equation.
(We shall see the Kolmogorov Forward Equation in the next section). Hereafter we drop the ~ in
favor of =.

Before we solve it, it is worth inquiring what we have assumed. In dropping terms from the
Taylor series for U(p 4+ Ap), we in effect assumed that the terms which contributed the bulk of the
quantity U(p) in (VII-71) involved small values of Ap, which is to say that P,(Ap) is small except
when Ap is small. In other words, p is changing only by small amounts in any one generation.
This amounts to the assumption that population sizes are large and selection coefficients small. Of
course, our derivation here is heuristic. Advanced population genetics texts may be consulted for
a more formal treatment.

Equation (VII-75) is easily solved to give U(p) in terms of M (p) and V (p). It can be rearranged
(unless U'(p) = 0 or V(p) = 0), using the fact that U”(p)/U’(p) is the derivative of In U’(p), to be

—2M(p)/V(p) = U"(p)/U'(p) = %[ln U'(p)] (VIL-77)

and we then integrate to get
-2 /I M(p)/V(p)dp = InU'(z) —InU’(c) (VII-78)
U'(z) = U'(c)exp [—2 / " M)V ) dp] (VIL79)

where the lower limit of integration c is not specified yet. We can call the right-hand side of (VII-79)
U'(¢)G(z). Then integrating (VII-78) from 0 to p we get

Ulp) - U(0) = U'(c) /0 ’ Ga) da. (VIL-80)

We know that U(0) = 0. The pesky constant U’(c) can be eliminated by noting that since U(1) = 1,
we can set p = 1 in (VII-80) and solve for U’(c). Then finally

Ulp) = /0 * () da / /0 1 G(z) dz (VIL-81)
4
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e G(z) = exp [—2 / M)V () dy]. (VIL-82)

This can be put into (VII-81) to get the solution we sought. Note that we have changed the variable
of integration in (VII-82) to y to avoid having p appear in more than one context. If you are worried
by the persistence of ¢, you may care to take time out to persuade yourself that it will introduce
only a multiplicative constant into the expression for G(x), so that as long as we use the same value
of ¢ in the G(z) in both numerator and denominator of (VII-81), it will not matter what value of
c we use.

A SPECIFIC CASE. All of which is all very well, but we would prefer to know the fixation
probabilities in terms of population sizes and selection coefficients, not in terms of the rather
mysterious M (p) and V(p). It remains to determine M (p) and V(p) in the particular case we are
interested in. The case most easily solved is simple multiplicative selection, where was = (1 + )2,
waq, = 1+ s, and wy, = 1. The expectation of Ap is simply the deterministic change in Ap, since
this is the process at work among the zygotes before sampling occurs, and sampling does not after
the gene frequency on average. Then from (II-42) we have

sp(1 —p)

M(p) = E(Ap) = T

(VII-83)
As for V(p), it is the mean of (Ap)2. This latter is the sum of the variance of Ap and the square of
its expectation. Now the variance comes entirely from the sampling. As we mentioned, the variance
is not the same as what we would get by sampling 2NV gametes from a pool with frequency p. For
one thing we are sampling after selection, when the gene frequency has changed a bit. For another,
there may be a lack of independence between the two genes sampled in one individual. The first
effect is small if E(Ap) is small, which we have to assume to justify the diffusion approach. One
can also show rather easily from (VII-68) that in the case of multiplicative fitnesses there is still
independence of the presence or absence of A in the two genes of an individual. For other patterns
of selection this is not true, but assuming it will give a good approximation as long as selection
coefficients are small.
The upshot of this is that

V(p) ~ p(1—p)/2N + M*(p), (VII-84)

but since M?(p) contains an s? and we are assuming s is small we will ignore this term. Then

V(p) ~ p(1—p)/2N. (VII-85)
We also approximate (VII-83) by
M(p) ~ sp(1-p), (VII-86)
since s is assumed small. Then for (VII-83) we have
2M(y)/V(y) ~ 4Ns. (VII-87)
Now it is easy to evaluate the fixation probability from (VII-81) and (VII-82). It turns out to be
1— 674Nsp
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Table 7.5: Comparison of exact fixation probabilities with diffusion approximation.
Multiplicative selection. N = 10.

s =0.01 s=0.1
P exact U(p) approx. P exact U(p) approx.
0.05 0.06002 0.06006 0.05 0.17873 0.18465
0.1 0.11885 0.11894 0.1 0.32602 0.33583
0.2 0.23305 0.23321 0.2 0.54756 0.56095
0.3 0.34279 0.34300 0.3 0.69830 0.71184
0.4 0.44825 0.44848 0.4 0.80100 0.81299
0.5 0.54959 0.54983 0.5 0.87107 0.88080
0.7 0.74056 0.74077 0.7 0.95166 0.95671

NUMERICAL EXAMPLES. How good is the diffusion approximation in this case? Table 7.5
shows a comparison between exact numerical solution of (VII-70) and the diffusion approximation
when N = 10 and with two values of s. When s = 0.01 the approximation is remarkably good.
Considering that N is quite small, this is an amazing performance. When s = 0.1 the approximation
is not doing quite so well, but is still far better than we have any reason to expect. This is a fairly
general property of the diffusion approximation. Even though it assumes that the gene frequency
changes in myriad small jiggles, it does a remarkably good job of predicting what will happen even
when the gene frequency is actually changing by a few large jumps. It is possible to improve the
accuracy of the approximation by even more elaborate efforts, but this seems a waste of time since
the biological conclusions are in no way altered by this increase in accuracy.

Let us turn to examining the implications of (VII-88). A question which immediately arises
is: when will natural selection make any substantial impact on the probability that a new allele
fixes? Figure 7.4 shows the fixation probability U(p) plotted as a function of p for various values
of 4Ns. When 4N's = 0, the fixation probability is the same as the initial gene frequency. We saw
this result in section VI.4 above. It can also be obtained from (VII-88) by taking the limit of U(p)
as s — 0. When s = 0 both the numerator and denominator of (VII-88) are zero, but we can use
L’Hépital’s Theorem to obtain the limit

4Np
U — — VII-
(p) = N P ( 89)

which is the same as the exact result obtained from the Wright-Fisher model. When 4Ns > 0, the
fixation probability is increased by natural selection (which is hardly surprising). When 4Ns = 0.01
there is a rather small effect of selection, but when 4Ns = 100 it is dramatic. We can tentatively
conclude that 4Ns = 1 is a reasonable value at which to recognize selection as beginning to have
a significant impact. Although our experience is limited to one case as yet, we make so bold as
to state this as a general principle. It is interesting to examine how many individuals are dying
as a result of natural selection when 4Ns = 1. If the population consisted entirely of the less fit
genotype, we note that its fitness is a fraction 1/(1 + s)? =~ 1 — 2s of the fitness of the most fit
genotype. We can say rather hazily that the amount of selection 4Ns = 1 (so that s = 1/(4N))
would be equivalent to the death or sterility, from genetic causes, of 2sN = 2(1/(4N))N = 1/2 of
an individual per generation. So we can state our Principle:
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Figure 7.4: Probability of fixation of an allele with multiplicative fitnesses. Results from
the diffusion approximation for various values of 4Ns and p are shown. The values of
4N s are shown next to the nine curves, except for the diagonal, which has 4Ns = 0.

Natural selection will be effective in the face of genetic
drift if at least one individual every two generations dies
or becomes sterile from genetic causes.

This is hardly a precise quantitative rule but certainly can be used to give us a rapid idea
of whether selection will be effective. If we knew, for example, that there were 10,000 animals
in a population, and that a certain locus has selection coefficients of about 0.01, then simply by
observing that 4Ns = 400 we know that genetic drift will be so weak an effect that natural selection
would make a dramatic impact on gene frequencies in the long run. This strength of selection could
be thought of as being equivalent to the death of (25)N = (0.02)(10,000) = 200 individuals per
generation if all were of the inferior genotype.

DEPARTURES FROM THE WRIGHT-FISHER MODEL: EFFECTIVE POPULA-
TION NUMBER. We have been using here the population size N as a measure of the strength
of genetic drift. It is natural to ask how things are altered if we do not have a pure Wright-Fisher
model of population reproduction. Suppose that any or all of the forces discussed in Chapter VII
alter the effective population size (for example unequal numbers of the two sexes, prohibition of
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selfing, monogamy, varying population size, variability of offspring number, or fitness variation at
nearby genetic loci). Can we correct for this in some way? The key to coping with these complex-
ities is to notice that in the diffusion approximation, the population size enters in only through
its effect in determining the variance of gene frequencies introduced in each generation by genetic
drift. The relevant quantity is V(p), the relevant equation is (VII-84). Now recall that when we
discussed effective population number, we said that there is usually little distinction between the
inbreeding effective number and the variance effective number. The latter is simply that value N,
which gives the correct variance of gene frequencies created by genetic drift in one generation when
we predict the variance to be p(1 — p)/(2N,). In most of the cases we treated, the two different
definitions of the effective number have the same value, so that we can employ the effective numbers
computed from inbreeding considerations to predict variance of gene frequencies. The result of this
chain of reasoning is straight-forward: usually we can simply substitute the effective population
size N, for N and obtain as our criterion for the effectiveness of natural selection 4N.s > 1. Thus
in our hypothetical animal population of 10,000 individuals, if departures from a Wright-Fisher
model reduced the effective population size to 3,000 individuals, we still have 4N.s = 120 which
implies that selection will be effective, though not quite so effective as would be implied by our
computation that it is as if 200 individuals per generation are dying or being made sterile as a
result of natural selection.

SELECTION AGAINST A MUTANT. We may also inquire into the effects of selection
against an allele on its chances of fixation. Figure 7.4 shows several such cases. It is clear that as
4N s falls below —1 selection starts to have a substantially reduced chance of fixation, reduced far
below the initial frequency of the allele. For example an allele with an initial frequency of p = 0.5
and 4N's = —100 has only a chance of 1.92875 x 10~22 of being fixed! Clearly the rule that 4Ns > 1
implies strong effects of selection works in this context as well: if s is negative we need only focus
our attention on the other allele, which will be favored by selection, and ask when natural selection
makes that allele likely to fix, which must also tell us when our original allele is likely to be lost.

ACCURACY OF THE BRANCHING PROCESS APPROXIMATION. Of course, even
if natural selection is predicted to be effective, genetic drift will still have an effect. This effect
will loom larger the lower is the initial frequency of the allele. In Figure 7.4 all curves U(p) drop
towards zero as p approaches zero. It is relevant to ask whether this behavior is essentially that
found in the branching process approximation. Does a single new mutant have a probability of
fixation near 2s, or has the finiteness of IV dramatically altered the prospects for fixation? For what
size populations will we obtain roughly correct results from the branching process approximation?
To check this we can look at formula (VII-88) when p = 1/(2N), so that we start with only one
copy of the allele in the population. Then

1 1—e2

When 4Ns is large, the denominator is nearly 1, even for 4Ns as small as 10. Then

1
U (W) ~ 1—e2, (VII-91)
But since e™® ~ 1 — x for small x, we have
1
U <ﬁ> ~ 2s. (VII-92)
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So we can obtain this approximation to the branching process result by assuming 4Ns > 10 and
s small. In fact a comparison of the fixation probabilities obtained from (VII-91) with the exact
results of the branching process in Table 7.3 shows that it is an even better approximation to the
branching process results than is (VII-92). So the branching process becomes relevant for large
values of N, but only requires 4Ns to be 10 or more. Note that the branching process predicts
no chance of fixation at all when s is negative. This is certainly close to the diffusion equation
prediction if 4Ns < —10, as Figure 7.4 will testify.

WEAK SELECTION: AN INTUITIVE RESULT. The process of interaction of genetic drift
with natural selection must surely seem the hardest process to intuit in population genetics. There
is, however, a case where we can get some insight. This is when 4Ns is small, so that selection
has relatively little effect. If we expand the e=*V*P in the numerator of (VII-86) and the e~*V¢ in
the denominator both as power series in 4Ns, and take terms up to (4Ns)?, dropping the rest by
assumed smallness of 4Ns, we get

1—(1—4Nsp+ (8Nsp)?)

Ub) = 90 iNs+ 8N (VIL93)

~ p(1—-2Nsp)/(1 —2Ns).

We can approximate this when 4N's (and hence 2N s) is small by
U(p) ~ p+2Nsp(1 —p). (VII-94)

This result can be justified by intuition in the following way. Clearly the first term, p, is simply the
fixation probability when there is only genetic drift. The second term is 2N times (approximately)
the expected change of gene frequency by natural selection in one generation, starting at the initial
gene frequency. It is as if genetic drift is acting by first allowing the gene frequency to change
deterministically by selection for about 2N generations, then suddenly fixing the population in a
burst of activity.

Note that the expected change of gene frequency by selection is approximately sp(1 —p), where
p is the current gene frequency in the population. This indicates that the change of gene frequency
in any population is expected to be proportional to the heterozygosity in that population. Now if
natural selection is having little effect on the gene frequencies, we expect heterozygosity to decline by
a fraction 1/(2NNV) every generation as a result of genetic drift. Since there should be (1 —1/(2N))
as much heterozygosity around after one generation of drift, there should be a correspondingly
smaller amount of change of gene frequencies, averaged over all possible replicates of the process.
The total response to natural selection should then be

1+{1 ! + (1 ! 2+
2N 2N

The quantity in brackets is a simple geometric series which is easily summed, and we get 2N sp(1—p).
That will be the average over all replicates, of the amount by which selection changes the gene
frequency. But recall from Section VI.4 that the average gene frequency over all replicates must
be the fixation probability, if the average is taken after the process of genetic drift is complete. So
the final result is that the fixation probability is increased by 2N sp(1 — p) above the initial gene

sp(1 —p)
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frequency if drift and selection essentially occur independently of one another. This is precisely the
result of equation (VII-93).

So we can think of genetic drift as simply having the effect of eroding the stock of genetic
variability on which natural selection acts, with the resulting total amount of natural selection
being equivalent to 2N generations of selection. Although this principle is valid only for weak
selection (4Ns < 1) it can be used to obtain useful approximations in many complicated cases in
which the diffusion equations cannot be solved (e.g. with multiple alleles or multiple loci).

One interesting subcase is when we have only a single mutant gene initially. When p = 1/(2N),
(VII-94) gives

U (%) ~ s+ %, (VII-95)
ignoring terms in s/N, on the assumption that these will be small. Looking back at Table 7.3 we
can see that the fixation probability is, when p = 1/(2N), being increased by s over the initial
frequency by the presence of selection. Once again we get the impression that, with weak selection,
genetic drift and selection are working roughly independently of one another. Of course, (VII-95) is

valid only when 4N s is small. Otherwise we get a better approximation from the branching process
result U(1/(2N)) ~ 2s.

DOMINANCE, RECESSIVENESS, AND OVERDOMINANCE. The case of multiplica-
tive selection has provided us with the diffusion approximation (VII-88), which we have seen gives us
some insight as to the domains of validity of other approximations. When we introduce dominance
into the fitness scheme the result is less simple. Suppose that the fitnesses are

AA Aa aa
1+s 1+hs 1

so that h measures the dominance of A over a. By dropping terms in s? on the assumption that
these are far smaller than terms in s, we find that

M(p) ~ sp(1—p)lp(1—2h)+ h] (VII-96)

and when we use V(p) ~ p(1 — p)/(2N,), we find that after a bit of algebra we get from (VII-82)
using ¢ = 0,

G(z) = exp[—2N.s(1 — 2h)z® — 4N, sha] (VII-97)

This function has no explicit integral, so we must use numerical integration methods to obtain the
integrals in equation (VII-81). Although we have no explicit solution for the function U(p) we can
investigate its numerical value in any specific case.

When h >~ 1 so that the mutant allele A is dominant, and when p is small, then particularly when
4N,.s is large there is little difference from the multiplicative case. This reflects the importance of
the early generations, when all that matters for the process of loss of the allele is the difference hs
in fitness between Aa and aa, as the AA genotype is hardly ever present. To good approximation
the fixation probability per copy will be twice the effective selection coefficient so that

U(p) ~ 2hs x 2Np = 4Nhsp (VII-98)

for small p and large 4N.hs. For larger initial values of p the numerical values of U(p) obtained
reflect the lessening of the strength of selection as the gene frequency rises. But since we are
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primarily interested in small initial values of p, the biological significance of the result can be most
succinctly stated by saying that new mutants are effectively “screened” by the population on the
basis of their fitness in heterozygotes.

Recessiveness.  When h = 0 matters are more complicated. A new rare recessive allele will
experience very little selection. Only when it rises to a high enough frequency as a result of genetic
drift will selection begin to operate. We should expect that such an allele will have a very low
chance of fixation. These expectations are borne out by the numerical evaluation of (VII-81). A
useful approximation can be developed for s > 0 and 4N.s large in the recessive case:

1 2s
U <W> ~ N (VII-99)

provided N, >~ N.

As N becomes large, this probability declines. For example, when s = 0.01 then a dominant
allele will have fixation probability near 0.02 for any large value of N. But when the allele is
recessive with the same value of s, the fixation probability is approximately 0.0025 when N = 1000
but drops to 0.00008 when N = 10%. Clearly a totally recessive allele has very little chance of
surviving long enough to drift to a high enough frequency that selection becomes effective in fixing
it. If the allele is not completely recessive, the effect of the allele in the heterozygote becomes a
far more significant force determining its chance of fixation, and for a single initial mutant formula
(VII-98) will be appropriate.

Overdominance. When the locus is overdominant, so that A > 1, the fixation probability
must be obtained numerically but the results corresponds very well with intuition. Figure 7.5 shows
fixation probabilities for an overdominant allele in which A = 2 for three values of 4N.s. This is
a case in which the equilibrium gene frequency of A would be 2/3 if the population were infinite.
The pattern of curves in the Figure is superficially complex but actually reflects a simple process.
As 4N,.s rises, the curves become more nearly flat straight lines running horizontally. Both alleles
are being favored when rare. Once either allele reaches a high enough frequency, then selection
carries it in deterministic fashion to its equilibrium frequency. There it stays for a long time, its
excursions of frequency as a result of drift being counterbalanced by natural selection which pulls
the gene frequency back towards the equilibrium value. If 4N.s is very large, the time spent near
the equilibrium may be very large, even reaching geologically significant lengths of time. But sooner
or later it must either fix or be lost if we have no ongoing mutation in the model reintroducing lost
alleles. When the fixation or loss does occur as a result of an unusually strong run of changes in
one or the other direction by genetic drift, there will clearly be little “memory” in this process for
the original gene frequency p. Once an allele reaches its equilibrium region, the chances of fixation
after that scarcely depend on its original gene frequency. This is the reason for the near constancy
of U(p) over a wide range of values of p when 4N,s is large. The dip of the U(p) curve towards
zero at the left end, and its rise towards 1 at the right, reflect the fact that the rarer of the alleles
has a good chance of being lost by genetic drift before selection can pull the gene frequency to its
pseudo-equilibrium. The chance of ultimate fixation of an allele such as A when very rare initially
is less than its heterozygote fitness would indicate. In the case of the Figure it is less than 4s, for
that only allows for the loss of the allele when initially rare; it may also become lost later after
staying for some time near its equilibrium frequency.
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Figure 7.5: Fixation probabilities at an overdominant locus. Fitnesses of AA, Aa, and
aa are: 1+ s: 14 2s: 1. The values of 4N s are shown.

HISTORY AND REFERENCES. The diffusion approach to examining evolution in finite
populations was pioneered by Fisher (1922), but his equations contained an error. This was cor-
rected, and the approach put on a sounder footing by Sewall Wright (1931) in a classic paper.
Both papers were largely concerned with equilibrium distributions, which we discuss in the next
section. Fisher (1930) did, however, concern himself with an equilibrium under a constant flux of
mutations. This amounts to consideration of fixation probabilities, since it asks what will be the
rate at which new mutations destined to be fixed occur, and this should be near 2NuU (1/(2N)).
Both Fisher (1930) and Wright (1931) obtained 2s/(1 — e~*V*) for the probability of fixation in
the multiplicative case. But Fisher was primarily interested in the gene frequencies to be expected
under such a flux of mutations. Wright (1938, 1942) treated cases of irreversible mutation and
obtained an approximation to the probability of fixation of an advantageous recessive allele. Hal-
dane (1927) had already obtained by branching process methods a similar approximation differing
only by a factor of v/2. Motoo Kimura obtained the present formula (VII-99) from a diffusion
equation (1957). In 1962 he gave a solution to the general Kolmogorov Backward Equation for
fixation probabilities (VII-81, VII-82) which is the basis for most contemporary work on fixation
probabilities. In particular, Alan Robertson (1960) has used Kimura’s results, as well as stating
equation (VII-94), in an imaginative application of this approach to finding systems of artificial
selection which maximize the probability of fixation of genes favorable to livestock productivity.

We will defer to the next section further discussion of the history of the diffusion methods, since
the bulk of early work with these was concerned not with fixation probabilities but with equilibrium
distributions of gene frequencies.
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VII.9 Diffusion Approximation to Equilibrium Distributions.

INTRODUCTION. When mutation continually re-introduces alleles into a population, or when
migration continually brings them in from a population which itself remains unfixed, then there
is no such thing as a probability of fixation. The very concept of fixation then exists as only a
temporary state: a population may arrive at a state of fixation for one allele, but sooner or later
new mutations or immigration will re-introduce other alleles and thus move the population out of
its state of fixation. In these cases we are not dealing with the evolution of gene frequencies as a
temporary phase which ends in a state of fixation. Instead gene frequencies continue changing back
and forth indefinitely. One naturally wants to know what sort of gene frequencies will be found
in a population under such circumstances. Sometimes it will be reasonable to assume that the
population has existed at approximately its present size, under more or less the same environment,
for a long enough time that we may consider it to be in equilibrium for most alleles. Of course this
equilibrium assumption has its risks: the desk on which this is written would have been under a
mile of ice only 500 human generations ago!

Nevertheless the equilibrium distribution of gene frequencies is of great interest and provides
much information. We shall first briefly examine the treatment by means of a Wright-Fisher model.
As in the case of fixation probabilities, this yields only numerical solutions at best. But it is useful
to help clarify the logic of the underlying process. As before, the treatment here will be confined
to the case of two alleles in a diploid population.

THE WRIGHT-FISHER MODEL. We have already defined the diploid Wright-Fisher model
with selection in the previous section. When mutation and migration are added in, nothing really
changes. If mutation occurs in the gamete or in the zygote stage of the life cycle, and if natural
selection occurs at the viability stage of the life cycle, and before N adults are randomly sampled to
survive density-dependent population size regulation, then we can compute transition probabilities
in much the same way as before. The transition probability P(j|i), the probability that there will
be j copies of the A allele next generation if there are i now among the 2N genes in adults, is
obtained by the following process:

1. Compute the gene frequency p = i/(2N) in the adults of the current generation.

2. The proportions of A and a among the infinite number of gametes produced by these adults
will then be p and 1 — p.

3. If a fraction u of the A’s mutate to a and a fraction v of the a’s mutate to A, after mutation
the gamete frequency of A will be p’ = (1 —u)p + v(1 — p).

4. If a fraction m of the gametes are replaced by immigrant gametes whose gene frequency of
A is fixed at pj, then after immigration the gamete frequency of A gametes is altered to
p'=(1-m)p+mpr.

5. Compute the genotype frequency among newly fertilized zygotes by assuming random com-
bination of gametes, producing Hardy-Weinberg proportions at the new gene frequency p’.

6. Now apply the natural selection. Multiple the frequency of each genotype by its fitness, then
divide each by the mean fitness. This gives the proportions of the genotypes among survivors
of natural selection. Suppose that these are P, (), and R respectively for AA, Aa, and aa.
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7. The probability that among the N surviving adult zygotes there are k AA, ¢ Aa, and N —k—¢
aa is the trinomial sampling probability
N!

E' OV (N —k—1)

k N pN—k—/{
PPQ'R

8. To find the probability that there are j A genes among the N adults, sum these probabilities
over all combinations of k£ and ¢ that have 2k + ¢ = j.

When natural selection is multiplicative it is not hard to show that the process of sampling N
adults is exactly the same as sampling 2/NV genes. When selection is not multiplicative, this is only
approximately true, but it is a better approximation the weaker is the natural selection (for after
all, no selection at all is a case of multiplicative fitnesses). We will make use of this later, as we did
in the previous section.

These prescriptions for computing transition probabilities assume one particular kind of life
cycle. Similar computations can be made with other life cycles, although in some of these (particu-
larly with fertility differences among genotypes) we will no longer be able to summarize this whole
Markov process by simply looking at the gene frequencies i/(2N) and j/(2N) in adults. In these
other cases the probability of a given genetic composition in the next generation may depend not
only on how many A genes there are but on whether they are concentrated in AA homozygotes or
spread among Aa heterozygotes. This makes things more difficult. It is also possible to compute
transition probabilities for multiple-allele Wright models, or even for multiple-locus Wright-Fisher
models. If overlapping generations are preferred, it is even easier to compute the transition proba-
bilities of a Moran model (see section VI.6), for there are fewer of them as only one individual dies
during any time interval.

Once we have the transition probabilities, the equilibrium distribution of gene frequencies (ac-
tually, of gene numbers) is given by the solution of

2N
fi = > £P3l), j = 0,1,.2N (VII-100)
1 =0

where f; is the equilibrium probability that there are ¢ A genes in the population. If we let a
population evolve long enough that it has lost all effects of its initial gene frequency, then f; is
the probability that its gene frequency is i/(2IN). There are actually only 2N equations in 2N + 1
unknowns (the f;) in equation (VII-100), as one equation is redundant. But once we add the
requirement that the f; must sum to one, the equations are determined and can be solved. At
least, can be solve numerically.

The problem is that no case of any biological interest has an explicit algebraic solution. The
set of equations also can be solved numerically in cases with rather small population sizes. When
N = 10, there are 21 equations in 21 unknowns. When N = 50, 101 equations in 101 unknowns.
Present-day computers can solve these equations for values of IV in the thousands. If natural
selection occurs by fertility differences, the cases which can be treated are even smaller, for then
there are many more states of the process which must be distinguished for a given N. When
N =10, there are 66 different combinations of genotype frequencies possible, so that with fertility
selection there will be 66 equations in 66 unknowns. When the states of the process correspond to
genotype frequencies rather than gene frequencies, it will be difficult to rapidly solve numerically
cases larger than N = 14.
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These numerical calculations are a useful check on the accuracy of approximations, but it is
approximations which will provide us with insight into the interaction of evolutionary forces.

THE DIFFUSION APPROXIMATION. Fortunately, a good diffusion approximation can be
developed for the equilibrium distribution. We will only sketch the derivation here, as it is fairly
tedious. It uses much the same methods as in the previous section. We start from a version of
the exact equation (VII-100). We replace f; by a function f(p) of the gene frequency, and replace
P(j]i) by the probability P,(Ap) of the change Ap in gene frequency given that the gene frequency
before the change is p. So

fp) = D f(p— Ap)Ppap(Ap) (VII-101)
Ap

where the sum is over all changes in gene frequency which could have resulted in the current gene
frequency p. This is a set of equations like (VII-100). Now we approximate f(p) by a continuous
density function ¢(p). Since ¢(p) must be multiplied by the width of the gene frequency intervals
to obtain the probability of being in the particular interval around p, and since the intervals are of
width Ap, we replace f(p) by ¢(p)Ap. So

S(p)Ap ~ Y ¢(p — Ap)Pp_np(Ap). (VII-102)
Ap

We approximate each of the functions ¢(p — Ap) and P,_ap(Ap) by the first three terms of a Taylor
series expansion around p, so that

(Ap)? (Ap)?

o) Ap = Y |0~ A0 o) + S )| | P(d) - P(An) +
Ap

PJ(Ap)| Ap,

(VII-103)
where primes denote derivatives with respect to p. Collecting terms, ignoring those containing
(Ap)3 or (Ap)* and making use as before of

M@p) = E(Ap) = ;Pp(Ap)
’ (VII-104)
Vip) = E((Ap)?) = AZsza(Ap)(Ap)2
and
> B(Ap) =1 (VII-105)
Ap
as well as of
M'(p) = dM(p)/dp = AZP,Q(AP)AP
Vilp) = dV(p)/dp = > P,(Ap)(Ap)? (VII-106)
Ap

V'(p) = &V(p)/dp* = Azp];/(Ap)(Ap)2
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we finally obtain after some algebra

d 1 d?

0 ~ [M(p)é(p)] + 2dp?

% [V (p)o(p)] (VII-107)

This is known as the Kolmogorov Forward Equation. The term “forward” comes from equation
(VII-102) where as one moves from the right to the left-hand side of the equation one moves forward
in time.

The solution of this equation to obtain ¢ in terms of M and V' is a bit obscure. We can integrate
(VII-107) once with respect to p to obtain

C = ~ME)S) + 57V, (VIL108)
The constant C' is then found by imposition of a rather mysterious “zero probability flux” condition.
This step (for which interested readers may consult Crow and Kimura, 1970, section 8.3 or Ewens,
2004, section 4.5) rules out the possibility that the density of gene frequencies on the (0,1) interval
is maintained by a steady creation of mass at 0 and its flow across the interval and ultimate
destruction at 1, or the reverse. In effect, it is a “conservation of matter” condition requiring that
populations not be created or lost at the endpoints 0 or 1 of the gene frequency scale. C' turns out
to be 0.

With that done, equation (VII-108) is a simple, first-order linear differential equation whose

solution turns out to be

o(p) =

exp [2 / " M)V (@) da:] . (VII-109)
V(p) c

The constant K is simply a scaling parameter that is fixed by the requirement that ¢, being a
density function, has area 1 between p = 0 and p = 1. The lower limit of integration ¢ can be taken
to be anything reasonable, as it is in effect part of the constant K.

The remainder of this section will be concerned with finding M (p) and V(p) in a number of
cases of biological interest, using (VII-109) to find ¢(p), and examining the shape of ¢(p) to gain
some insight into the simultaneous operation of multiple evolutionary forces. Solution of (VII-109)
is relatively easy once M (p) and V (p) are known, as it involves only one integration. Readers who
are totally overwhelmed by differential equations may be able to resume following the narrative
here.

MUTATION AND DRIFT. we have two alleles with probability u of changing by mutation to
a a, and probability v that each a will mutate to an it A, then from the consideration in chapter
III we find that the deterministic change in gene frequency is

pry1 = (I—w)p+v (1 —py) (VII-110)

so that
M(p) = E(Ap) = —up+v(1-p) (VII-111)

and the quantity V(p) = E((Ap)?) is also determined exactly, but we can approximate it by

_ p(1—p)
V(p) ~ TN (VII-112)
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This involves (1) ignoring a term involving M?(p) on the grounds that squares and products of
mutation rates such as u?, v?, and uv may safely be ignored in comparison to quantities like u and
1/Ne, and (2) ignoring the fact that the p in the right side of (VII-112) should in reality be p + dp,
on the grounds that since u is small we may ignore terms like u/N..

Now the computation of ¢ goes through straightforwardly:

2‘];4(:;) N _Qxlgirzﬁz;i) = _14iv =+ 4]\;6”7 (VIE-113)
so that

/ 21%5:3;) do = ANew In(l—2) + 4Nev Inz (VII-114)
and

#p) = gy P UNeuln(l - p) + 4Nvlnp (VIL-115)

where we have absorbed a number of inconvenient constants into X which we shall leave undeter-
mined. The final equilibrium density is

¢(p) = Kp*Ner=H(1 —p)Nent (VII-116)

A set of curves for various values of 4N u and 4N,v are given in Figures 7.6 and 7.7. These will
allow us to obtain some insight into the behavior of mutation when interacting with genetic drift.

Numerical examples.  Examine first Figure 7.6, where 4N.u = 4N v (so that mutation is
pressing the gene frequency toward an equilibrium at p = 0.5). When 4N, u is large, the equilibrium
density of gene frequencies is tightly clustered around the deterministic equilibrium. Clearly in these
cases genetic drift can hardly ever move a population’s gene frequency far from equilibrium before
recurrent mutation pushes it back. When 4N, u is small, the equilibrium distribution is U-shaped,
with most of the mass concentrated near p = 0 or p = 1, with occasional movement from one
tail of the curve to the other when a new mutant succeeds in spreading through the population.
Remember that we are approximating a discrete histogram by a continuous density function, so
that although the diffusion approximation never predicts a frequency exactly at 0 or 1, it has a
certain fraction of the area under the curve so close to 0 or 1 that this proportion of replicates (or of
generations) would be predicted to have gene frequency 0 or 1. Note that when 4N.u = 4N.v = 1,
the equilibrium distribution of gene frequencies is a flat rectangle with neither peak nor tails. This
lends weight to our assertion that 4N.u = 1 is a rough dividing line between cases in which genetic
drift overpowers mutation and cases in which mutation overpowers genetic drift.

Figure 7.7 shows cases in which 3u = v, so that the deterministic equilibrium in an infinite
population would live at v/(u+v) = 0.75. Again when 4N u and 4N.v are large the gene frequencies
lie near their deterministic mutational equilibrium. When 4N,u and 4N v are both small, we again
find a U-shaped distribution, only now with tails of unequal size, so that the average gene frequency
over generations (or over replicates) will not be 0.5 (in fact it will be 0.75). We find that 4N.u = 1
and 4N.v = 1 are the points at which the tails of the distribution disappear. But now these are
not both true at the same time, as witness the case where 4N,u = 0.5 and 4N v = 1.5.

In fact, equation (VII-116) describes a well-known statistical distribution, the Beta distribution,
whose properties were worked out long ago. The expectation of the distribution, which will also be
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Figure 7.6: Equilibrium distribution of gene frequencies under mutation and genetic
drift. In this case 4N.u = 4N.v. The values of 4N u are shown next to the curves.
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Figure 7.7: Equilibrium distribution of gene frequencies under mutation and genetic
drift. In this case 4N.u = 3(4N.v). The values of 4N.u are shown next to the curves.
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its mean p over many independent replicates, is precisely

AN, v v
E(p) — _ VIL-117
() AN.u+4No  u+ov ( )

which is precisely the mutational equilibrium gene frequency. This established that even when
genetic drift carries the gene frequency far from its equilibrium value, the average gene frequency
over generations or over replicates will still be the same. The variance of the equilibrium gene
frequency distribution is also well-known. It turns out to be

(4N u)(4Nev)
= II-11
Var(p) = N+ AN.0)2(ANyu + N0 £ 1) (VII-118)
which can also be written ~1— 5
Var(p) = — PP (VII-119)

14+ 4Neu + 4Nv

where p is the mean E(p). Since p(1 — p) would be the variance of a set of populations which are all
fixed, a fraction p of them for allele A, this equation for the variance is consistent with out picture
that populations will be at or near fixation when both 4N.u and 4N v are small and near p when
both are large.

It can be seen that the results are very consistent with those that we obtained in section VII.2
by looking at the probabilities of identity of two alleles. This is far more than a coincidence: the
two-allele model which gives equation (VII-8) is essentially identical to the present model. There is
a close connection between probabilities of identity of alleles and variances of gene frequencies, so
that we expect (and find) a good consistency between the variance of the gene frequency distribution
and the probability of identity.

MIGRATION AND DRIFT. Migration could serve to maintain an equilibrium if migrants
came from a mainland into an island, the gene frequencies on the mainland being (say) @ and 1—Q
and never changing. In this case the change in gene frequency is easily computed:

M(p) = E(Ap) = mQ@+(1-m)p —p = m(Q—p). (VII-120)
We also approximate the function V(p) in this case, which will be valid if m is small and N large:

p(l —p)

V(p) =~ N,

(VII-121)
While it would be easy to go on to compute the equilibrium distribution from this, a shortcut is
available. Like (VII-111), the formula for M (p) is a simple linear function of p. In fact, by putting
it into the form

M(p) = mQ — mQ+m(1-Q)p = -m(1-Q)p + mQ1-p) (VII-122)

we can see that it is really the same as (VII-111), provided that we substitute m@ for v and
m(1— Q) or u. The V(p) function is also exactly the same as in that case. So we immediately know
that the equilibrium distribution of gene frequencies is exactly the same as in the case of mutation
vs. drift, save only that we make the substitution of 4N.m@ for 4N.v and 4N.m(1 — Q) for 4N u.

269



Thus there is a fairly exact analogy of migration with mutation, at least when a single-locus island
model is employed. The result is

¢)(p) _ Kp4NemQ—1 (1 _p)4Nem(1—Q)—1’ (VII—123)

where K is, as usual, the constant that enables the area under the curve to be 1. Drawing directly
on the results of the previous case, we find the mean and the variance of the equilibrium gene
frequency to be:

AN mQ
E = = VII-124
(p) AN.mQ + 4N.m(1 — Q) @ ( )
and 51— )
p\lL—Dp
= — 7/ I1-12
Var (p) L aN.m (V 5)
where p = E(p) = @ as before. Note that we have perfect agreement of our results for the

mean and variance of gene frequency in the one-island model: (VII-124) is the same as (VII-30)
and (VII-125) is the same as (VII-39) in section VII.3 above.

In this case we can see the whole equilibrium distribution, not just the mean and variance. Its
general properties are of course the same as in the mutation case: when 4N.m is large, the island
gene frequency is near ), and when when 4N.m is small, the island gene frequency is near 0 or 1.
Figure 7.8 shows equilibrium distributions for a variety of values of 4N.m when @Q = 0.4.

SELECTION VERSUS DRIFT: A GENERAL FORMULA. When we have natural selec-
tion acting with two alleles and constant fitnesses, a relatively simple formula for the equilibrium
distribution can be derived. Of course, if only genetic drift and natural selection are acting, there
would be no equilibrium distribution, except in the extreme case where both homozygote genotypes
are lethal. Barring that, drift would sooner or later result in fixation of one or the other allele,
and the fixation probability calculations of the previous section would be more relevant than the
equilibrium distribution. But in reality mutation is never absent, and so it is of interest to add
mutation and see what equilibrium distribution is obtained in the presence of all three forces.

In section I1.10 we saw that there was a simple expression for the change of gene frequencies
under selection with two alleles, namely

p(1 —p) dw

Ap = —_—.
b 2w dp

(VII-126)

To compute the expectation of Ap, we must also take into account mutation. Alone, it would have
Ap = v— (u+v)p. (VII-127)

As we saw in Chapter I1I, we get a good approximation to the net result of selection and mutation by
simply summing these two formulas. This amounts to ignoring the fact that (if mutation precedes
selection) the change due to selection has to be calculated based on the gene frequencies after
mutation. It is a good approximation to ignore this if both selection coefficients and mutation rates
are sufficiently small that we can ignore their product. So we make use of

p(l—p)dw

M(p) = "% +v(1 —p) — up. (VII-128)
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Figure 7.8: Equilibrium gene frequency distributions in a balance between migration
and genetic drift, when there is a one-island model with gene frequency 0.4 on the

continent. The values of 4N.m are shown next to the curves.

As in the previous cases we discussed, we also ignore the slight effects of selection and mutation on

E((Ap)?) and use

_ p(l—p)
Vip) = T\fe

Now we get easily
M(z)  2N.dw 4N v 4N u

2 = .
V(z) w dx x 1—x

The derivative (1/w) dw/dz is the derivative of Inw, so

P M
2/ V((x)) dr = 2N.Inw + 4N.vlnp + 4Neuln(1l —p)
X

and we can plug this into equation (VII-109) and get the equilibrium distribution
¢(p) — Kp4Nev—1 (1 _p)4Neu—1 ’LDQNe,
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(with K as usual the constant that enables the area under the curve to be 1). Keep in mind that
w is itself a function of p. The effect of raising w to the 2IN-th power is to greatly exaggerate its
peaks and valleys, the more so the larger is N.. Thus the effect of a large population is to greatly
increase the height of the equilibrium distribution’s density function ¢(p) in the neighborhood of
the highest values of w and greatly decrease it elsewhere. Of course the mutation terms (the factors
of p and (1 — p) have much the same effect, except that they attract the equilibrium distribution
to the region of the mutational equilibrium. Which of these effects is more important will depend
on the relative sizes of mutation rates and selection coefficients.

We saw in the diffusion approach to fixation probabilities that the strength of natural selection
in the face of genetic drift depended essentially on one parameter, 4N.s. Formula (VII-132) does
not at first sight seem to show this, as the selection coefficients are part of the formula for w, while
N, is in its exponent. However the behavior is nearly the same if selection is not very strong. Take
for example the case of an advantageous recessive allele.

w = 1+ sp? (VII-133)
so that
w2Ne ~ (1 +8p2)2N€ (VII—134)
but if s is small ,
1+sp? ~ e (VII-135)
so that ,
w?Ne ~ @2Nesp (VII-136)

a formula that depends only on the product of the selection coefficient and the population size.
Other selection schemes will show similar behavior when selection is not very strong. This is the
case in the derivation of these equilibria, since in effect we take selection coefficients and mutation
rates very small while taking NV very large, in such a way that products like Ns and Nu remain
constant.

SOME NUMERICAL EXAMPLES OF SELECTION, MUTATION AND DRIFT.
With this general formula in hand it is easy to generate equilibrium distributions. In fact, it is
fairly easy to intuit the shape of the distributions without any calculation! One of the reasons of
looking at such distributions is to hone one’s intuition, and I hope that readers will make some
attempt to treat the examples in this section in that way.

Mutation versus selection. The first set of cases we will examine involves the equilibrium
between mutation and selection, where an allele is straightforwardly deleterious. We have mutation
at equal rates between the two alleles (u = v), and the selection scheme

AA Aa  aa
(1+s)? 1+s 1

Figure 7.9 shows the equilibrium densities for 16 different combinations of 4Ns and 4Nu.
Computations were done with N = 1000. When 4N s = 0.1, which is the bottom row of the Figure,
we see hardly any effect of selection. The distributions are nearly symmetrical around p = 0.5.
As 4Nwu increases the gene frequencies huddle more and more closely around their mutational
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equilibrium value. However there are some signs of asymmetry, particularly in the relative heights
of the two tails of the distribution when 4Nu = 0.1. When 4Ns = 1 we start to see more signs
of the effectiveness of selection. When 4Nw is small, the tails of the distribution are definitely
asymmetric: the gene frequency spends more time near zero than near one, and this must be due
to natural selection resisting genetic drift towards fixation but assisting genetic drift toward loss.
As 4Nwu increases, this asymmetry is still evident when 4Nu = 1, but disappears as 4Nu becomes
large since then mutation is a stronger force than selection, even from a deterministic point of view,
since u > s. When 4Ns is large (the top two rows of the Figure), selection effects are evident.
When 4Nw is small, selection creates a marked asymmetry in the sizes of the two tails of the
distribution, to the point where one tail becomes so small that it cannot be seen in our Figures.
When 4Nw is larger, there are few populations near fixation or loss. Most tend to cluster around
the equilibrium gene frequency, which in a deterministic analysis of this case is u/s.

The effects of population size can most easily be seen by moving from the lower left to the upper
right along the diagonal of this Figure. These are a series of cases in which u/s = 0.1, so that all
have the same deterministic equilibrium gene frequency. The distribution goes from a U-shaped
one which is nearly symmetric to a peak near the mutation-selection equilibrium. In the process
it goes from one influenced mainly by the mutation-drift balance to one influenced mainly by the
balance between selection and mutation. It is interesting to note that as NV is made small, mutation
becomes a more important force than selection in influencing the relative heights of the two tails of
the distribution. This is paradoxical: if 4Ns is becoming small, so is 4N u, so that there seems no
reason to expect mutation to become more important than selection. One resolution of the paradox
is to note that while selection is strongest when gene frequencies are intermediate, mutation is most
active when gene frequencies are extreme. Now as N is made small, genetic drift is becoming the
dominant evolutionary force. As it does, gene frequencies spend more time near 0 or 1 and less at
intermediate values, and it is this which makes mutation a more important determinant of gene
frequency than selection.

Balancing selection. The second set of examples is shown in Figure 7.10. These again involve
N = 1000, and u = v, but now the selection is symmetric overdominant selection with fitnesses

AA  Aa aa
1—s 1 1—s.

Again 16 combinations of 4Nu and 4N s are shown. Now the curves are always symmetric about
0.5, since this is the equilibrium value for both the selection and mutation processes. Once again,
there is little sign that selection is effective when 4N s is small. Now, however, when 4N's is large it
creates a peak near p = 0.5, for the effect of selection is to pull gene frequencies toward that value.
When 4Ns = 10 and 4Nu = 0.1, there is a peak in the center in addition to the tails near 0 and 1.
As 4Ns is increased with 4 Nu = 0.1, the peak in the center increases in size and the tails shrink in
size (although they may not be visible in the Figure, there still are tails on the distribution). This
results from the relatively small fraction of generations which a population is expected to spend in
the tails. Once or the other allele reaches fixation, then (if 4Nu = 0.1) we expect one new mutant
to occur every twenty generations. These mutants will be at a strong selective advantage when
rare. It will not be long before one of them becomes established in the the population, and the
gene frequency returns to 0.5. But once there, the large value of 4Ns means that it will stay in
that vicinity far longer than it stayed near zero.
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Figure 7.9: Equilibrium distribution of gene frequencies in a case of mutation with one
allele deleterious, in a finite population, for different values of 4Nwu and 4Ns. Explana-
tion is in text.

For larger values of 4Nwu and 4Ns, the two forces, selection and mutation, combine to create a
peak at p = 0.5, and the peak is higher the larger are these two quantities.

HISTORY AND REFERENCES. The diffusion approach to finding equilibrium distributions
of gene frequencies has a complex history. As already mentioned, R. A. Fisher (1922) was the first
to attempt it. He made a transformation of scale, y = sin~! /P, and argued that the distribution
of the quantity y would follow a particular differential equation, a variant of the heat equation of
physics. He treated a number of cases in this way, coming to this conclusion that selection must
nearly always overwhelm the effects of genetic drift, a conclusion valid for the parameter values he
assumed. Fisher had, however, an error in his logic. When Sewall Wright (1929¢, 1931) treated the
same phenomena by entirely different methods, it was discovered that there was a discrepancy in
these results, and the error was discovered. Wright’s methods differed from both Fisher’s and from
the ones we have used here. Wright was able to achieve an approximate solution of an integral
equation derived from (VII-100). He gave both formulas and figures for a large number of cases, and
an extensive discussion of their biological significance (extended and repeated many times elsewhere,
e.g. Wright (1932)). While Fisher’s priority may be argued, Wright’s presentation seems to have
had the predominant influence on subsequent papers, arriving at our formula (VII-132) as well as
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Figure 7.10: Equilibrium distributions of gene frequencies at an overdominant locus
in a finite population with mutation present, for different values of 4Nu and 4Ns.
Explanation is in text.

a multiple-allele generalization of it (1937).

In the meantime a formally different approach was under development by the great Russian
probabilist A. N. Kolmogorov. He had published (1931) the first comprehensive treatment of
diffusion processes, and arrived at the forward and backward equations cited above. These he
applied to population genetics almost immediately (1935, 1938). It was subsequent to this work
that Wright (1945) realized that his equilibrium distributions could be obtained from Kolmogorov’s
Forward Equation.

Later work. There is a large volume of work springing from these pioneering efforts, far
too much to cover in these pages, and too extensive to cite adequately. Much attention has been
focused on the transient behavior of diffusion approximations. The largest contributor has been
Motoo Kimura. He has found the rate of approach to fixation or loss as well as the distribution of
unfixed classes in two-allele cases with multiplicative selection (1955a), and also given the general
time-dependent solution for the distribution of gene frequencies at two alleles when there is no
mutation or selection (1955¢). Kimura has also presented (1956b) an exact solution for a three-
allele genetic drift diffusion process, and large-time asymptotic results for multiple alleles (1955b).
Together with Tomoko Ohta he has also obtained diffusion equations for time to fixation of a
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new mutant (1969a, b). Ewens (1963a) and Watterson (1962) had previously presented results
for the mean time to fixation. Nei (1968) has obtained information about the frequency of lethal
chromosomes from a diffusion approach.

Other major work on the time-dependent behavior of diffusion approximations which are on
their way to fixation has included Warren Ewens’s (1963b) derivation of the “sojourn time” of a
population at different gene frequencies, and Alan Robertson’s (1962) detailed examination of the
effect of overdominance in delaying fixation. Surprisingly, overdominance which has an extreme
equilibrium gene frequency in infinite populations often accelerates rather than retards fixation in
finite populations.

Infinite isoalleles model. Another line of work using diffusion approximations has involved
predicting the numbers and frequencies of alleles present in an infinite isoalleles model, and the
use of data from populations to test the adequacy of such a model. Ewens (1964) and Kimura and
Crow (1964b) treated the distribution of gene frequencies of neutral isoalleles, and Ewens (1972)
was able to construct a statistical test of the neutrality hypothesis by an ingenious conditioning
procedure. In particular, he showed that the parameter 4 Nu is best estimated from the number of
alleles present in a sample drawn from the population, with the relative frequencies of the alleles
in the sample adding nothing to the estimation! Unfortunately we rarely see either a truly isolated
population or an infinite-isoalleles type of mutation in real cases, so the test has only occasionally
been applied. Takeo Maruyama (1973, 1974) has found a different invariance in a two-allele model
with geographic structure: under a neutral model when the total heterozygosity over all local
populations is plotted against the average gene frequency over all local populations, the result is
a rectangular distribution, independent of the population sizes or migration rates. This intriguing
result cannot be extended to multiple alleles or to the infinite-isoalleles model.

Diffusion equations can also be used to treat random variation of selection coefficients, although
care must be taken. The literature on this subject involves a certain amount of controversy (Kimura,
1954; Jensen and Pollak, 1969; Ohta, 1972; Gillespie, 1973; Jensen, 1973; Karlin and Levikson, 1974;
Karlin and Lieberman, 1974).

Rigorization. In the midst of all of these various lines of work applying diffusion methods,
there have been a series of papers attempting to formalize the logical basis of the use of the diffusion
approximations and obtain estimates of the error involved. Feller seems to have been drawn into his
classical mathematical work on boundary conditions in diffusion approximations (1952, 1954) by
his experience in formalizing the diffusion approximation. Feller (1951) and Karlin and McGregor
(1964a) have taken the approach of showing that if we take a sequence of Wright-Fisher models (or
Moran models) with increasing values of N but with the same 4Nu and 4Ns, then an appropriately
transformed time scale the process of gene frequency change becomes a diffusion process (in which
gene frequency changes infinitely often in infinitely small jumps). Watterson (1962) has shown by
this approach that the presence of diploidy and of two sexes do not cause serious trouble for our
ability to approximate gene frequency change by a one-variable diffusion process involving only the
overall gene frequency. Norman (1975) has plugged a gap in Watterson’s proof. The limitation of all
of these papers has been that the reliance on taking limits as N — oo has introduced uncertainty
as to whether the approximation is good for any particular population size N. Reassurance is
available in a paper by Ethier and Norman (1977), who give bounds on the accuracy of the diffusion
approximation in cases of a balance between mutation and genetic drift.
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Many further references on diffusion approximations in population genetics may be found in
Ewens’s (2004) book, in Maruyama’s (1977) monograph, or in W.-H. Li’s (1977) reprinting of many
classic papers on diffusion approximations in population genetics.

VII.10 The Relative Strength of Evolutionary Forces

The rules presented in this chapter for deciding which evolutionary forces will prevail in determining
means and variances of gene frequencies, fixation probabilities, and equilibrium distributions, are
simple and fairly general. They involve the comparison of the quantities 4 N.u, 4N.m, and 4N,s
with each other and with 1. Each of the three evolutionary forces (mutation, migration, and
selection) will be important in the face of genetic drift when the corresponding quantity exceeds 1.

The understanding gained from there quantities can be widened if it is realized that we can
express them simply in terms of the relative rates at which the various processes change gene
frequency. Mutation changes gene frequencies by about u per generation. Migration changes
them by about m per generation. Selection changes gene frequencies by approximately s per
generation. Correspondingly, we may think of natural “time scales” on which these processes affect
gene frequencies. A substantial change in gene frequency will take 1/u generations if accomplished
by mutation, 1/m if by migration, and 1/s if by natural selection. This picture of evolutionary forces
is consistent with what we have covered in preceding chapters. The equilibrium gene frequency
maintained by mutation in the face of natural selection is about u/s. This may be thought of as the
amount of gene frequency that will accumulate by mutation during the time it takes for selection to
substantially reduce gene frequency. Similarly, our consideration of patches and clines in Chapter
IV persistently invoked the ratio m/s, which has a similar interpretation.

The rules obtained in this chapter involve a new force, random genetic drift. Its time scale
is less self-evident. Gene frequency changes in any one generation are about y/p(1 —p)/(2N) in
magnitude. But to some extent they cancel each other, so we cannot take take /1/(8N) as a
measure of their size. (The 8 comes from the fact that p(1 — p) is near 1/4 for a wide range of
values of p). In fact, the time scale for genetic drift is about 4N, generations. A new mutant takes
an average of about that many generations to complete fixation if it is destined to be fixed, and in
4N, generations over 85% of a population’s initial heterozygosity is expected to be lost by genetic
drift. Thus, if we ask how far genetic drift will be able to change gene frequency during a process of
(say) mutation, it will be substantial only if 1/(4N,) > u, that is to say, if 4N.u < 1. For migration
we must compare 1/(4N,) to m, getting 4N.m < 1, and for natural selection we compare 1/(4N,)
to s, getting as our condition 4N.s < 1, Thus the rules involving genetic drift are consistent with
those involving only the deterministic forces, provided that we take the time scale of genetic drift
to be about 4N, generations.

We have encountered only a few exceptions to this picture. When an allele is rare and completely
recessive, the effective amount of selection acting on it is very small, as homozygotes are rarely
formed. So the amount of selection is far less than simple consideration of the selection coefficient
s would suggest. This considerably alters the simple picture of evolutionary forces which we have
been presenting. It is difficult to find a simple rationalization for equation (VII-99) in terms of
these time scales, for example.

Another exception was seen when we discussed Figure 7.10, involving three forces, mutation,
selection, and genetic drift. The increase of gene frequency by mutation is nearly u when the gene
is rare, but the decrease of the gene frequency by selection is about sp in that case. In those cases
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where 4N,u < 1 so that the population would usually have p at or near 0 or 1, we saw a relative
weakening of the effect of selection relative to mutation, since, unlike mutation, selection is most
effective at intermediate gene frequencies. Thus when N is small, mutation can be more important
than selection even though s > wu.

Aside from these caveats, we will not go far wrong by concluding that even though the math-
ematics of the processes are complicated, these different forces of evolution do not show subtle or
complex interactions. They can be teased apart by a little work and a modicum of intuition.

Exercises

1.

Suppose that in a population one allele has frequency 1/2 and n others have frequency 1/(2n).
What is the effective number of alleles present, expressed in terms of n?

Whooping cranes (Grus americana) have a population size of about 350 at present. If they
maintain an effective population size this large for a great length of time, how many new
mutants will occur per generation if u = 1077? What will be the long-term effective number
of alleles if these are all neutral isoalleles? How many generations will they take to approach
this equilibrium level of variability?

. Under an infinite isoalleles model, by how many allele substitutions will a given protein

differ between two species if they have been separate populations for 100 million years, if a
generation one year, mutation rate is 1077 per year and all mutations can be detected? By
how much will this quantity vary? Why? (Assume that we have sampled one sequence from
each of the two species).

Suppose that an island on which reproduction follows a Wright-Fisher model receives immi-
grant gametes from two neighboring islands. The first of these provides 0.01 of the gametes
and remains fixed for A. The second provides 0.02 of the gametes and remains fixed for
a. The island we are concerned with maintains a population size of N = 1000 organisms.
Compute the mean and standard deviation of the gene frequency when an equilibrium state
has been reached.

. Suppose two populations start each with two alleles, and they both happen to drift to fixation

for the same allele. What will be Cavalli-Sforza & Edwards’ genetic distance between the two
resulting populations? What will be Nei’s genetic distance? What if they had happened to
drift to fixation for different alleles?

. Suppose that two islands, each of size N, exchange migrants, the migration rate being m. If

there is infinite isoallele mutation going on, we should be able to use (VII-42). What value of
m corresponds to complete random union of gametes across the pair of islands? Using this
value, do we find an expression for Fy that is the same as in a one-population infinite isoalleles
model with 2NV individuals? What about the comparison with one-population models when
m = 07

If we take m = 1 in a one-dimensional stepping stone model, does this correspond to complete
random mating along the whole chain of populations (i.e., to the absence of geographical
structure)?
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8. Kimura and Maruyama (1971) pointed out that an infinite isoalleles model of neutral mutation
can give a pattern of gene frequency looking very much like a migration-selection smooth cline
of gene frequency. For what values of u, m, and N would a smooth cline of gene frequency
across the whole species range be a likely observation in a one-dimensional habitat? In a
two-dimensional habitat?

9. Suppose that we have an overdominant locus with the following fitnesses:

Based on the branching process approximation, what is the probability of fixation of a single
A mutant? Based on the Wright-Fisher model, what is it (think of gene and genotype fre-
quencies at various points in the life cycle)? Why the discrepancy? What is the branching
process result actually computing if not the fixation probability?

AA Aa aa
4 2 1

Compute the fixation probability from the diffusion equation formula (VII-88) of A when it
has initial gene frequency 0.1 in a population of 10 individuals. Then consider the fitnesses

AA  Aa aa

1/4 1/2 1
and compute the fixation probability of allele A when it has initial gene frequency 0.9 in a pop-
ulation of size 10. What would be the relationship between these two fixation probabilities?
Is it satisfied? Why or why not?

10. Suppose that a locus has relative fitnesses:

BB Bb bb
1 1—-s 1
sketch what you feel the equilibrium distribution of gene frequencies will look like for each of
the following parameter combinations when u = v:

11. For the underdominant locus

(i) N = 1000, s = 0.01, u = 0.0001
(ii) N = 1000, s = 0.001, u = 0.01
(iii) N = 1000, s = 0.001, u = 0.0001

Complements/Problems

1. In the infinite isoalleles model with a single diploid population of size N, we note that the
number of new mutants occurring per generation is not the constant number 2Nu but a
random variable with this number as its mean. Is this an extra source of random variation,
or is it already accounted for in the computations?

2. In the one-island model of the equilibrium between drift and migration, have we already taken
into account the random variability in the number of immigrants per generation?

3. Derive a good approximation for the average total number of mutational events which have
occurred in the lines leading from a gene in one individual in a population, and from another
randomly chosen individual back to their common ancestor. (In other words, if each mutant
occurs at a different nucleotide position in the DNA so that we can see a record of all mutants,
by how many nucleotides will two randomly chosen gene copies from the same population
differ?) Use the infinite isoalleles model for a single population.
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10.

11.

12.

. Reconcile equations (VII-8) and (VII-119) with each other when v = v in a two-allele case.

Do this by using (VII-8) to compute the probability that a randomly chosen individual is
homozygous, and noting that this can also be written E[p? + (1 — p)?] and expressed in terms
of p and V). Are the two predictions the same?

. How is Nei’s genetic distance measure expected to behave if the two subpopulations diverge

by genetic drift with no mutation or migration? Is it expected to be dependent on the initial
gene frequencies? Assume that the population has been at equilibrium for given values of N,
and v and that upon the two populations separating, the effective population size changes to
a new, smaller, value N* and mutation is absent from that point on.

. How is Nei’s genetic distance measure expected to behave if there are two classes of loci with

different mutation rates, with half of all loci in one class and half in the other? Will it rise
linearly with time?

How will the genetic distance measures that measure 1— h,,/hy be affected if there is mutation
according to an infinite isoallele model? Develop equations for the change of h,, and h; and
use these.

. There is a very complete analogy between the island model with n = co and the one-island

model with immigration from a continent. Why? How complete is the analogy? Where does
it break down?

. Compute the temporal correlation between the gene frequency of allele A in a one-island

model. Use (VII-30), (VII-32), and (VII-39) to compute E[p;11p;] and to obtain the covariance
of gene frequency in successive generations. How great an interval must there be between
the two samples from a single population, in order that their gene frequencies effectively be
independent of one another? Could the temporal correlation of variability be used to estimate
m, or is it too dependent on m only through the quantity Nm, so that we could not know m
unless we also knew N7

How do we have to alter the formulas for Fg and Fyy in the n-island model if the immigrants
are drawn at random from all n populations instead of only from the other n — 1 populations?

Using the approximate solutions to the n-island model, obtain an expression for (Fy —
Fp)/(1 — Fw), which is a measure of the genetic distance related to Hp/Hy, the rela-
tive heterozygosity between and within populations. Compare it to Nei’s distance measure
—In(Fp/Fw). Which one is more sensitive to the population size? Find cases where the two
give discordant answers as to how much genetic distance there is between islands.

Consider a locus undergoing infinite-isoallele neutral mutation in a population, but which is
near a strongly-selected overdominant locus. The overdominant locus has two alleles at equal
frequencies, and these frequencies do not change. The recombination fraction between the loci
is r. Suppose that we consider the two groups of chromosomes which are defined by the two
alleles at the selective locus. These can be treated as if they are separate populations. They
are each of constant size, and they exchange genes at the unselected locus by the process of
recombination. Compute the effective number of alleles maintained in this pair of populations,
as a function of NV, u, and r. By making the proper comparison, discover whether having an
overdominant locus nearby affects the amount of variation maintained at a locus.
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13.

14.

15.

16.

17.

18.

In a two-allele model with geographic structure (say an island model), consider a random
variable which has the value 1 if a randomly chosen gene is A4, 0 if it is a. If we pick a gene at
random from another population in the same generation, what will be the correlation between
the values? Express it in terms of Fyy and Fp. (You need not find the values of Fyy and Fp
to do this, just give an expression in terms of them). Does this result look familiar?

Suppose that in a diploid population on an island, multiplicative selection favors allele a,
with the selection coefficient “in favor of” allele A being s < 0. Migrants from a continent
continually bring in A genes, for on the continent all individuals are AA. Suppose gametes
immigrate and 2Nm < 1, so that the fate of each immigrant gene is decided long before
another arrives. What does the branching process approximation tell us about the ultimate
fate of the island’s genetic composition? Is this consistent with intuition? Why not?

In the case described in the preceding problem, use equation (VII-88) to find the probability
that a given immigrant A gene succeeds in driving out the locally favored a allele. Obtain
from this and from 2Nm the time until the successful allele finally arrives, given initially no
A alleles on the island. What does this say biologically about the time that a patch of local
adaptation can persist in the face of immigration?

We are often interested in cases where population sizes are rather large, so that a gene
frequency will not move far from its equilibrium. Near the equilibrium many evolutionary
forces can be well approximated by saying that in deterministic situations they are expected
to multiply the deviation of gene frequency from its equilibrium by a factor c:

P —pe = c(p—Dpe)

The effect of genetic drift can be approximated by saying that it causes a variance of gene
frequency equal to
Pe(l — pe)

Var (Ap) = P

Use these to obtain approximations for M (p) and V(p), and solve for the equilibrium dis-
tribution of gene frequency. How does it compare to a Normal (Gaussian) distribution with
mean p and standard deviation o7

Calculate ¢ and p, for the case of an overdominant locus. What mean and variance of gene
frequencies does this predict? For what parameter values does this approximation break
down? How can we compare it to a true equilibrium distribution since we haven’t assumed
any mutation?

In the case of geometric fitnesses, set up the matrices for the exact equations (VII-70) for
the fixation probability for the case of N = 1. Solve them. How does the solution compare
numerically in this case of an outrageously small population to the diffusion approximation
(VII-88) evaluated when py = 17

A more precise approximation than equation (VII-86) is

sp(1 —p)

M(p) = 14 sp
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19.

20.

and
(p+ M(p))(1 —p— M(p))
N '

Do what you can to evaluate this integral exactly (by partial fractions?). Does it lead to a
better approximation?

V(p) = M(p)*+

If we compare large populations with small populations, which will do a better job of elimi-
nating deleterious mutations? (Compare the mean of the frequency of a deleterious mutation
when holding u and s constant, but changing N. You may have to use numerical integration).

When advantageous mutations (of selective advantage s in heterozygotes) occur at rate u per
locus a population of size N, will there be more advantageous mutations fixed per generation
if NV is larger? Is all of this effect due to there being more advantageous mutations occurring
in a larger population?
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Chapter VIII

MULTIPLE LINKED LOCI

VIII.1 Introduction

Until about 1960 most evolutionary genetic theory was single-locus. There had been study of the
decay of linkage disequilibrium by Jennings (1917), Robbins (1918) and Geiringer (1944, 1945)
in the absence of any selection or genetic drift, and Wright’s 1935b examination of intermediate
optima was a multiple-locus selection model, but no one before the 1950s made a serious attempt
to work out the theory of multiple linked loci under natural selection; Wright’s adaptive surface
results implicitly assumed that all loci were continually in linkage equilibrium.

This changed with the papers by Kimura (1956b) and Lewontin and Kojima (1960). Kimura’s
treatment of a two-locus system under selection assumed overlapping generations, with the approx-
imation that Hardy-Weinberg proportions were always maintained. Lewontin and Kojima’s paper
was a more exact treatment of the discrete-generations case, and as such has been the basis for the
literature that followed. The fact that the subject was taken up after a delay of almost 40 years
after Robbins’s paper is probably due to computers becoming available at that time.

Most of the burst of work in the next 15 years was inspired by the hope of finding some simple
reparameterization that would greatly facilitate generalizations about the outcome of selection on
linked loci. One of the goals was to find out what function of fitnesses and recombination rates
was being maximized by natural selection. If natural selection was not maximizing mean fitness,
we might at least find out from that function how the details of the genetic system altered the
outcome. As we shall see these hopes have not been realized. Nevertheless evolutionary genetic
theory has gained considerable insight into the interaction of selection and linkage, and into the
effects of genetic drift in systems of multiple linked loci.

We will start the story with the simplest case, that of two loci each with two alleles in a haploid,
and consider different measures of linkage disequilibrium.

VIII.2 A Haploid 2-locus Model

If we have two alleles at each of two loci in a haploid organism, there are of course 4 possible
haplotypes: AB, Ab, aB, and ab. For simplicity let is designate their haplotype frequencies x1,
To, x3, and x4 respectively. The gene frequencies of A and B are each the sums of two haplotype
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frequencies:

pa = T1+ 22
(VITI-1)
pB = T1+23
and the usual measure of linkage disequilibrium is
D = z1—papB (VIII-2)
which we have seen in Chapter I (equation I-50) can also be written as
D = T1X4 — T2X3 (VIH—3)

In the absence of selection, mutation, migration, or genetic drift, and the presence of random
mating, the linkage disequilibrium measure D is expected to decline by a fraction r each generation.

SELECTION WITH NO RECOMBINATION. If we have no recombination, there is a
different measure of disequilibrium that behaves nicely in the presence of simple types of selection.
This is the crossproduct ratio, which we will call R,

R = M (VIIL-4)
T2T3
If there is linkage equilibrium (D = 0) then z1x4 equals xo23, so that the crossproduct ratio R = 1.
If there is positive linkage disequilibrium R > 1, and if there is negative linkage disequilibrium
R < 1. However, beyond that there is no straightforward relationship between these two measures.
They are sensitive to different aspects of departure from linkage equilibrium.
To see why R is useful, note that in the absence of recombination each haplotype is in effect
a separate clone, whose proportion in the population is affected by its own fitness as compared to
the mean population fitness:
T, = zw; /W (VIII-5)
where of course
W = xT1wi + Towsg + T3Wws + T4wy. (VIII-6)

Taking the crossproduct ratio for the z/, the mean fitnesses cancel and we get a startlingly simple

result: .,
T1xy WiwWy \ T174
— = ( )— (VIII—?)
Tyl waws /) ToT3

Thus R gets multiplied every generation by the crossproduct ratio of the fitnesses wiwy/(waws).
Its value in any future generation can be predicted with ease. Obviously this crossproduct ratio
of fitnesses depends only on the relative fitnesses of haplotypes, not their absolute fitnesses, as the
ratio causes any multiplier that affects all the four haplotype fitnesses to cancel.

What this means for the effects of different patterns of gene interaction is most easily seen by
expressing the w; differently. Suppose that we take wy to be 1, and express the fitnesses as:

AB (1+s)(1+1t)(1+E)

Ab 1

i (VIILS)
aB 1+¢
ab 1
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You will find readily that with these fitnesses

= 1+E (VIII-9)

So if E is zero, there will be no change in the crossproduct ratio R from selection. This means that
if R =1, so that D = 0, there will be no linkage disequilibrium created by natural selection. If we
start in linkage equilibrium we will stay there forever. Note that if only one of the loci is under
selection (say A) we must have ¢t = 0 and F = 0, since the presence of a B on the AB chromosome
cannot cause its fitness to be different. So whenever only one locus is under selection, R will not
change as a result of that selection. It is only when the fitnesses interact that selection creates or
intensifies linkage disequilibrium.

Additive fitness. These equations point strongly toward a definition of interaction that
measures it as departure from multiplication of fitnesses. Many people prefer to think of interaction
as departure from additivity. If the fitnesses were perfectly additive, so that the fitness of AB in
(VIII-8) were 1+ s +t, then E' = —st, so that R will decrease under selection and negative linkage
disequilibrium would be generated. If we put the fitnesses on a log scale, it is on that scale that
their additivity will correspond to having £ = 0. Figure 8.1 shows numerical results for R and
D for the case where we start with the initial frequencies of A and B both being 0.1, no initial
linkage disequilibrium, the values of s and ¢ being respectively 0.2 and 0.3, and either £ = 0.1 or
E = —0.06. Note that R changes continually in the predicted direction, but that D moves away
from zero and then back towards it as the alleles A and B move toward fixation.

This illustrates the different properties of the two measures of linkage disequilibrium. To see
why they will be expected to differ, consider the case where A and B both have very low frequencies.
If all the A’s and all the B’s are in AB haplotypes, then the value of D cannot exceed the frequency
of that haplotype, which will be small. But the value of the crossproduct ratio R will be infinite.

We ought to add that in the case of no recombination the four haplotypes are in effect acting
like four haploid alleles. We can work out their “allele” frequencies in all future generations. The
ratio of any two of them (say x1/xz2) gets multiplied by w;/wy each generation (as in equation
(I1-105)). So after ¢ generations the ratio will have been multiplied by (w;/ws). Tt follows easily
from this that the frequency of x; in generation t, x;(t), is:

zi(t) = z(0)wl /(z1(0)w] + z2(0)wh + z3(0)wh + 24(0)w}). (VIII-10)

The exact analogy to multiple alleles allows us to use equation (II-110) to show that mean fitness
can never decrease during these changes.

EPISTASIS. The quantity £ measures the strength of gene interaction, which is often called
epistasis. Originally the term meant a particular type of interaction, in which one locus is said to
be epistatic to another if it has a genotype that masks the effect of the other locus (as would be
the case here if E = —t/(1+t) or E = —s/(1+s)). But within evolutionary genetics, the term has
since been used more broadly.

The meaning of the quantity E will be seen more clearly in a particular case. Suppose that
there is a quantitative character controlled by the two loci A and B with no epistasis. Call the value
of this character X. Now suppose that the logarithm of fitness (In W) is a nonlinear transformation
of this character, as shown in Figure 8.2. There you will see three cases. In the top curve, which is
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R or (100 x D)

0 10 20 30 40
generation

Figure 8.1: Results of iterating equations VIII-5 and observing the values of R and D.
In all cases the initial frequencies of A and B were 0.1 without linkage disequilibrium
between them. s was 0.2 and ¢ was 0.3. The curves with squares are R and 100 x D
for the case where £ = —0.06, which is additive fitnesses. The curves with circles are
for £ = 0.06, and the solid curves are for £ = 0. The curves that start at 0 are for D,
those that start at 1 are for R.

curving upwards, ££ > 0. In the bottom one, which is curving downwards, £ < 0. When the logs
of the fitnesses are additive, the fitnesses themselves are multiplicative. This is the case with the
straight line, which is when E = 0.

By an elementary application of the Mean Value Theorem from calculus, it can shown (Felsen-
stein, 1965) that in this case the sign of E will always be the same as the sign of the curvature of the
curve relating InW to X, so that F is positive when the curve is curving upwards, negative when
it curves downwards, and zero when it is a straight line. Thus in cases where epistasis results from
such a transformation, we can often easily see whether selection will result in positive or negative
disequilibrium.

SELECTION AND RECOMBINATION. If we now add recombination to the model, we
must specify at what stage of the life cycle we observe the haplotype frequencies. If we have the
life cycle:

Selection Random Mating Meiosis
Newborns — Survivors — Diploids — Newborns

then we can rather easily work out the equations for the x; in successive generations using succes-
sively equations (VIII-5) (for the selection phase) and (I-47) for the decay of linkage disequilibrium
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E>0

. E<O

In W

[ [ [ [
ab Ab aB AB

Phenotype

Figure 8.2: Three cases in which the logarithm of fitness is a function of an underlying
phenotype, itself having additive effects of the alleles at the two loci. The top curve
will have E > 0, the bottom E < 0, and the line in between will have £ = 0.

following random mating. If we define

D* — (331%01> (334?14) _ (962%02) (1‘3?)3) (VIII-11)

w w w w

the linkage disequilibrium after selection has acted, we get

o) = DY gD o= 1,2,3,4 (VIII-12)

w

where k; is a bookkeeping device to simplify the expressions:

ki o= ky = 1
(VIII-13)
ky = ks = —1.

As an exercise, you should try to work out what these equations will be if we observe the population
immediately after selection instead of immediately after meiosis.

It would be nice to go one from this point, as one can in the case of no recombination, and
work out the future frequencies of all four haplotypes. In fact, we cannot. Certain special cases
can be studied (such as F = 0 when there is initial linkage disequilibrium), but in general there
are no analytical solutions for haplotype frequency dynamics. Figure 8.3 shows the changes in
R in the case of Figure 8.2 in which £ = 0.06, for three different levels of recombination. It is
evident that the less recombination, the more linkage disequilibrium. It is clear from the figure
that disequilibrium is greater when there is tight linkage, and less when there is loose linkage.
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Figure 8.3: Course of change of the crossproduct ratio measure of linkage disequilibrium
R for the case where initially there is linkage equilibrium, where initially p4 and pp =
0.01, and where s = 0.2, t = 0.3, and E = 0.06. The three curves are for r = 0 (top),
r = 0.01 (middle), and » = 0.1 (bottom).

My paper (Felsenstein, 1965) and the papers of Maynard Smith (1968) and Eshel and Feldman
(1970) should be consulted for further discussion of the effects of linkage on the rate of change of
gene frequencies under directional selection.

INTERACTION AND LINKAGE — AN EXAMPLE. A particularly interesting case arises
when there are negative values of s and ¢, but a strongly positive value of E. For simplicity suppose
that s =t < 0 but E is positive enough that (1 + 5)?(1 + E) > 1. Then A and B are individually
deleterious (compared to ab) but when they are combined, they are advantageous. This is a simplest
genetic case expressing the dilemma of adaptations that must occur together to be advantageous.
The question is, whether the genetic system will have the sense to evolve them.

If we start with a population of ab haplotypes, and introduce the two mutants in initial linkage
equilibrium as rare alleles, then even though we cannot solve equations for the haplotype frequencies
in an arbitrary generation, we can do so as long as they are rare. If we let x4 =1 — 21 — 29 — 3
and write the equations (VIII-12) in terms of x1, z2 and x3, after some algebra we find that if the
fitness of AB is called 1 4 u, the equations can be written as:

¥) = z(l+u)(1—7)+0(z?) (VIII-14)
xl2 = 1‘2(1 + 5) + 1317'(1 + ’LL) + 0(1:2)

where the term O(x?) stands for terms which are a square of one of the x; or a product of two of
them. These terms we will ignore when 1, z9, and x3 are all small. We omit the equation for zg
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as it is the same as for xo in this case. Without the 22 terms these equations can be written as
linear equations in matrix form:

' L+u)(l=r) 0
O I e o (VIIL-15)
xh r(1+u) 1+s x9

x1 and x9 will increase when rare if and only if the leading eigenvalue of the matrix on the right-
hand side of (VIII-15) is greater than 1. The matrix is triangular, which means its characteristic
equation is easily found to be the product of the diagonal elements, after A has been selected from
each of them:

(I+uw)(1=7r)=AN)(1+s—=A) = 0. (VIII-16)

This has two roots, which are instantly recognizable as (1 + u)(1 — r) and 1 + s, the diagonal
elements of the matrix. Since s is negative, the latter one is always less than 1. The former is greater
than 1 only when r < u/(1 + u). So, for example, when v = 0.1, the haplotypes AB and Ab (and
therefore also aB will increase when rare if r < 1/11. The reader may wonder why Ab and aB are
increasing, if selection is acting to decrease them. This increase happens because AB is increasing
in frequency, and each generation generates some Ab and aB haplotypes by recombination with the
ab haplotypes that make up most of the population.

The condition for the increase of AB is easily interpretable: A B haplotypes have their frequency
multiplied by 14 u by selection and then a fraction r of their offspring turn out, due to recombina-
tion, not to be AB. So the condition (1 + u)(1 — ) > 1 simply is the condition for more than one
AB offspring to result per AB parent. The analysis here assumes that we can ignore the product
of the frequencies of Ab and aB compared to the frequency of AB. If the condition for the increase
of AB is on the borderline (that is, if (1 4+ u)(1 —r) = 1 then these neglected second-order terms
will become important and the analysis must be redone.

We can see that if Ab and aB are of low fitness and AB of high fitness, this double adaptation
is able to increase when rare if the linkage between the genes involved is sufficiently tight. Once it
reaches a substantial frequency, the loss of AB offspring due to recombination becomes less serious,
as there are fewer ab haplotypes around to mate with, and the A B haplotype continues to increase
toward fixation.

In a sense this provides us with a clearer picture of where the boundary is between having two
separate adaptations (A and B) and having one dual adaptation (the haplotype AB). The condition
of r acts like a filter, allowing establishment of only those interacting adaptations whose loci are
closely enough linked. This will act as a mechanism for organizing the genome to place loci that
interact closer to each other — simply because pairs of adaptations that interact but are not closely
linked do not get established. The existence of evolutionary-genetic arguments like this one has
long led geneticists to suspect that there must be some recognizable clustering of loci in genetic
maps according to function. The empirical evidence for such a clustering is maddeningly poor,
however.

That linkage is accomplishing something that will not happen otherwise is made clearer by
considering what happens if there is no linkage disequilibrium. In that case each locus will show a
gene frequency change whose direction can be predicted by considering the slope of mean fitness in
the direction of increase in that gene frequency (for diploids we would consider equation 1I-113).
The mean fitness of the population will be

w = papp(l+u) + pa(l—pp)(1+s) + (1 —pa)pp(1+s) + (1—pa)(1—pgp). (VII-17)
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Figure 8.4: Contours of mean population fitness as a function of gene frequency in the
absence of linkage disequilibrium, for the case in which the fitnesses of AB, Ab. aB and
abare 1+wu : 1—s : 1—s :1. If linkage equilibrium is maintained, which will nearly
be true if the loci are unlinked, the population will always move uphill and thus will
climb the peak on which it is located. There are two peaks, one at the lower-left and
one at the upper-right. The case shown is for v = 0.1 and s = 0.1.

Figure 8.4 shows a contour map of the fitnesses in the case where u = 0.1 and s = -0.1,
plotted against the gene frequencies. The population is starting near the lower-left corner, with
low initial frequencies of A and B. If it climbs the adaptive surface, it will not be able to increase
the frequency of either the A or the B allele. Only if the allele frequencies start at high enough
frequencies to be on the peak in the upper-right corner will they increase. If recombination is
frequent, the population will be near (but not exactly at) linkage equilibrium and the picture in the
Figure will predict the outcome with fair accuracy. But when linkage is tight the fitness of A and
of B alleles is no longer well-predicted by the assumption that they are randomly associated into
haplotypes. The presence of a A will then become associated with the presence of B. The fitness of
A will be increased by the coupling linkage disequilibrium which makes A and B appear largely in
AB; they are thus of higher fitness than a and b. This departure from the adaptive-surface picture
will, as we will see, turn out to be a general phenomenon for closely-linked loci.

The conditions in the present case were worked out by Crow and Kimura (1965) in a paper on the
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evolution of recombination.

VIII.3 Linkage and Selection in Diploids

The original papers on linkage and selection by Kimura (1956) and Lewontin and Kojima (1960)
used diploid models. We will develop here equations that are equivalent to Lewontin and Kojima’s
(1960) discrete-generations model. The result will be similar to equation (VIII-12) but a bit more
complicated. One source of the complication is that the natural selection occurs at the same life
stage where the recombination also occurs. This makes the form of the equations slightly different.

One again we have four gametes, AB, Ab, aB and ab, and number these 1, 2, 3, and 4. x; is
the frequency of gamete ¢ in the pool of gametes that will, by random mating, be assembled into
the diploids of the current generation. The frequency of a diploid composed of gametes i and j will
be x;x; among newborns. If natural selection occurs thereafter with fitness w;j, the frequency of
genotype ij after selection will be x;xjw;;/w, where as usual w is the average of the w;;, weighted
by the genotype frequencies:

W= mwjw;. (VIII-18)
i

Recombination occurs among these survivors. It has no effect except on four of the 16 diploid
genotypes: AB/ab, Ab/aB, aB/Ab, and ab/AB. These are genotypes 14, 23, 32, and 41 respectively.
Table 8.1 shows boxes for all of the 16 pairs of haplotypes, and in each shows what fraction of AB
gametes that genotype will produce, when there is a recombination fraction of r. We can get the

Table 8.1: All 16 possible diploid genotypes, each showing the fraction of gametes of
haplotype AB that it will produce. Blank cells produce none.

AB Ab aB ab
AB 1 T 3 3(1-r
Ab 3 r
aB % %'r
ab | 3(1—r)

frequency of x1 in the next generation by summing these gamete contributions, each multiplied by
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the frequency of that genotype:

S T1T1Ww11 /W + %xla:gwlg/ﬂ) + %1‘11‘311)13/@ + %(1 —T) X1T4W14 /W
+ %xgl‘lwgl/ﬂ) + %T‘ ToT3wWa3 /W
+ %.%31‘121)31/’[17 + %T T3T2ws32 /W
+ %(1 —T) T4T1Wye1 /W

(VIII-19)
This expression can be simplified by noting that there is a 1/w in every term on the right-hand
side. We can also make a simple assumption that will allow collapsing more terms. This is that
w;; = wy; for all pairs of values ¢ and j. This amounts to assuming that the fitness of a genotype
cannot depend on whether haplotype ¢ came from the mother or the father. This is reasonable in
most cases but rules out certain types of maternal effects.
If we assume that, and collect terms, we get

) = (mziwnn + z1zowiz + v1zswiz + (1 — ) 1z4w1g + 7 T2T3W03) /w. (VIII-20)

Collecting terms in r, factoring x; out of the terms that do not contain r, we can simplify this,
especially if we assume further that wy4 = ws3. This latter assumption amounts to specifying that
the fitness of a double heterozygote does not depend on its phase, so that the fitness of AB/ab
equals that of Ab/aB. This is again reasonable in most cases but rules out cis-trans effects. The
resulting expression is:

ry = (21 (z1wi1 + T2wis + T3wiz + T4wig) — 7 (X174 — ToT3) W14) [0 (VIII-21)

In this equation, two terms are notable. We have already seen in equation (VIII-3) that (zqx4—
x9x3) is the linkage disequilibrium measure D. The expression ziwi + Towiz + T3wi3 + T4wiy
is also worth note. It is the average fitness of all genotypes that receive an AB gamete from one
parent, averaged over all the gametes they might receive from the other parent. Thus we can define
an average fitness of a haplotype (just as in Chapter II we defined the average fitness of an allele
in (II-121). In general, we can similarly define the mean fitnesses of all four haplotypes:

4
W = Y wjwg. (VIII-22)
j=1

We can follow the same argument that lead to (VIII-20) for the other three haplotypes, and if
we do we will find, using (VIII-3) and (VIII-22), that the full set of equations is

.1‘/1 = (.1‘1 wy — rD ’LU14) /?IJ
xh = (xowy + rDw w
2 (w2 2 )/ (VIIL-23)
= (zgws + 1 D wig) /w
¥y = (zgwy — v D wy) /711.



We can use the bookkeeping device k; in (VIII-13) to simplify this to
zp = (@ w; — kjr Dwig) /o, i = 1,2,3,4. (VIII-24)

Equations (VIII-23) were derived by Lewontin and Kojima (1960). The natural next step would
be to derive formulas for the future frequencies of all four gamete types in terms of the current
frequencies x; the fitnesses w;;, and the recombination fraction r. Alas, no one has been able
to construct general expressions for this (and this should not be surprising since they cannot in
many much simpler single-locus cases that are subcases of this). The formulas are easily iterated
numerically, and over the years substantial insight has been gained empirically by considering
numerical examples. The other way that insight has been gained is by the exact solution of
particular cases, to which we now turn.

Table 8.2 will help to show how the w;;’s relate to the genotypes, keeping in mind that w;; = wj;:

Table 8.2: The relationship between genotypes and fitnesses of haplotype pairs

BB Bb bb

AA | wiy w12 wo
Aa | wiz | wig = wog | woy

aa | w33 W34 W44

VIII.4 Linked polymorphisms

Much effort has gone into examining linked overdominant loci. In particular, a number of simple
fitness schemes have been investigated that can be at least partly analyzed analytically.

LEWONTIN AND KOJIMA’S SYMMETRIC MODEL. Lewontin and Kojima (1960)
examined the behavior of the symmetrical overdominant fitness model. The symmetries ensured
that the fitness table would remain the same when we exchange either A <» a or B < b or both.
The fitness table is given in Table 8.3:

Table 8.3: Lewontin and Kojima’s symmetric fitness model

BB Bb bb
AA | « b a

aa a b a

293



It seems evident that if there are any nontrivial equilibria in the system, they will involve equal
gene frequencies of alleles A and a, and equal frequencies of B and b too. In that case, it will be

true that )
T1+ 20 = T3+24 = 1 +2T3 = To+x4 = 2’ (VIII-25)

so that we can write x9, x3, and z4 all as functions of x;. In fact, the linkage disequilibrium D is
also a function of z1, being

1
D = z1— i (VIII-26)
so that we can also write: )
T1 = Ty = 1 + D (VIII-27)
and )
Tro — XT3 = Z —D (VIH—QS)

The changes of the z; are now all replaced by changes of D, provided that we have started at,
and thus remain at, gene frequencies of % at both loci. We can rewrite w using Table 8.3, (VIII-18),
(VIII-27) and (VIII-28) as

o = a(2(i+D0)+2(3-0)") +0(4(3+D) (- D))

(VIII-29)
+e(d(3+D) (4 - D)) +d(2(:+ D)’ +2(} - D)*)
and this can be simplified readily to
1
w = Z(a+b+c+d)+4D?(a—b—c+d). (VIII-30)
The haplotype mean fitnesses w; given in (VIII-22) can also be simplified to
mo= @ = (D)t (-D)or (D)ot (4+D)d
(VIIL-31)
mo= = (+D)b+(b-D)at (3-D)d+ (4 D)c
which simplifies to
Wy = Wy = (a+b+c+d)i+(a+d—b—c)D
(VIII-32)
Wy = wy = (a+b+ec+d)z—(a+d—b—c)D.
Substituting (VIII-32) and (VIII-30) into the first equation of (VIII-23) we get
1+D b d): —b—c+d)D) —rdD
Loy Gt )1((a+ tetdgt@—b-ctdD)—r (VIIL-33)
4 jla+b+c+d)+4D%*a—b—c+d)
which simplifies to
1 d) —rd
D' =D glatd —r (VIIL-34)

Ha+b+c+d)+4D2(a—b—c+d)
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We are looking for equilibria of the system, which will be roots of the equation obtained by
setting D’ = D. One such root is clearly D = 0. The other is the value of D that makes the fraction
on the right-hand side of (VIII-34) be 1. This yields the equation

1
4D*(a—b—c+d) = Jla—b—c+d)—rd (VIII-35)
which has two roots,
1 rd
D = +—,/1- . III-
4\/ 4(a—b—c+d) (VIII-36)

We now have up to three equilibrium values of D. It will be helpful to plot an example. Suppose
that a, b, and c are all 0.9, and d = 1.0. That is a case in which making one locus homozygous
reduces fitness by 0.1, but making two homozygous is not as bad as expected: it does not reduce
fitness any further. Figure 8.5 shows the equilibrium values of D plotted against the possible values
of r.

0.25

-0.25 :
0 01 0.5

recombination
fraction

Figure 8.5: Equilibrium values of D for the Lewontin-Kojima model when all genotypes
other than the double heterozygote AaBb have a fitness of 0.9 relative to that genotype.
The solid curves show the stable equilibria, plotted as functions of the recombination
fraction r. The dashed line is the unstable equilibrium.

There is always an equilibrium with D = 0. Below r = (a — b — ¢ + d)/d there is a change,
with three equilibria, D = 0 and the two values from (VIII-36). Above r = (a — b — ¢+ d)/d those
two equilibria do not exist, as the quantity inside the square root is negative, so that the solutions
would be imaginary.

Are all of these solutions relevant? Not all need be stable equilibria. We can investigate the
stability of the equilibrium at D = 0 simply using equation (VIII-34). When D ~ 0 we can drop
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Table 8.4: A reparameterization of Lewontin and Kojima’s symmetric fitness model

BB Bb bb
AA |1 —-s—t+e 1—s l—-s—t+e
Aa 1—¢ 1 1-—1¢

aa | 1—s—t+e 1—s l1—-s—t+e

the term in D? and approximate,
Ha+d)—rd

D ~ .
Hla+b+c+d)

(VIII-37)

A necessary condition for the stability of the equilibrium at D = 0 is that if D is perturbed to
a small nonzero value, it return to 0. This requires that the multiplier of D on the right-hand side
of (VIII-37) be less than 1. Then we require

1
s(a+d)—rd
2 (atd)-r (VIIL-38)
Ha+b+c+d)
Since a + b+ ¢+ d > 0, we can multiply through by it and solve for r, getting
1
rd > Z(a —b—c+d) (VIII-39)
orif d > 0,
. s i a—b - td (VIIL-40)

Thus the condition for the existence of the paired equilibria (VIII-36) are the same as the
condition for instability of D = 0. When the paired equilibria exist above and below it, D = 0 is
not stable. Above the critical value of r, they disappear (having collided with each other and with
D = 0 at the critical recombination value and disappeared into the complex plane), and there only
D = 0 exists, and it is a stable equilibrium. We have not made a full analysis of the stability of
D = 0, since have not allowed for deviations of the gene frequencies from %, but when we do we
find that they do not affect the conditions for stability of D.

The paired equilibria in (VIII-36) are stable when they exist. This can be verified by using
(VIII-34) to ask whether small departures from the equilibria will grow. We will not do this here,
but simply note that the equilibria are stable.

A useful reparameterization of the fitness scheme in Table 8.3 is given in Table 8.4. On substi-
tuting in (VIII-36) 1 for d, 1 — s for b, 1 — ¢ for ¢, and 1 — s — t + e for a, we get

D = +—4/1—-—. (VIII-41)
the other equilibrium being of course D = 0. The condition for stability of the equilibrium D =0
in (VIII-41) also simplifies, becoming by substitution into (VIII-40)

1

r> e (VIII-42)

296



The fitness scheme in Table 8.4 clarifies which fitness effects are affecting D. The parameter
e measures the gene interactions by measuring the departure of the effect of homozygosing the
two loci from what would be expected from making only one of them homozygous. Note that the
departure is a departure from an additive prediction, not a multiplicative prediction. In this, e
is a different measure from E, the epistasis measure in (VIII-8), which measured departure from
multiplicative interaction. The fact that one measure appears naturally in that context and the
other here has been the cause of much disagreement over how to best measure epistasis.

In the present case, the paired equilibria (VIII-41) appear whenever e > 0 and r is sufficiently
small. One particularly common pattern when the two loci do not have any particular biochemical
or developmental interaction will be for the fitnesses to be multiplicative. That case we expect the
fitness of the double homozygotes to be (1 —s)(1 —t) =1 — s —t+ st, so that e = st. In that case,
whenever r < st/4 there will be a pair of stable equilibria, one with coupling and one with repulsion
disequilibrium. Thus there is every reason to expect such disequilibrium to occur between many
pairs of closely linked loci, because it can occur even when the loci that are closely linked affect
totally unrelated aspects of fitness.

The pattern of having a coupling-repulsion pair of stable equilibria when r is small, and other-
wise linkage equilibrium, is special to this particular model. But a similar pattern, that of having a
not-quite-symmetrical pair of equilibria when 7 is small, and otherwise an equilibrium with almost
no linkage disequilibrium, will occur quite frequently in a variety of models.

Note that I have not explained all of the behaviors of the Lewontin-Kojima model. It is also
possible for there to be boundary equilibria in which both loci become fixed, and in those cases
the paired equilibria that are found when r is small are actually unstable, if we allow the gene
frequencies to depart from 1/2.

FITNESS AND DISEQUILIBRIUM: MORAN’S COUNTEREXAMPLE. If we take
equation (VIII-30) and the reparameterized fitnesses in Table 8.4, we can express the mean fitness
of the population as

S t [
7= ([1—2— -+ - 4D%e. 111-4
w ( 5 2+4>+ e (VIII-43)

This implies that if e is positive, which is the case that can lead to paired equilibria, any increase
in the absolute value of D away from 0 will increase the mean fitness of the population. However,
in any given case, r might not be small enough to allow disequilibrium to persist.

P. A. P. Moran (1964) used cases like this to make a dramatic point about the ability of multi-
locus selection to optimize mean fitness. He actually used a somewhat different parameterization
of fitnesses, but the point can be made using Lewontin and Kojima’s model. If, for example, we
take s = t = 0.5, and e = 0.5, so that the fitness table is given in Table 8.5: Then if » > 0.25
the equilibrium D = 0 is stable. With tighter linkage the two paired equilibria in equations (VIII-
44) exist. Notice what happens if » > 0.25 and we start with any nonzero value of D beyond
the equilibrium: D will decrease continuously towards the equilibrium, and as it does the mean
fitness of the population continuously decreases, as shown in Table 8.6. This depressing behavior
will occur at all values of r beyond 0.25. If we start with either positive or negative D, its value
will continually subside toward 0, and from (VIII-30) we can immediately see that this will result
in a continual decline in mean fitness. The phenomenon will occur in the Lewontin-Kojima model
for all positive s and ¢ and for all positive values of e. However for some of them the equilibrium
gene frequencies of 1/2 will be unstable and ultimately one allele will be lost at each locus, and
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Table 8.5: An example showing Moran’s phenomenon

BB Bb bb

AA 1 05 1
Aa | 0.5 1.1 0.5
aa 1 0.5 1

the population mean fitness can increase as that happens. In the cases where the gene frequencies
approach 1/2 at both loci, as they change towards them, in the process mean fitness will tend to
increase. This can counterbalance the decrease of mean fitness by reduction of D.

COADAPTED GENE COMPLEXES AND RECOMBINATION. Moran’s phenomenon
shows that two-locus systems do not automatically maximize mean fitness. The reason seems
basically to be the breakdown of linkage disequilibria by recombination. If there is no recombination
(r = 0) then the mean fitness will be maximized. This can be seen because then the four haplotypes
are inherited as if they were four alleles at a single locus. If we set r = 0 in the equations of
change (VIII-23) they become exactly the same as the multiple-allele equations (II-119), for the
corresponding assignment of fitnesses to genotypes. It follows from this that the mean fitness can
never decrease from one generation to the next.

Recombination reduces the mean fitness by breaking up “coadapted gene complexes” by break-
ing down linkage disequilibrium. Consider the fitnesses shown above in Table 8.5. If we have no
linkage disequilibrium, and are at equilibrium gene frequencies of %, the average fitness of Aa het-
erozygotes will be 0.8, and the average fitness of aa and AA homozygotes will be 0.75, yielding a
mean fitness which is 0.775. But if there is complete linkage, we can have a linkage disequilibrium
which, for example, associates b completely with A, so that there are only two haplotypes in the
population, AB and ab. These will when homozygous have fitness 1, and when heterozygous fitness
1.1. It is clear that this state of affairs has higher mean fitness. The breakdown of the association
between A and b (which is often called “coadaptation”), results in lowered mean fitness. Selection
“wants” to eliminate the repulsion haplotypes Ab and aB, but recombination between the desir-
able haplotypes AB and ab keeps reintroducing them. (It is worth noting that this is one of two
equilibria. There is a symmetrical equilibrium in which A is associated with b and a with b and it
is the two coupling haplotypes AB and ab that selection tries to eliminate.)

By examining (VIII-43) and (VIII-41) it is easy to show that not only can recombination lead
to a continual decrease of mean fitness during the course of evolution, but it leads to an equilibrium
state which has lowered mean fitness. This is quite frequently found in multiple-locus models. If
all alleles at all loci are present at a stable equilibrium, so that all haplotypes are present (as will
be the case when there is also not complete linkage between any pair of loci) we can use the single-
locus multiple-alleles result make a simple argument to this effect. If all haplotypes are present at
equilibrium with or without recombination present, unless the equilibrium haplotype frequencies
with recombination are the same as with no recombination, they must have lower mean fitness,
since the equilibrium haplotype frequencies without recombination are at a local maximum of the
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Table 8.6: Change of D and w in the numerical example

Generation D w
0 0.2000000 0.9510
1 0.1577287 0.8845
2 0.1337493 0.8537
3 0.1175011  0.8357
4 0.1054454 0.8239
5 0.0959848 0.8155
6 0.0882713 0.8093
7 0.0818050 0.8044
8 0.0762684 0.8006
9 0.0714486 0.7975
10 0.0671963 0.7949
11 0.0634033 0.7927
12 0.0599889  0.7908
13 0.0568914 0.7892
14 0.0540627 0.7876
15 0.0514648 0.7867
20 0.0410332 0.7824
25 0.0334432 0.7799
30 0.0276221 0.7784
35 0.0230095 0.7773
40 0.0192763 0.7766
45 0.0162114 0.7762
50 0.0136704 0.7758
00 0 0.775

mean fitness, and as mean fitness is a quadratic function of the haplotype frequencies it cannot
have any other local maximum with all haplotype frequencies present.

This seemingly dysfunctional property of recombination raises the question of why recombina-
tion is present at all. It may be a byproduct of other cellular phenomena, such as DNA repair,
but we will see, later in this Chapter, that there are cases in which recombination is advantageous,
and they must also be taken into account in making an evolutionary explanation of the presence of
recombination.

The notion of an adaptive topography is thus compromised by recombination. There is no rule
that mean fitness always increases, or even sometimes increases, nor is there any rule that the final
mean fitness is above the initial mean fitness. Nevertheless in “real” cases it is often found that
the net effect of selection in the presence of recombination is to increase the mean fitness of the
population, comparing final to initial values. It is just that it does not do so in all cases. The genetic
system is not perfectly designed to increase mean fitness (probably because evolution has had only
a limited opportunity to try alternative genetic systems). But if one cannot be Panglossian and
believe that mean fitness changes are always for the best, your very presence reading these pages is
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Table 8.7: The General Symmetric Model

BB Bb bb
AA | 1-96 1-p l—«a
Aa | 1—7 1 1—7
aa | 1 —« 1-73 1-6

indirect evidence that there have, on the whole, been more increases than decreases of mean fitness
in the course of evolution.

THE GENERAL SYMMETRIC MODEL. Another, less limited model that can be exactly
analyzed is the General Symmetric model, which was first introduced by Bodmer (Bodmer and
Parsons, 1964; Bodmer and Felsenstein, 1967) and was first rigorously analyzed by Karlin and
Feldman (1969, 1970). It is shown in Table 8.7. rigorously

Notice the sense in which this fitness scheme is symmetric. In the Lewontin-Kojima symmetric
model, if we relabeled the fitness table by exchanging the A and « allele symbols, the table would
be unchanged, and this would also be true if we exchanged the B and b allele symbols. In the
General Symmetric model neither of these symmetries exists, because of the difference between «
and §. But in the General Symmetric model if we simultaneously exchange A < a and B < b the
fitness table is unchanged. Lewontin and Kojima’s model is a subcase of this one, the case in which
a = 6.

We will change some of the parameters to make the expressions more meaningful in our pre-
sentation of this model. Suppose that we let

B = s

7=t

a = st+it+e (VIIT-44)
6 = s+t—er

The table of fitnesses then becomes the one shown in Table 8.8. Nevertheless there are symmetric
equilibria as well. These are fairly readily derived. If we assume that the gene frequencies at both
loci and 0.50:0.50, then we can write the gamete frequencies of the four haplotypes as a result of
(VIII-1) and (VIII-2) as

xr1T = % + D
1
Tro = 3 — D
1 (VIII-45)
r3 = % - D
T4 = % + D.

Using these in place of the z; we can write the basic diploid two-locus equations (VIII-23) in terms
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Table 8.8: The General Symmetric Model, reparameterized

BB Bb bb
AA | 1—-s—t+e 1—s l—s—t—ey
Aa 1—t¢ 1 1—t¢
aa | 1—s—t—ey 1—s l—-s—t+e
of D. We have using (VIII-22)
w = (L4+D)(1-s—t+e) + (3-D)(1-5) + (3-D)(1-t) + (:+D)
wy = (3+D)(1-s) + (3—-D)(1—-s—t—e) + (1—-D) + (3+D)(1-1)
(VIII-46)
w3 = (L4+D)1-t)+ (3-D) + (:-D)(1-s—t—e) + (3+D)(1—-1)
wy = (3+D) + 3-D)1-t) + -D)(1-s) + (3+D)1—-s—t+e)
which simplifies to
W, = W4 = 1—2 —%t—i-(z-l-D)el
(VIIL-47)
Wy = W3 = 1—%8—%t—(i—D)€2

The mean fitness is (as is the case with multiple alleles) the weighted mean of these haplotype
mean fitnesses:

2 2 4 4

We can then write the first equation of (VIII-23), assuming z = x;, as

0 = (i—I—D)Q(1—2<%+D>>61+2<3+D> G-D)Qeg—m. (VIII-49)

This is a cubic equation in D, which will in general have three roots, though not always ones that are
feasible. The fact that s and ¢ have cancelled out of the equation suggests that the parameterization
in Table 8.1 is a natural one. Although the solutions of this cubic can be written down explicitly,
the result is not particularly illuminating.

When r = 0 the equation has a particularly simple form (it can also be derived by simply
requiring that w; = wsy). It factors into

o) (o) (o) ion)e) o o

which yields the solutions D = %, D = —i, and

11 1 2 1 2
W = 1——3——t+2<—+D) 61—2<——D> es. (VIII-48)

e1 + eo

D= "=
4(62 — 61)

(VIII-51)
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This is generically similar to the results with Lewontin and Kojima’s model. There are paired
equilibria at complete linkage equilibrium when r = 0, as well as another equilibrium with a modest
amount of linkage disequilibrium. When e; = —es9, the results reduce to those of Lewontin and
Kojima, as they must. The pattern as r is changed is also similar to Lewontin and Kojima’s model.
The paired equilibria approach each other and collide, and at that point the “central” equilibrium
becomes stable, with the amount of linkage disequilibrium it contributes declining rapidly with
increasing r.

For example, when e; = 0.1 and es = —0.15, the central equilibrium when r = 0 has D = 0.05.
Table 8.9 shows the three equilibria in this case as they change with different values of r. For small
values of r, there are paired strong disequilbria, which in fact are stable equilibria, plus an unstable
equilibrium with a positive value of D. As r increases the unstable equilibrium value of D rises,
and the positive stable value falls, and they collide at just above r = 0.014062. These two equilibria
annihilate each other by having complex values of D which are impossible in the real world. That
leaves the negative value of D as the only stable one, and it gradually approaches zero, roughly
inversely with r. Even with free recombination (r = 0.5) the equilibrium value of D is not quite
ZEro.

Table 8.9: Three equilibria of the linkage disequilibrium value D for a general symmetric

model in which e; = 0.1 and e = —0.15. The three equilibrium values of D are
shown, except when they are not achievable values, in this case, when they are complex
numbers.

T

0 -0.25 0.05 0.25

0.01 -0.215109  0.0773891 0.18772

0.011 -0.211441  0.082675  0.178766
0.012 -0.20774 0.089315  0.168425
0.013 -0.204005  0.0985179 0.155487
0.014 -0.200237  0.118186  0.132051
0.01406 | -0.200009  0.123618  0.126391
0.015 -0.196435  — -

0.02 -0.176953 - -
0.03 -0.13637 - -
0.04 -0.0977967 — -
0.05 -0.0685037 — -
0.10 -0.0224614 - -
0.20 -0.0092443 - -
0.30 -0.0058105 — -
0.40 -0.0042360 - -
0.50 -0.0033327 - -

Other patterns of symmetric equilibria are also possible in the General Symmetric model. For
example, when e; = —0.1 and e; = —0.15, there is only one stable equilibrium, which has a small
positive value of D, and that drops gradually toward zero as r increases.

It was long assumed that all the two-locus equilibria of the General Symmetric model must have

302



gene frequencies 0.50: 0.50 at all loci. Karlin and Feldman (1970) made the startling discovery that
there are “unsymmetric” equilibria, which have unequal gene frequencies of A and a (though they
have the same pair of gene frequencies for alleles B and b).

MULTIPLICATIVE OVERDOMINANT LOCI. Most schemes of interaction among loci
are arbitrary. One is not — multiplicative fitnesses. We have noted earlier in this chapter that
fitnesses tend to be multiplicative across loci when the loci do not interact. There has been some
work on linked overdominant loci whose fitnesses are multiplicative. Bodmer and Felsenstein (1967)
showed that there is an equilibrium in such case where the loci are each at their equilibrium gene
frequencies, and they are at linkage equilibrium with each other. However, they also showed that
if the fitnesses were 1 —sy : 1 : 1 —tyand1—s9 : 1 : 1—t9, then if the recombination fraction

t t
ro< ( o1 >< o272 ) (VIII-52)
s1+ 1t S9 +t2

the two loci go into linkage equilibrium with each other and there are two paired equilibria. When
r = 0 the disequilibrium is complete. The haplotype frequencies are easy to compute in that case:
the fitnesses of the three possible genotypes are then either (1 —s1)(1 —s2) : 1 : (1 —1#1)(1 —t2)
or (1 - 81)(1 - tg) 1 (1 - tl)(l - 82).

If such disequilibria form, the haplotypes will be more strongly overdominant than were the
indvidual loci. Franklin and Lewontin (1970) showed by exact iteration of haplotype frequencies
that if there are many overdominant loci sufficiently near each other, the genome could “congeal”
into a small number of haplotypes, each strongly overdominant and at intermediate haplotype
frequencies. Interest in such a phenomenon has waned, since it does not seem to be commonly
found in nature.

SOME PERSPECTIVE ON INTERACTING POLYMORPHISMS. The behaviors in
interacting two-locus polymorphisms are complicated and interesting. It is hard to make many
generalizations. Much work was done on them in the late 1960s and early 1970s. The unstated
hope of that work was that some general rules could be found — perhaps even a function that was
maximized by evolution. We knew from Moran’s result that it would not be mean fitness, but
whatever it was, it would give us insight into how the details of the genetic systems compromised
optimization of fitness.

Alas, we were to be disappointed — the maximand was never found. The advances that were
made tended to be disproofs of generalities rather than proofs of them.

Some interesting cases that were discovered were ones that showed, not an equilibrium, but a
limit cycle. This was suggested by Akin (1979) using approximate methods. Hastings (1981) found
sets of fitnesses that showed these stable limit cycles in exact numerical iterations.

VIIL.5 Intermediate optimum models

A common pattern of natural selection in nature must be for a higher fitness to be associated with
an intermediate value of a character, close to an optimum. Sewall Wright (1935b) investigated
such cases, in the era before the exact effects of linkage disequilibrium could be known. Lewontin
(1964b) and Singh and Lewontin (1966) have used exact computer iteration of haplotype frequencies
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to discover what equilibrium states result from this optimum selection. The models assume that
the loci interact additively to determine a phenotype, with fitness a function of the departure of
the phenotype from an intermediate optimum value.

It should be obvious in such a case that with, say, 10 loci, that optimum selection toward
an intermediate phenotype will be a force to maintain variability at the individual loci, keeping
them segregating in the population. However, this is not the case. Lewontin and Singh and
Lewontin found that the population moved rapidly into a state where all loci had intermediate
gene frequencies, and the mean phenotype was almost precisely at the optimum value. This state
then slowly changed. Individual loci gradually fixed. If we think of the alleles at each loci as + or
- alleles, based on the direction of their effect on the phenotype, then some alleles fixed for the +
allele, and some for the - allele. Ultimately all loci would be fixed, or all but one would be fixed.
The state of the population would be a “mixed” fixation that brought the phenotype close to the
optimum value, with at most one locus still segregating.

For example, if we have 10 loci, (A through J), each with two alleles, and if the phenotype
is simply the number of capital letters in the genotype, then the phenotypes can range from 0
to 20. If the optimum phenotype is 10, the population might end up fixed for the genotype
AABBceDDeef fGGHHiijj. All individuals would then have the optimum phenotype (we have
neglected environmental variance of the phenotype). By contrast, if each locus segregated for
both alleles in equal frequencies, the average phenotype would be 10, but only a small fraction of
individuals would have this phenotypic value. If the optimum was instead 11, no mixed fixation
could achieve this, but if five loci were fixed for the + allele and four for the - allele, the remaining
one locus would show overdominance. Thus by achieving a mixed fixation, the population has
moved toward the highest possible mean fitness.

Wright had already (1935, 1952) argued that the population would proceed toward these mixed-
fixations. There are numbers of them that will be nearly or precisely tied in mean fitness. He
suggested that movement among these equilibria would play a major role in his Shifting Balance
Theory of evolution. Closely related is the model by Lande (1976b) in which there is a line of genetic
equilibria along which genetic drift can move the population, while still keeping the population near
the optimum phenotype.

VIII.6 Selection on modifiers

It has long been known that aspects of the genetic system can be modified by genetic variants.
This includes sizes of genetic effects, dominance, degree of linkage, and rates of mutation. To make
a simple population-genetic model we need to consider a new allele at a modifier locus which has
no direct effect on fitness, but acts by modifying something else such as the fitnesses at another
locus, or the rate of recombination or the rate of mutation.

A simple deterministic haploid model will point out some of the properties of such a case.
Imagine a locus with two alleles, A and a, where allele a is deleterious and maintained by mutation,
with the rate of mutation to a being u. As we saw in Chapter III, the deleterious allele will be
maintained at an equilibrium frequency of u/s. Now suppose that at another locus, allele B arises
which has no effect except that it makes the effect of allele a on fitness smaller. The fitness table
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might be similar to VIII-8:

AB 1

Ab 1

aB 1—-s+E (VIIL-53)
ab 1-—s

Given the recombination fraction between the loci, r, we can ask whether allele B will increase
when rare. Its only effect is to increase the fitness of one genotype, so the answer is yes, it will
increase. It is never selected against. But it will increase very slowly. If the two loci are unlinked,
they will be near linkage equilibrium. If both alleles are rare, allele B will be favored by an amount
E, but only u/s of the time. So it will increase at a rate that corresponds to a selection coefficient
of only (u/s)E. If the increase of fitness E is a fraction f of the original selection coefficient s, this
will be only (u/s)fs which is uf. Thus the selection coefficient favoring B is tiny. This leads us to
wonder whether selection will have much effect in modifying the fitness of allele a.

With tighter recombination, we can analyze this case, though it does not yield to linearizing
the equations of the frequencies of haplotypes, as we did with equation VIII-15 — the terms that
result in increase of the frequency of haplotype aB are quadratic. They are also very small, for
reasonable values of s and u. Tight linkage does not greatly speed up the increase of allele B. It
is hard to avoid the conclusion that modifiers have little influence on the effects of rare deleterious
alleles.

MODIFICATION OF DOMINANCE. There has been a considerable amount of work on
modifiers. R. A. Fisher (1928) proposed that deleterious mutants were often recessive because
modifiers had been selected to increase the fitness of the heterozygotes in which the mutant alleles
were usually found. Sewall Wright (1929a, b) and J. B. S. Haldane (1930a) were skeptical of Fisher’s
argument, as they were more familiar with the biochemistry of gene action, and could see reasons
for dominance that would be much stronger than the weak effects of selection for modifiers of the
fitness of the rare heterozygote. The controversy between Fisher and Wright became heated and
was the occasion for the final breakdown of communications between them. Brian Charlesworth
(1979) has reviewed the evidence, coming down on Wright and Haldane’s side of the argument. His
paper should be consulted for further references.

MODIFICATION OF RECOMBINATION. Natural selection can also modify recombination
rates. A simple model of this would have two loci whose fitnesses interact, and a third locus nearby
whose only effect was to change the rate of recombination between those two loci. In a deterministic
model with constant fitnesses, the same result is always found: if there is epistasis between the
original two loci, the modifier always changes so as to reduce the recombination between them (Nei,
1967; Feldman, 1972; for more recent work see the review by Feldman, Otto, and Christiansen,
1996). The effect of this reduction is to make it less likely that recombination will break up
favorable gene combinations. As we will see below when we discuss linkage disequilibrium created
by genetic drift, this can create opportunities for selection of modifiers that increase levels of
recombination. Feldman, Otto, and Christiansen note some other deterministic scenarios, such as
directional selection, that can also select modifiers that increase recombination.

MODIFICATION OF MUTATION RATE. A more puzzling problem is selection on modifiers
of mutation rates. One would like to think that present-day mutation rates are “tuned” by selection
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of modifiers to achieve the best compromise between having too many deleterious mutations and
too few advantageous mutations. And this is exactly what is found (Holsinger and Feldman, 1983).
But their model is for a completely self-fertilizing species. A similar result was obtained by Leigh
(1970) for asexual organisms. But as Leigh found for outcrossing sexual organisms, there is no
selection for an optimum mutation rate. Selection should act only to decrease the mutation rate.
Liberman and Feldman (1986) have a detailed analysis of a two-locus system in which one locus
modifies the mutation rate of the other, and found the same outcome.

In asexuals or completely selfing species, the mutator allele bears the full responsibility for all
mutations it causes, because they continue to reside in the same descendants where it resides. In
an outcrossing sexual species, the mutator can be irresponsible. It is expected to stay with the
mutations that it causes for only a few generations, segregating away from them quickly. Thus
most deleterious effects they have, and most advantageous effects they have, do not decrease or
increase the frequency of the mutator allele. Thus it is hard to see how a mutation rate optimal
for the species would result.

The exception will be when the modifier of mutation acts locally. If mutations reside nearby,
they will hang around longer and the modifier might have its gene frequencies more nearly reflect
the net effect of the mutation rate that it causes. From this one might predict some conflict
between local mutation rate modifiers and general mutation rate modifiers. The matter has not
been examined either theoretically or empirically.

GENERAL REDUCTION PRINCIPLE. Marc Feldman and his coworkers have generalized
the theory of modifier genes, demonstrating that a large class of modifiers has the property that
their effect is “viability analogous”. In deterministic models, the quantity that the modifier controls
can be treated as if it were the inverse of a viability, and natural selection on the modifier then
acts to decrease the quantity. Feldman and Liberman (1986) showed this for rates of mutation,
recombination, and migration. Altenberg and Feldman (1987) gave the most general proof for many
kinds of modifiable evolutionary parameters. Zhivotovsky, Feldman, and Christiansen (1996) gave
a multiple-locus proof for invasion of new alleles modifying recombination. Of course, the resulting
“reduction principle” cannot be the whole story, otherwise there would be almost no mutation, no
recombination, and no migration.

VIII.7 Genetic drift and linkage

Genetic drift also produces linkage disequilibrium. When there are multiple haplotypes, genetic
drift will change the frequencies of all of them, and this is very unlikely to leave the population
precisely in a state of linkage equilibrium. Of course, it has no tendency to preferentially associate
particular alleles. For any pair of alleles, one at each of two loci, it can lead to either positive or
negative association. Analytical results for the extent of disequilibrium produced by genetic drift
are difficult, and we do not have the extensive space here that they require.

However, we can at least get some rough idea of the amount of linkage disequilibrium produced
by genetic drift by considering a simple case with two alleles at each of two loci, and a population
that starts in linkage equilibrium and undergoes one generation of change. If recombination precedes
genetic drift in the life cycle, there is no change of haplotype frequencies by recombination in this
generation. Genetic drift then changes the haplotype frequency x; of AB, as well as the gene
frequencies of alleles A and B (which we will call p and ¢). If the changes of the four haplotype
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frequencies are, respectively, e1, ea, e3, and e4 then the linkage disequilibrium after the bout of
genetic drift will be

D = z1+e — (p+e+e)(qg+er+e3)

(VIII-54)

= D + e(l-p—q) — e2q — esp+(e1+e2)(er +e3)
The e; are the changes that result from (in the diploid case) multinomial sampling of 2N of the
haplotypes to be the genotypes of the adults. Each of the e; has expectation zero. The variance
of e; is the same as the variance of its z;, the usual multinomial variance z;(1 — x;)/(2N). They
also covary: the covariance of e; and e; is —x; x;/(2N). Putting these together, it can be shown
that E[D’] = 0. To compute the variance we need to compute E[(D’)?], and thus consider the
expectations of all the products of terms in equation (VIII-54). Some of these have three of the
e;, terms such as EleZes]. All of those have expectations with coefficients involving 1/N? or even
higher powers. We will ignore those. After much tedious algebra (and remember, this is the easiest
case) we get

Var (D] ~ p(1— z;)]e\zf(l —4q) (VIIL-55)

That holds at (or near) D = 0, and, as we have omitted terms in higher powers of 1/N, for large
N. What does it mean about the standing variability in D? Naively, we can model D as being
multiplied each generation by (1—17), and then having a random amount ¢ added whose variance is
approximately p(1 —p)q(1—q)/(2N). So if we imagine this process continuing until an equilibrium
variance of D is reached,

Var[D] = Var[1—-7)D + ¢] = (1—7r)*Var[D] + p(1—p)q(1—q)/(2N) (VIII-56)

Solving this for Var [D] we get

~ p(1=p)g(1 —q)
Var [D] = NI = (179 (VIII-57)

or, to good approximation when r is small,

p(1—p)g(1 —q)
4Nr

Var [D] = (VIII-58)
This is an approximation: for small 4Nr it gives a variance higher than can actually be achieved,
since D cannot exceed =+ i. But it does give us an idea when to expect substantial disequilibrium
to be maintained by genetic drift, namely, when 4Nr is not large. An approximation similar to
this was introduced by Sved (1971).

A NUMERICAL EXAMPLE. As an example, suppose that humans have an historical effective
population size of N, ~ 10,000, and note that there is approximately one recombination per 10%
nucleotides in the human genome. We can take the scale over which we expect noticeable linkage
disequilibrium to be the distance along the genome at which 4Nr = 1. If we take the recombination
fraction between points B bases part as 7 = B x 107 then 4N7 = 1 when 40,000 x B x 1078 =1
which is B = 2,500. This calculation was first made by Hill and Robertson (1983). They assumed
N, = 100,000 which gives a shorter distance, B = 250.
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This is a small expected length of tracts of linkage disequilibrium. Disequilibrium in the human
genome extends much further, often tens of kilobases. One likely explanation for this is that
our assumption of a uniform rate of recombination is oversimplified. If recombination actually
has “hotspots”, with low-recombination regions in between, then we expect longer stretches of
disequilibrium when we are in between hotspots, and we expect disequilibrium to have difficulty
extending across a hotspot.

In chapter X, when we discuss coalescent genealogical trees of genes with recombination, we
will return to this calculation and see that it is directly relevant there. As we will see there, treelike
genealogies of haplotypes and regions with strong linkage disequilibrium are really the same thing.

WHY THIS IS NOT QUITE RIGHT. The argument leading to equation (VIII-58) sounds
reasonable, but when examined more carefully, it falls apart. We have casually assumed that
the gene frequencies remain at p and ¢, when there is no force holding them there. As the gene
frequencies drift and the haplotype frequencies drift, there will be a distribution of D around zero.
In the long run the individual loci start to reach fixation. As soon as one locus loses its variation,
the value of D is necessarily zero. If we consider the 7> measure of relative linkage disequilibrium,
which is standardized by /p(1 — p)g(1 — ¢) (Hill and Robertson, 1968) or the D’ measure, which
is standardized by the maximum value that it could have given its sign and the gene frequencies
(Lewontin, 1964a), these become 0/0 as soon as one locus becomes fixed for one allele.

Exact equations can be derived for the expectations of D? in a population undergoing pure
genetic drift without mutation (Hill and Robertson, 1968). These involve the expectations of three
quantities, D%, D(1 — 2p)(1 — 2¢), and p(1 — p)qg(1 — q). Matrix equations can be set up iterat-
ing the expectations from generation to generation, but there is no analytical expression giving
their expectations ¢ generations in the future. The expectation of D? rises and then falls away to
zero. Computer simulations show that 2 = D?/p(1 — p)q(1 — ¢) gradually approaches a stationary
distribution as drift continues. Progress has only recently begun to be made on computing the
expectation of r2 in a future generation (Song and Song, 2007), but Hill and Robertson’s iter-
ation equations can be used to approximate it from the ratio of expectations of numerator and
denominator.

Ewens (2004, section 6.6) discusses work by Ohta and Kimura (1979a, 1979b) which uses diffu-
sion equation methods to obtain analytical expressions for the expectations of the three quantities,
although it requires solving a cubic equation.

An alternative approach to analytical treatment of the expected degree of disequilibrium involves
computing the joint probabilities of identity by descent at two linked loci. This too involves iterating
three probabilities of dual identity, ones in which the two loci are spread over 2, 3, or 4 haplotypes,
and here too analytical formulae are hard to come by (Weir and Cockerham, 1969). These different
approaches are all, in some sense, equivalent.

VIII.8 Genetic drift, linkage disequilibrium, and selection

Once linkage, genetic drift, and selection all interact, it should not surprise anyone that the outcome
is hard to model and hard to discuss. There are, however, some important cases that can be
discussed rather straightforwardly.

HITCHHIKING, SELECTIVE SWEEPS, AND PERIODIC SELECTION. If genetic
drift produces random linkage disequilibria, sometimes of one sign, sometimes another, does this
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Figure 8.6: Final frequency reached by a neutral marker allele, when that allele is
present in all copies of the initial haplotype in which a favored allele occurs at a nearby
locus, and only there. The initial frequency of the haplotype is 0.01, and the selection
coefficient favoring it (s) is either 0.001 or 0.01. The final frequency of the nearby
neutral allele is plotted against the recombination fraction between the two loci.

affect the course of natural selection at a typical locus? The answer is yes (as you should have
suspected from the very fact that I raised it here). The easiest place to see this is in the phenomenon
of hitchhiking. It first was noticed in experimental evolution in bacteria in chemostat populations.
A mysterious phenomenon called periodic selection was encountered. A population of bacteria,
one which had little or no recombination, had a locus with two alleles whose frequencies were
being monitored through time. The frequency remained relatively constant, because the locus was
near enough to being neutral. Then, suddenly, one allele began to rise rapidly in frequency. The
phenomenon was first discussed by Atwood et. al. (1951) who found some cases in which these
perturbations succeeded one another in periodic fashion, hence the name “periodic selection”.

The simplest explanation is that a favorable mutant has arisen at another locus and rapidly
increased in the population. Whichever haplotype it has arisen in rapidly takes over the population.
Thus one of the alleles at the marker locus suddenly increases. When there is no recombination,
that allele at the marker locus will go to fixation, limited only by the rate of mutation away from
that allele at the marker locus, or by mutation at the selected locus.

A subpopulation of haplotypes largely taking over the whole population is referred to as a
selective sweep. The lucky allele at a neutral marker locus increases as a result of hitchhiking, as it
is merely a passenger in a fast-moving selective sweep.

When there is recombination in the population, the hitchhiking effect is less complete. This has
been investigated by Maynard Smith and Haigh (1974) and by Thomson (1977). As the favored
haplotype increases, recombination gradually redistributes the neutral hitchhiking allele from it to
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the nonfavored haplotype, and the favored haplotype also comes to have more and more of the
nonhitchhiking allele. In the end, the increase of the hitchhiking allele is limited — it does not reach
fixation. The favored haplotype sweeps through the population.

Figure 8.6 shows the final frequency of a neutral allele that occurs only in the favored haplotype,
which sweeps upward from an initial frequency of 0.001, and in all copies of that haplotype. The
recombination fraction between the locus under selection and the neutral locus is shown, on a
logarithmic scale. What is noticeable is that more selection means that the region in which linked
neutral alleles are made more frequent by the selective sweep is proportionately larger.

How much the hitchiking allele ends up increasing in the population depends on the selection
coeflicient s of the favored haplotype, and the recombination fraction r between the hitchiking locus
and the selected site on the favored haplotype. In fact, it depends almost entirely on the ratio s/r.
If s is doubled, the favored haplotype moves through the population roughly twice as fast, as we
have seen in Chapter II. The amount of gene flow at the neutral locus into the favored haplotype
is less the faster that haplotype increases, as then there is simply less time for recombination to
move gene copies at the neutral locus into the favored haplotype from the less favored haplotype.
To have the same amount of net gene flow (at the neutral locus) into the favored haplotype, we
need to have twice as much recombination. So the ratio s/r is important to the net effect on the
hitchiking neutral locus.

If s/r is large, there will be a large hitchhiking effect and the marker alleles in the original
favored haplotype will be swept nearly to fixation. If s/r is small, the population composition at
the neutral marker locus will be little changed by the selective sweep. The length of chromosome
that is swept through the population is enough that the recombination fraction between the loci is
proportional to s.

Another consideration is the initial frequency of the favored haplotype. If it is very low, it
will take a longer time until it approaches fixation, with correspondingly more gene flow between
favored and unfavored haplotypes and thus less net effect on the population frequency of the marker
locus. So the amount of recombination necessary to prevent a selective sweep from having much
effect is not only a function of s/r.

THE HILL-ROBERTSON EFFECT. What about the effect of two selected loci on each other?
This was investigated by Hill and Robertson (1966). They discovered a phenomenon which has
come to be called the Hill-Robertson Effect. Two closely linked selected loci each interfere with the
effectiveness of selection at the other locus. This effect is strongest when the recombination fraction
is small enough that 4 Nr is small, and the effect of selection on the other locus is substantial when
4N s is greater than 1.

I will give one verbal argument and one simple derivation for a special case to persuade you of
this. The verbal argument considers the effect of a selected locus on the effective population size
which is relevant to the other locus. We have already seen in Chapter VI that variation in fitness
from individual to individual reduces effective population size (see, for example, equations VI-53
and VI-57). Note that the variation could be environmental, or it could be the result of genetic
variation at other loci. If the background loci are far away, their genotypes in the descendants
change greatly over a rather short time scale. An haplotype in this generation may carry allele B
— in a few generations a typical descendant may instead carry allele b at that locus. But if the
background loci are closely linked, B hangs around for many generations in the descendants. This
magnifies its effect. If B raises the fitness, it continues to do so for some time, and similarly if allele
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b lowers the fitness, descendants have their fitness lowered as well.

Thus linked background loci can cause large swings up and down of haplotype frequency. It is
as though effective population size at a locus were small. Each locus does this to its neighbors on
the chromosome.

A simple case. Hill and Robertson gave approximations, verbal arguments, and computer
simulations. We can demonstrate the phenomenon more precisely in one simple case. Suppose that
we have a haploid population with two loci that are completely linked. Each has a favored allele
that increases the fitness by a fraction s. Both loci initially have precisely one copy of the favored
allele (there is no additional mutation beyond the occurrence of these favored alleles).

If we have one copy each, and there is no initial association between the favored alleles, there
are two cases. 1 — 1/N of the time the two copies are on different haploid genomes. 1/N of the
time they are on the same haploid genome. Now use the haploid version of Kimura’s formula for
fixation probability. This is equivalent to equation (VII-88) but with the population size N halved.

Thus
1 — exp(—2Nsp)

1 — exp(—2Ns)
Considering a favored mutant at one of our two loci, in the case where the mutants are on different
haploid genomes, it is as if they were copies of the same allele. The probability that one or the
other of them fixes is U(2/N, s), and if it does, the probability that it is the copy at the particular
locus that we are watching is 1/2. If the two copies are in the same haploid genome, the chance that
they fix is U(1/N,2s), and then they do the particular favored mutant fixes. So the net probability
that it fixes is the weighted average of these fixation probabilities:

Ulp,s) = (VIII-59)

(%) U(1/N,2s) + (1 - %) 5 UQ/N,5) (VIIL-60)

We can compare this to the fixation probability of a single copy of the favorable allele at one locus,
with no other selection happening nearby. This is simply U(1/N,s).

Figure 8.7 shows the ratio of the fixation probabilities of the two-locus and one-locus cases,
when N = 100,000 and various values of s. For small s, the one- and two-locus cases have almost
the same fixation probability. As s passes 0.1, the selection at a nearby locus starts to have a
noticeable effect in reducing the fixation probability.

What is happening is that genetic drift creates random linkage disequilibrium between the two
loci. Sometimes it is coupling disequilibrium, with the two favored alleles on the same haplotype.
Sometimes it is repulsion disequilibrium, with the two favored alleles on different haplotypes. In
the first case the two favored alleles help each other — the fitness difference between A and a is
twice as great as it would be without the disequilibrium. Selection at each locus helps the favored
allele at the other. In the second case, the repulsion disequilibrium means that selection at each
locus slows the response at the other one.

You might suspect that this will all cancel out in the end, that the net result will be that the
change at each locus is not affected by the selection at the other. The results of Hill and Robertson,
and the simple calculation presented here, show that this is not so — the negative effects of repulsion
disequilibrium are stronger than the positive effects of coupling disequilibrium. The more closely
the two loci are linked, the longer the random disequilibrium will persist, and the larger its net
effect will be.
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Figure 8.7: The fixation probability of a favored allele when another of the same selection
coefficient is tightly linked but not on average associated with it. What is plotted is the
relative fixation probability, compared to the case where there is no other selected locus
nearby. The haploid model discussed in the text is used. Computed using equations
(VIII-60) and (VIII-59).

It is important to realize that, although this is an effect of linkage disequilibrium, it is quite
distinct from the deterministic effects of linkage disequilibrium caused by interaction of the fitnesses
at the two loci. The Hill-Robertson effect occurs even when the loci have multiplicative fitnesses
(so that their fitnesses in effect do not interact). When there are both deterministic and random
linkage disequilibria, it will often be the case that the random linkage disequilibrium will cause a
Hill-Robertson effect that will be far more noticeable than the effects of the deterministic linkage
disequilibrium.

IMPLICATIONS OF THE HILL-ROBERTSON EFFECT. The Hill-Robertson effect
occurs in any case where linked loci are undergoing natural selection and genetic drift. As such, it
shows up in many guises. Some are:

Muller’s Ratchet H. J. Muller (1958, 1964) noticed that when deleterious mutations accumulate
in a nonrecombining genome, it is possible to get into a state in which all haplotypes have
at least one deleterious mutant. Natural selection alone cannot then eliminate all deleterious
mutations. He noted (1964, p. 8) that

If we disregard advantageous mutations ... we find that an asexual population
incorporates a kind of ratchet mechanism, such that it can never get to contain,
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Figure 8.8: Haplotypes from an asexual haploid population of size 20, from a simulation
of natural selection against deleterious mutants in which the population has just reached
a state in which Muller’s Ratchet advances, with each haplotype containing at least one
deleterious mutation.

in any of its lines, a load of mutations smaller than that already existing in its at
present least-loaded lines.

This has come to be called “Muller’s Ratchet”. Figure 8.8 shows a population of asexual
haploids at the moment when the mutant-free chromosomes have been lost. Every chromo-
some has at least one deleterious mutant allele, though no locus is yet fixed for the deleterious
allele. The ratchet has advanced; from now on every haploid genotype will contain at least
one deleterious mutant allele. As further deleterious mutations occur, the ratchet will operate
repeatedly. The species continually loses ground. The ratchet can be unsprung by recom-
bination, which can reintroduce haplotypes that have no recombination. In the absence of
recombination only back mutation can undo the ratchet, and that will be a weak force unless
most loci have accumulated deleterious mutations.

The Fisher-Muller explanation for the evolution of recombination Earlier R. A. Fisher
(1930) and H. J. Muller (1932, 1958) had described another related phenomenon. They
both, apparently independently, realized that if there were selective sweeps occurring at mul-
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tiple tightly-linked loci, that the selection for favorable alleles at one locus could interfere
with the response at another. If there is no recombination, and two favorable alleles arise,
they will mostly arise in different haplotypes, and then both cannot reach fixation — one or
the other would ultimately be lost. Of course, there is a small chance that the second of
them to arise would arise in the descendants of the first, in which case they would help each
other reach fixation. They pointed out that this showed a strong advantage of recombination
— favorable mutants arising in different individuals can become combined into one genome.
This was the first valid explanation for the evolution of recombination based on its genetic
effects. (Previous arguments that recombination “creates variation” were based on misun-
derstandings of the population genetics of multiple loci, and were not correct — unfortunately
those arguments are still often found in textbooks).

The Fisher-Muller phenomenon was, like Muller’s ratchet, a special case of the Hill-Robertson
effect. In a haploid case, in the Fisher-Muller case the favored alleles start at frequency 1/N
each. In the Muller’s ratchet case they start at 1 — 1/N instead. Otherwise the advantage
of recombination has the same source. Crow and Kimura (1965) gave approximate formulae
for the degree of advantage of recombination. Felsenstein (1974) modified these and showed
the results of computer simulation verifying the reality of the phenomenon. Felsenstein and
Yokoyama (1976) showed that it could also lead to selection for a modifier of the amount of
recombination.

Background selection Deleterious mutations occur throughout the genome, and are generally
held to low frequency by countervailing natural selection. It is to be expected from the Hill-
Robertson effect that in regions of the genome in which recombination is restricted, random
linkage disequilibrium between the deleterious alleles will on average lead selection against
them to be less effective. This has come to be called “background selection”. Charlesworth
(1994) argued that, for loci that are tightly linked, it is approximately equivalent to a reduction
of the effective population size to the fraction of mutation-free haplotypes.

The degeneration of Y chromosomes A dramatic application of the Hill-Robertson effect was
made by Charlesworth (1978b). Although attempts had been made to model the degeneration
of Y chromosomes in X/Y sex determination systems, there had been no convincing expla-
nation for the fact that functional genes tend to largely disappear from the Y chromosomes,
but to remain on X chromosomes. Charlesworth realized that Muller’s ratchet provided an
explanation. Y chromosomes are under strong selection to have no recombination with the
corresponding X chromosomes. Thus Y chromosomes become clonally reproducing, and they
never have opportunities to recombine with each other. X chromosomes do have opportunities
to recombine with each other in females. The Y chromosomes are then subject to Muller’s
Ratchet, which makes the functional gene copies disappear, leaving behind a genetic desert,
with only sex-determining genes maintained. As the functional genes disappear, there will be
stronger and stronger selection for “dosage compensation” for them, in which single copies
on the X are made to function as well as two copies do in the female. Charlesworth’s paper
is a landmark in the understanding of the evolution of Y chromosomes.
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VIII.9 Migration and linkage disequilibrium

Selection and genetic drift can both create linkage disequilibrium. So can migration. I have already
discussed this in Chapter IV. It was discussed by Cavalli-Sforza and Bodmer (1971, p. 69) and by
Prout in Mitton and Koehn (1973). We have seen in equations (IV-10) and (IV-11) that, even if
there is no linkage disequilibrium in any population, a mixture of populations can be in linkage
disequilibrium if the gene frequencies of alleles at the two loci covary across populations. Thus,
if we have one population that is all AABB, and another that is all aabb, then each is in linkage
equilibrium. But if we make a mixture of the two (in any nontrivial proportion), there will be
strong linkage disequilibrium in the mixture. If gene flow continues into the admixed population,
this will continually reinforce the linkage disequilibrium even as it dies away owing to random
mating within the populations. As the gene frequencies in the source populations become more
similar, the amount of linkage disequilibrium created by migration becomes smaller and smaller,
so ultimately all of the disequilibrium disappears.

One situation in which linkage disequilibrium will be maintained is when natural selection
keeps the gene frequencies in the populations different. The linkage disequilibrium within each
population is then maintained at an equilibrium, where it is both dying away by recombination
and also constantly replenished by immigration. This has been discussed by Li and Nei (1974) and
by Feldman and Christiansen (1974), and most completely for the case of selective clines by Slatkin
(1975).

Exercises

1. Suppose that we have an infinite haploid population, and two loci that are completely linked
(with no recombination between them), and that there are two alleles at each locus (A and
a, B and b). If the initial haplotype frequencies of AB, Ab, aB, and ab are 0.01, 0.03, 0.03,
and 0.93, and the fitnesses of the haploid genotypes are

AB Ab aB ab
2 1 2 1

if we wait 5 generations, what will be

(a) The gene frequency of A 7

(b) The gene frequency of B ?

(¢) The crossproduct ratio measure of linkage disequilibrium ?
)

(d) The usual measure of linkage disequilibrium D ?

2. Suppose that in an infinite haploid population, with two loci, each of which has two alleles,
that the fitnesses of the four possible haplotypes are

AB Ab aB ab
1.1 1 1 11

If we start with equal frequencies of each of these four haplotypes, and no recombination
between the loci what happens to the haplotype frequencies? What would happen (qualita-
tively) if the population were instead large but finite?
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3. In the cases of the previous question, what would happen if there were a small amount (say
0.01) of recombination between the loci?

4. Suppose that we have, in an infinite diploid population two loci, each with two alleles, and
at each locus the fitnesses are 1/2 : 1 : 1/2. Suppose that the two loci do not interact, so
that the fitnesses are multiplicate across loci (the fitness of AA BB, for example, is 1/4). Use
the Lewontin-Kojima results to calculate whether we expect linkage disequilibrium between
these loci, and how this depends on the recombination fraction 7.

5. A locus is a “balanced lethal system” if there are two alleles, and all homozygotes die. Suppose
that there are two balanced lethal systems linked to each other with recombination fraction r,
in an infinite population. Is there a value of the recombination fraction below which there will
be expected not to be linkage equilibrium? Assume, of course, that only double heterozygotes
survive. Owing to having only two possible genotypes of the surviving adults, you should be
able to work this out exactly.

Complements/Problems

1. For the case in Exercise 2 above, where the haplotype frequencies have fitnesses 1.1 : 1 : 1 :
1.1, if there is a recombination fraction r, calculate what the equilibrium frequencies of the
haplotypes will be as a function of r for the interior equilibrium at which the gene frequencies
at both loci are 1/2. Is this situation stable?

2. Consider a neutral locus with two alleles, B and b, which is tightly linked to an overdominant
locus with two alleles, tightly enough that there is no recombination. Describe some of the
possible outcomes if we start with all haplotypes present, in a finite population. Include a
description of the final equilibrium states, as well as states that persist a long time, but not
indefinitely.

3. Set up the equations for one generation of change in the frequencies of the haplotypes at two
linked loci, each with two alleles, where one of them is under (haploid) natural selection with
fitnesses 1+ s : 1 and the other one is neutral. Can you write a computer program to iterate
these equations for ¢ generations? If we start with a population that is mostly ab with a
low frequency (such as 0.001) of AB, can you verify some of the final gene frequencies of the
neutral allele after the selective sweep is over, as shown in Figure 8.67
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Chapter I1X

QUANTITATIVE CHARACTERS

IX.1 What is a Quantitative Character?

We have seen the complexity of treating the effects of natural selection with multiple loci. Hardly
any generalities are available in such a case. Yet animal and plant breeders need to be able to
predict the outcome of artificial selection on traits of economic interest, traits which are undoubtedly
affected by many loci and alleles. Evolutionists need to be able to interpret natural variation in
measurable characters and make statements about the strength of the evolutionary forces involved
in the maintenance of the variation. Human geneticists are also frequently confronted with traits
which are polygenic, that is, affected significantly by many loci. They must be able to compute the
probabilities of various outcomes in an unborn child, or in an individual thought to be at risk of
developing a condition later in life.

If so little could be said about outcomes when we knew the fitnesses of all genotypes and their
frequencies, we at least had recourse to strongarm methods for computing gamete frequencies in
successive generations. This is inelegant and computationally difficult, but at least it is possible
when all fitnesses and genotype frequencies are known. Unfortunately, in the particular applica-
tions just mentioned, this is not the case. In each case we are usually dealing not with discrete
phenotypes, but with a continuously measurable trait, such as height, length of jaw, or blood glu-
cose concentration. Sometimes we are instead measuring a count of discrete entities. These cases
are respectively that of a quantitative character and of a meristic character. Even when we believe
ourselves to be dealing with truly discrete phenotypes, we are often actually measuring a quantita-
tive character. Recall that Mendel’s original characters included the height of the pea plant. The
key to his ability to make a single-gene analysis of this character was the fact that the distribution
of available phenotypes resolved itself into two distinct peaks, which could be assigned the names
“tall” and “short”. There were so few plants of medium height that Mendel was able to discretize
this particular quantitative character.

Figure 9.1 shows another, hypothetical example. Here we have a single locus with two alleles,
B and b. Each of the three genotypes has a particular distribution of phenotypes. There is no
general rule as to what the distribution of phenotypes will be which we get from a given genotype.
However we should be able to characterize such a distribution by, among other things, its mean.
The means of the distributions in our example are:
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BB Bb bb
) 4 2

In the different parts of the Figure we see cases with different amounts of variability in each
of the three distributions. Of course, when we observe a population with a certain gene frequency
(in the Figure it is 0.4) we cannot tell which individuals come from which distributions if the
distributions overlap. As the variability of the distributions increases, we find first that there
comes to be overlap, with ambiguity as to the genotypes of many individuals whose phenotypes
we observe. But at this point we can still tell that there are three component peaks in the overall
distribution of phenotypes. However, when variability of the individual genotypes becomes greater
still, the peaks disappear and all we see is one broad peak. The same thing happens if there is
more than one locus. If the genotypic means are:

BB Bb bb
AA | 65 6 4
Aa | 55 5 35
aa | 4.5 3 2

and we have linkage equilibrium with py = 0.4 and pp = 0.5, then Figure 9.2 shows the distribu-
tions of phenotypes which we might see with different amounts of variability in the distribution of
phenotypes produced by a genotype. Once again, we see distinct nonoverlapping phenotypes when
the variability is small, but as the variability increases our ability to identify genotypes declines,
until ultimately there is only a single smooth distribution.

If this is the situation when we observe a quantitative character, how can we have any hope of
predicting effects of selection or phenotypes of relatives if we are ignorant of the exact genetic basis
of a trait, and therefore also of genotype frequencies? In the general case, there is nothing that can
be done. But if we are willing to make a certain kind of oversimplified model of the way genes and
environment act to determine the phenotype, we find that general rules do exist, providing us with
useful guidelines for plant and animal breeding and medical genetics. It is with this approximate
approach that we concern ourselves for the rest of this chapter.

IX.2 The Model

Our model the quantitative character will be determined by some number of loci, plus some envi-
ronmental influences. We make a series of rather restrictive assumptions:

Assumption No. 1. The phenotype is the sum of effects contributed by each of the n loci, plus
an environmental effect, so that we may write

P=gi+g+..+g,+e (IX-1)

This is really a very special assumption. It places strong constraints on the kinds of gene interaction
which may be present. In real life genes concerned with a trait may interact in wondrous ways.
But in our model, the effect of changing the genotype at one locus is always to add or subtract
the same increment to the phenotype. For example, with four loci the following scheme is one that
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Figure 9.1: Phenotype distributions from a one-locus genetic model with various
amounts of variability in the distributions produced by the genotypes. There are three
genotypes BB, Bb, and bb whose mean phenotypes are 5, 4, and 2. The gene frequency
of Bis 0.6. The component distributions used here are lognormal with equal variances
on the log scale. Standard deviations on the log scale are, for the top, middle, and
bottom graphs, 0.02, 0.10, and 0.35.

satisfies our assumptions:

9 if AA 1 if BB 2 if OC 0.3 if DD .
P27 itda S+ 0 it Y4l 2 ifce V4l 2 ifpg 4 cnvironmental
6 if aa 1 b 0 if cc 0.3 if dd effect
(IX-2)

This scheme predicts that the phenotype of an AA Bb cc DD individual will be 9 + 0 + 0 + 0.3, plus
an environmental effect. Similarly we can determine from this scheme the genotypic contribution to
the phenotypes for each of the other 80 possible genotypes. Note that the 81 genotype contributions
are here specified by 12 quantities, so we immediately see that not all phenotypic schemes can be
specified in this fashion. For instance, try as you may you will not be able to find two sets of 3
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Figure 9.2: Phenotype distribution produced by a two-locus model. See text for details
of the genetics. (In this example lognormal distributions with equal variances in the log
scale are used for the distributions of the phenotypes). Standard deviations on the log
scale are, for the top, middle, and bottom graphs, 0.01, 0.10, and 0.3.

contributions each which will result in the phenotypes in the two-locus example of the previous
section, the example which gave rise to Figure 9.2. To prove that it can’t be done, you should
(for example) compare the effect of substituting Bb for BB in a genotype which has AA at the
other locus, with the substitution of Bb for BB in an aa individual. Under our model both of these
substitutions must have the same effect, which they do not have in this two-locus example.

Assumption No. 2: The genotypes at the n loci are independent of each other.

This amounts to the statement that the population is in linkage equilibrium at all combinations
of loci. It will be violated by any force which tends to produce linkage disequilibrium, such as
selection of many types, random genetic drift, and migration. In animal and plant breeding, and
also in human genetics, artificial crossing or human migration is quite likely to result in a population
which is initially in linkage disequilibrium and has not had enough time to come back to linkage
equilibrium.

Assumption No. 3: The environmental contribution to the phenotype is drawn from a distribu-
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tion independently of the genotype and independently of the environmental contributions in other
individuals.

This is the assumption most frequently violated in a serious fashion when quantitative genetics
theory is used to analyze data. It can be seen that the general tendency of these assumptions is
to erect a model of a phenotype determined by additive independent causes, with only the genetic
factors being shared among relatives. As we shall see, the correlations among relatives can then be
used to make some statements about the genetics of the trait. But when environmental factors act
which are common to relatives, then unless this is known it may cause us to mistake the resulting
correlations of phenotypes for evidence of genetic factors, if we are mistakenly making Assumption
3.

In addition to excluding environmentally-based correlations of relatives, these assumptions ex-
clude interactions between loci by requiring locus effects to be additive, and they also exclude
correlation of environmental effects with genotypic effects; this may be violated if the presence of a
particular genotype makes more likely the presence of a particular environment. Such a correlation
leads to confounding of the effects of these factors, and consequent inability to distinguish them.

Note, however, that dominance (an interaction between the two alleles at a single locus) is not
excluded. In the four locus scheme in (IX-2) C'is completely dominant over ¢ with respect to their
contribution to phenotype P. D and d are overdominant, a is partially dominant over A, and there
is complete absence of dominance at the B locus. This ability to include dominance leads to many
interesting complications.

SCALE TRANSFORMATIONS. Everything said so far assumes that that the genes act
additively on the scale which we happen to be measuring. But it is by no means obvious that the
scale we measure is the scale on on which additivity occurs. Suppose that we measured the weight
of an animal. The weight will be closely related to body volume in most cases. But why do we
assume that genes add increments to the volume? Could they not as easily act additively on the
linear dimensions of the organism, with the volume (and hence the weight) being simply the cube of
a linear size measurement? Is it not even possible that the genes are additive on the cross-sectional
area, with volume being proportional to the 3/2 power of this quantity, and length to its square
root? Faced with this diversity of possibilities, what are we to do?

If we knew something about the way genes acted in contributing to the character, we could
gain some insight into what is the proper scale. But this presumes the very thing we are most
likely not to know, once we have been forced to the unpleasant expedient of using quantitative
genetic theory. Alternatively, we can make use of a family of scale transformations such as the
power transformation

Yy = w +1 (IX-3)

p

which gives us a wide variety of scale changes by varying one parameter, p. When p = 1 it is no
change of scale at all. When p = 1/2 or 1/3 we get the square root or cube root, and so on, and
when p = 0 it can be shown (by L’Hopital’s Rule) that (IX-3) becomes y = 1 + Inx. There is
nothing in (IX-3) that prevents p from being greater than 1 or less than zero, and these may be
useful regions to consider. One would in theory make analyses of one’s data for various values of
p, pick the value which resulted in the best fit, and then attempt to correct for the fact that p is
estimated from the same data by reducing the degrees of freedom in the analysis by one.
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The value p = 0 is special because the logarithm will often be a highly reasonable scale on
which to assume additivity. In particular, if the various genotypic and environmental factors act
multiplicatively on the original scale, they will be found to act additively on the logarithm of the
measurement, since In(zy) = Inx + Iny. Multiplicative action of factors is easy to envision if
we can persuade ourself that a given factor (whether genetic or environmental) acts by making a
percentage increment in the trait rather than an absolute increment. This will frequently be quite
reasonable. It is certainly easier to envision a genotypic change as acting to increase (say) weight
by 10% of its previous value, rather than by an absolute amount of 10 grams. If so, then the change
multiplies weight by 1.1, and by taking logarithms we see that it adds the amount In(1.1) = 0.0953
to the logarithm of the weight.

Multiplicative gene action is certainly more reasonable than additive gene action when we are
dealing with traits which have a natural zero point. If one subtracts fixed amounts from a quantity
it may become negative, but if one multiplies by fixed positive quantities it can at worst approach
zero. Thus if a particular change is supposed to have the effect of decreasing the weight by 10g, we
are faced with the problem that this may be unreasonable if the weight starts out at 9g. But if it
decreases weight by 20%, this may be 10g if the organism starts at 50g but is only 1.8¢ if it starts
at 9g. We then never predict a negative weight.

Some quantitative genetic theory (that concerned with response to selection) and much data
analysis requires that we assume that the character follows a normal distribution. If our character
has a natural zero point, it cannot exactly follow a normal distribution, for that distribution has tails
which spread out to 400 and —oo. The lower tail would predict the existence of individuals with
negative phenotypes. It may still be a good enough approximation to use in practice, but there is at
least then some pressure (if only from slight embarrassment) to consider taking logarithms. For if
the logarithm of the phenotype were the quantity which was normally distributed, then as it went to
—oo the original phenotype would only approach zero. So it is entirely conceivable that a trait with
a natural zero point has its logarithm normally distributed. I would go so far as to state a Principle:

For a trait with a natural zero point, first take the logarithm of the pheno-
types and base analysis on it. Do not return to the original scale unless you
can come up with positive reasons why the genetic or environmental factors
are likely to act additively on that scale.

This must be taken with a grain of salt. It is certainly better than always staying on the original
scale. But it would be better yet to estimate the appropriate scale from some data set, as with the
family of transformations (IX-3).

IX.3 Means

A ONE-LOCUS ANALYSIS. One of the properties of an additive model of the phenotype is
that it greatly simplifies formulas for the mean and variance of the character. In this section we
concentrate on the mean. It is always true (even if the individual terms are not independent) that
the expectation of a sum is the sum of the individual expectations, so that from (IX-1)

E(P) = E(g1) + E(g2) + ... + E(gn) + E(e). (IX-4)
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We are going to work with the individual terms E(g;), with a view to establishing relationships
which hold for a single locus. However (IX-4) will enable us to assert that these relationships also
hold for the whole phenotype, so that we are accomplishing more than we seem to be. However we
must first do something about the term E(e). This will be the mean of the environmental effects
on all members of the population. It is often conveniently disposed of by assuming that it is zero.
This does not involve any extra assumption. Consider expression (IX-2) to see this point: we might
assume that the effects at (say) the first locus were 9, 7, and 6 for AA, Aa, and aa while the mean
environmental effect was (say) 2.3. But how would this differ from assuming that the effects of
genotypes at the first locus were 11.3, 9.3, and 8.3 with a mean environmental effect of zero? In
fact, both schemes make the same prediction of the phenotype of any particular genotype. We have
simply removed 2.3 from the postulated environmental effect in each individual, only to add it to
the postulated contribution of the first locus.

We could have as easily moved any amount we wanted to from one locus to another. In assuming
that E(e) = 0 we make no restrictive assumption. The reader who is troubled by the sleight-of-
hand involved here may take comfort in the realization that we actually need not go through the
procedure at all. All of the relationships we investigate involve the effects on the mean phenotype
of a given genetic change. So we are actually investigating differences between the means under
two situations. The implicit assumption is that we have changed only the genotypes and not the
environments. That in turn requires that the environmental effects, or at least their mean, be
independent of the genotypic effects. Then writing (IX-1) as P = G + E we have

E(P*)—E(P) = E(G") —E(G)+E(F) —E(E) = E(G") - E(G), (IX-5)

where the asterisk denotes the population after some genetic change. Thus we can ignore the
environmental effects in computing changes in the mean, provided our assumptions are satisfied.

INBREEDING EFFECTS. We have seen that we can gain insight into a multi-locus trait by
considering one locus at a time. If we have a single locus with two alleles, and the contributions of
AA, Aa, and aa to the phenotype are respectively a1, ai2, and ass, then the contribution of this
locus to the mean is

E(g) = Pai+Q a2 + R ag (IX-6)

where P, (), and R are the genotype frequencies. We are interested in the effects of inbreeding on
the population mean phenotype. When the population has gene frequency p of A and inbreeding
coefficient f, then using our standard genotype frequency formulas given in (V-2),

E(g) = (01— f)+pflan + 2p(1=p)(1 = flaiz + [(1=p)* (1= f)+ (1~ p)f] az

= plan +2p(1 —plaz + (1 —p)laze + [fp(1—p) [a11 + az — 2a12).
(IX-7)
The first three terms, which lack f, are simply the mean contribution in an outbred population.
Note that f enters into (IX-7) linearly, with no terms in f2. This means that each locus has a mean
contribution of the form A 4+ Bf, where the gene frequencies enter into A and B. Then the overall
phenotypic mean is of the form Y A + f(>_ B), which will also be linear in f. Thus we have the
general result that the mean phenotype is expected to be linearly related to the inbreeding coefficient

f.
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But in which direction should the phenotype be expected to change? What will be the sign of
> B? It is much less easy to come up with a general rule, but quite often ) B is negative. Note
that the quantity in brackets in the last term of (IX-7) is

+
[(111 + a9 — 20,12] = 2 [L;m - (112:| . (IX—8)

If aq2 is equal to the average of a1 and asg, in other words if the heterozygote contribution is the
average of the two homozygote contributions, then this quantity is zero. When a2 exceeds this
average, then the mean declines with inbreeding (note the plus sign preceding this term in (IX-7)).
When a1 is less than the average, inbreeding raises the population mean. This refers to a single
locus only: the general picture will be that inbreeding will increase the mean contribution at some
loci and decrease it at others. The net effect of inbreeding will depend on the overall sign of > B,
there being no reason to expect B always to have the same sign. However there does appear to
be a vague generalization available: If the trait is positively correlated with vigor, size, or fitness,
inbreeding tends to reduce it. It seems that the heterozygote tends to be closer to the higher
homozygote, so that B tends on average to be negative.

This observation was made in the early years of the century, by the pioneering corn geneticists
E. M. East and D. F. Jones (1919), and G. H. Shull (1908). East and Jones proposed alternative
theories of the occurrence of inbreeding depression. East (1936) favored the view that the individual
loci connected with yield in corn were overdominant. Jones (1917) proposed an alternative hypoth-
esis that the individual loci tended to have the allele with the higher homozygote be dominant.
There is no way of distinguishing these hypotheses simply from examination of the mean: both
predict inbreeding depression, and values of the a;; can be chosen under either hypothesis to predict
any degree of inbreeding. The controversy over these two views has continued to the present day,
taking a biochemical form in the arguments of Muller (1950) and Fincham (1972). It is a curious
fact that East and Jones were colleagues and close collaborators at Harvard for many years. Their
work and Shull’s laid the basis for the spectacular success of hybrid corn in the American midwest
in the 1930’s. I suspect that the fascination with genetic effects of inbreeding in the early 1900s
owed something to the fact that Mendelian genetics had explanations for it, while in pre-Mendelian
theories it had no explanation.

The qualification which must be made to this picture is that we assumed that there is no change
of gene frequency during inbreeding, which is to say that there is no selection. Of course formulas
(V-2) do not assume that gene frequencies remain at p in any one inbred line: they only assume
that the gene frequency is on average p over all inbred lines, if there are a great many of them.
This amounts to a no-selection assumption. But we have invoked the correlation of the trait with
fitness to obtain an expected direction for inbreeding changes! So there is quite likely to be natural
selection on the trait itself during inbreeding, resulting in a higher mean phenotype than predicted
here, though probably still depressed somewhat. In addition we have seen in the previous chapter
that selection at nearby loci (associative overdominance) will tend to retard genetic drift in finite
populations. This phenomenon will also occur in most lines during the course of inbreeding, and
tend to have a further effect in slowing the course of inbreeding depression.

MEANS OF CROSSES AND BACKCROSSES. The second derivation we shall do con-
cerning means involves the related question of crosses between pure lines. Suppose that we have
two completely inbred lines. If one is fixed for A and the other for a, the mean contributions
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of this locus are P; = a1; and P» = agy respectively. If we now cross these lines to get an F1
strain, the mean contribution in that strain is F; = ais, since it is necessarily composed entirely of
heterozygotes. Therefore there is no prediction that we can make of the F1 mean from the mean of
the two parental populations, since knowing a;; and age does not allow us to predict a;o as long as
there are no general rules concerning dominance. One might think that there would be no further
generalizations which could be made. But consider the F2 and the two possible backcrosses. In the
former case the genotypic composition is 1/4 AA, 1/2 Aa, and 1/4 aa, so that

1 1
Fy = jai +sa12 + jaz

(3a11 + 3a22) + 5a12 (IX-9)
= L3R +iR) A

NI—= ]

This linear relationship holds for the contributions at each locus separately, and therefore will also
hold for the overall phenotypic means as well. Now we have a prediction of the F2 phenotypic mean
from those of the P1, P2, and F1 strains. In effect, what it tells us is that if we consider the F1
mean as well as the “midparent” (the average of the two parental strains), that although the F1
may differ from the midparent, the F2 will have moved halfway back toward the midparent. This
is commonly found in hybrid corn: where the F1 is far superior to the original parental lines, the
F2 falls far back down towards the parent lines’ performance, primarily as a result of the formation
of inferior homozygotes.

Noting that the F2 is in Hardy-Weinberg proportions, the F3 will be the same as the F2,
provided that it is formed by cross-fertilization of F2 individuals. If it is formed by selfing, the
decline toward the midparental value will continue. The backcrosses BC1 = F1 x P1 and BC2 =
F1 x P2 follow similar rules, e.g.

BC, = %an + %alg = %Pl + %Fl. (IX—lO)
so that each backcross should have a mean equal to the average of its parents’ means, unlike the
F1 and the F2.

Our entire derivation has assumed that A is fixed in one parent and a in the other, but the
resulting rules are far more general. If the same allele is fixed in both populations, the same rules
are easily seen to apply (since for that locus the contributions to P, P, F, etc. are all equal).
But the results also generalize to the case where both P1 and P2 are not fixed, but are segregating
an Hardy-Weinberg proportions. If the frequency of A in P1 is p; and if it is po in P2, then

P = plans +2p1(1 — p1)as + (1 — p1)2as
Py = piann +2pa(1 — p2)arz + (1 — p2)az (IX-11)
Fi = pip2ain + [pi(1 — p2) + p2(1 — p1)]arz + (1 — p1)(1 — p2)age

and since the F2 will be in Hardy-Weinberg proportions with gene frequency ps = (p1 + p2)/2 the
F2 mean will be

1

F = [5(1?1 +p2)] 2 a1y +2 B(Pl +p2)] [1 - %(Pl +P2)} a1 + [1 - %(pl +p2)} 2 ag  (IX-12)
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Some algebra will then convince the reader that

1/1 1 1
F, = -(=pP +=P ~Fy. IX-1
2 2<21+22>+21 (IX-13)

Similarly the backcross and F3 relationships can be established in this case as well.

We expect these relationships among crosses of lines to hold very generally, as long as the initial
populations are in Hardy-Weinberg proportions (although at different gene frequencies), and as
long as the trait is determined additively by the genes. In fact, the fit of the F2 and backcross
means to these predictions may be used to check on which scale the genes are most nearly additive,
for that will be the scale on which the fit is best (all else being equal, as it never is).

That there is a close relationship between these results on the crosses of strains and the previous
results on inbreeding depression may be seen by considering self-fertilization starting with F2 in-
dividuals, who constitute a population in Hardy-Weinberg proportions. We can predict the means
of the self-fertilized F3, F4, etc. either from the above approach or by computing an f. It will be
found that the self-fertilized population has a mean which moves halfway towards its ultimate limit
each generation, a result wholly compatible with (IX-7).

The rules concerning means appear to have been established by Serebrovsky (1936a, 1936b)
The linearity of the inbreeding effects when expressed as a function of f is probably due to Sewall
Wright. We have already commented on the history of the controversy over the causes of inbreeding
depression. When two pure (i.e., inbred) lines are crossed, it is frequently found that the hybrid is
superior to either. This fact, well-known in the 19th century, is in effect an observation of inbreeding
depression in reverse, and the same two classes of hypothesis (overdominance and dominance)
have long been applied to explain it. A nomenclatural point is in order here. Contrary to much
contemporary usage, heterosis, as defined originally by Shull (1914) is the phenomenon of hybrid
vigor, irrespective of whether it is caused by dominance or overdominance. Overdominance (Hull,
1945) is the superiority of the heterozygote at a single locus, and is only one possible explanation
for heterosis.

IX.4 Additive and Dominance Variance

VARIANCES AND COVARIANCES. The additivity of our model of the phenotype has
enabled us to analyze means one locus at a time. A similar simplification is possible with regard to
variances, but requires one more assumption. Means are additive over loci whether or not the effects
of the loci are independent of each other, but the variance is only additive over loci if the individual
loci effects are uncorrelated. This will hold if the loci are all jointly at linkage equilibrium with
respect to each other, for then knowing the contribution which one locus makes to the phenotype
tells us nothing about the genotype (hence about the contribution) at any other locus. Then the
locus effects are independent, and hence must also be uncorrelated. So under the assumption of
linkage equilibrium we can write

Var (P) = Var(g;) + Var(g2) + ... + Var (g,) + Var (e). (IX-14)

With respect to the environmental contribution we have implicitly assumed that it is uncorrelated
with any of the genetic effects. Thus we have now made use of Assumptions No. 2 and No. 3.

A similar additivity holds with regard to the covariances between relatives, but before we
comment further on that it may be useful to remind the reader of the meaning of covariance, and
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its connection to correlation. Recall that the variance is defined as the expectation of the squared
deviation from the mean:

Var (X) = E[(X — px)’] (IX-15)

ux being the expectation of X. The covariance corresponds to this in a sense: it is the expectation
of the product of deviations of two variables, each from its own mean:

Cov (X,Y) = E[(X - pux)(Y — y ). (IX-16)

If X and Y are positively related, this means that when X is above its mean Y will also tend to
be above its mean, and when X is below its mean Y will also tend to be below its mean. So in this
case the product (X — pux)(Y — py) will usually be a product of two positive or of two negative
quantities, so that its expectation will tend to be positive. This can be seen from examination of
Figure 9.6 (below), which shows a scattergram plot of a large sample from a distribution (in fact
a bivariate normal distribution) in which X and Y have a positive covariance. In this case the
axes are the means, so that we can easily see whether X or Y exceed their means. There are far
fewer points in the upper left and lower right quadrants than in the other two, so that only will
the product (X — pux)(Y — py) be negative.
We will make use of several properties of the covariance:

1. The covariance of X with itself is its variance. To see this, set Y = X in (IX-16) and compare
the result to (IX-14).

2. If Y is completely independent of X, then their covariance is zero. A detailed proof of this
will be found in the better statistics texts, but we can make this intuitively plausible by
pointing out that for each possible value of X, that is, for each possible value of X — ux,
all possible values of Y — uy are possible, their relative probabilities being unchanged by our
knowledge of X. So, the average contribution to (IX-16) from this category of outcomes will
be (X — px) times the expectation of (Y — uy). But the latter must be zero, since it is
EY)—-E(uy) = E(Y)—py = py — py. So each possible value of X makes on average a
zero contribution to (IX-15), and it follows from this that the covariance is zero.

3. f X =a+band Y = c+d, then Cov (X,Y) = Cov (a,c)+Cov (a,d)+Cov (b, c) + Cov (b,d).
In short, the general result is that the covariance of two sums is the sum of all possible
covariances between a term from one sum and a term from the other. This can be shown
using (IX-15), but we will not do so here. A particular case which we will use often is when a
is independent of d and b is independent of c. In other words, the case where only quantities
having the same position in the sum are not independent. In this case, we of course have

Cov (X,Y) = Cov (a,c)+ Cov (b,d). (IX-17)

The context in which this will arise is when the sum represents the sum of effects from different
loci, where the loci are in linkage equilibrium, and where X and Y are the phenotypes in two
relatives. Then a and b will be independent, so that a and d, which are effects at different
loci in different individuals, are also going to be independent. Likewise since ¢ and d are
independent, so also will be ¢ and b. The only nonzero terms will be the covariances between
effects at the same locus in different individuals.

327



Finally, we should recall the definition of the correlation coefficient between two variables, X
and Y. It is the ratio of their covariance to the product of their standard deviations:

pxy = Cov(X,Y) /(oxoy) (IX-18)
A more illuminating way of writing this is to divide (IX-15) by oxoy and get

_ g [ X =mx) (Y—MY)] _ Cov ((X—Hx)7 (Y—”Y)> (IX-19)
ox gy

PXY
ox oy

We can therefore think of the correlation coefficient as being the covariance of the two variables after
they have been standardized, that is, after their means have been scaled to zero (by subtraction
of ) and their standard deviations to 1 (by division by o). It is an interesting fact that the
correlation coefficient can never be greater than 1 or less than -1. This can be shown using the
Cauchy-Schwartz Inequality. It is relatively easy to see that the correlation of a variable X with
itself will be 1, since it will be the covariance of the standardized variable with itself, which is in
turn the variance of the standardized variable, which is one.

PHENOTYPIC VARIANCE. One can write a straightforward expression for the variance of a
phenotype P as a function of the individual genotype effects. Since the loci and the environmental
effect are all assumed to be independent, the variance will be a sum of individual locus variances
plus the variance of the environmental effect. Looking at the effect of a single locus with two
alleles,, with the contributions of AA, Aa, and aa to the phenotype being a1, a1z, and ase, we find
that its variance is straightforwardly

Var(g) = E(¢g?) — [E(g)]?
= p’ai; +2p(1 - p)ai, (IX-20)

+(1 = p)2a3, — [pPann +2p(1 — p)aiz + (1 — p)?axn]?.

This is a straightforward but somewhat dull formula which seems to offer few insights. One could
go forward in a similar plodding fashion to compute complicated formulas for covariances among
relatives. This would not only be very difficult, but would not necessarily be useful. After all, the
resulting formula for the covariances between the overall phenotypes are going to depend on all of
the genotype effects a;;, plus all of the gene frequencies, plus an unknown environmental variance.
This is a large number of quantities. If the covariances among relatives are complicated functions of
many unknown parameters, there is little hope that we could predict anything about them, or use
any of them to predict other quantities such as the response to artificial selection. Since we would
not know the underlying parameters, the formulas involving covariances, variances, and response
to selection would be at best of academic interest.

It turns out that the situation is not so gloomy as this. All of these observable quantities
(variances, covariances, and selection responses) will depend on the unknown parameters, but only
through three intermediate quantities. These are written V4, Vp, and Vg, and are known as the
additive, dominance, and environmental variances. The various variances and covariances will
depend on the multitude of unknown parameters only insofar as these affect V4, Vp, and Vg. The
same is (approximately) true of the selection response, which we discuss later. The implications of
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these facts are striking. Suppose we had (say) 6 covariances between different kinds of relatives, say
between full sibs, half-sibs, aunt-nephew, mother-offspring, grandparent-offspring, and first cousins.
If all of these depend only on V4, Vp, and Vg, we should be able to use three of the covariances to
estimate these three quantities, then use those in turn to predict the other covariances. Which is to
say that there are relationships among various covariances, since all depend on only three quantities
under our admittedly idealized model. We therefore have some hope of using some covariances to
predict others, or even to predict the response of a character to artificial selection.

This has been the great strength of quantitative genetic theory in animal and plant breeding:
the ability to estimate these three variance components from covariances among relatives, then
use them to predict the response to different selection schemes with at least modest reliability.
The flip side of this happy picture is that once we have estimated the three variance components,
further observations of different covariances will only refine those estimates and will not lead us to
knowledge of the individual genotype effects or gene frequencies. For any given set of values of Vy,
Vp, and Vg there are vast numbers of combinations of gene frequencies and genotype contributions
that will yield these same three values. So we can make little progress in working out the genetics
of the trait by observing variances and covariances. The very robustness of the predictions of
quantitative genetic theory means that the quantities being predicted will provide no insight into
the underlying causes of the variation. Perhaps this is the version of the Uncertainty Principle
appropriate for quantitative genetics.

ADDITIVE EFFECTS. Having revealed our goal, we must now show that these three quantities
can in fact be obtained. We will start by considering the three genotype effects a1, ai2, and as
at a two-allele locus. The first step will be to express each of them as a sum of three parts. The
quantity a;; will be replaced by p + o; + a; + d;5. Our objective will be to find values of p, a1, ag,
and of 411, 012 and d99 such that three conditions hold:

1. The «a; account for as much as possible of the variance in the quantity a;; in the particular
population we consider,

2. The contributions of the four terms to the quantity a;; have zero covariance, so that they are
uncorrelated (that is, if we pick random individuals and look at this locus, and record for
each individual the four quantities u, a;, «;, and 6;;, we will find zero covariance between
these quantities over the whole population, and

3. Each of the last three terms «;, o, and d;; has mean zero.

The third condition immediately allows us to determine the value of p. It is the same for all
three genotypes at the locus, and must therefore be the population mean of the a;;:

p = plap + 2p(1 — plais + (1 — p)2ags. (IX-21)

The more difficult task is the determination of a; and as. Once they are determined, we can get
the last term d;; by subtraction by the simple requirements that the four terms add up to a;; in each
genotype. Thus the bulk of our derivation goes into getting oy and ay. We will do this by a rather
indirect regression technique. The reader who gets a bit overwhelmed by all the covariances in this
derivation may wish to skip to the next subsection, although a careful study of this derivation will
pay off in terms of an understanding of what the variance components V4, Vp and Vg do and do
not mean.
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The following three equations obviously hold, by the definitions of our quantities:

a;] = M+CM1+O&1+511
a2 = puto+as+ 512 (IX—QQ)
azg = fpi+ g+ g+ o

Now note that these equations can be rewritten in the shorthand form
Q5 = M + 2&2 + x(al — Otg) + 51']'7 (IX—QB)

provided that z is a quantity which is 2 when the genotype is A1 Aj, is 1 when it is A; Ao, and
is 0 when the genotype is A2As. In short, x simply tells us how many A; alleles there are in the
genotype at this locus. Equation (IX-22) may be seen as telling us what is the dependence of geno-
type contribution a on the allele count z, the «; as determining the coefficients of this regression
equation, and the ¢;; as the deviations of the a;; from the regression prediction p+ ag+z (o — ).
What we are going to do is to determine the «;; by carrying out a least squares fit of the a;; to
this regression line. There is such a regression. Imagine sampling individuals from our population
and recording for each the x and the quantity a;;. We would find that when our “sample” was the
whole population,

p? of the time they were (2,a11),

2p(1 —p) of the time they were (1,a12),

and (1 —p)? of the time they were (0, az).
So we do indeed have two random variables z and a.

Relation to regression. It may seem rather arbitrary to choose the least squares criterion of
fit. After all, we are trying to satisfy the three criteria stated above. What do these have to do with
a least-squares regression? In fact, everything. For knowing the prediction terms p+ag+x(aq —ag)
are chosen by a least squares fit to the a;; guarantees us that all three conditions will be met if
the «; are determined in this way. For fitting regression lines by least squares is well-known to
guarantee the following properties:

1. The regression prediction accounts for as much of the variance in the dependent variable as
possible,

2. The deviation of the points from the regression line (the residual) is uncorrelated with the
regression prediction, and

3. The regression line passes through the point (Z,y) where both variables have their mean
values, and the mean of the deviations from the regression line is zero.

The first condition is clearly the same as the first of our previous three requirements. The second
guarantees us that the J;; will be uncorrelated (that is, have zero covariance) with the quantity
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i+ o; + oj which is our regression prediction. We will still need to establish that the two a’s in
an individual are uncorrelated but this will be easy. The third condition is actually our previous
third requirement in disguise. For the expectation (the population mean) of x is simply

E(z) = 2xp*+1x2p(l—p)+0x(1—p)?
() p p(1—p) (1-p) (IX-24)
= 2p.
The regression line at x = 2p will have height
A+ 200 +2p(a; — a2) = p+2pag +2(1 — p)ae. (IX-25)

Since this must be equal to the population mean of the a;;, which we already know to be equal
to the constant u, we must have, as a result of determining the «a; by the least squares regression,
that (dropping the 2)
pa; + (1 —p)ae = 0. (IX-26)

But consider the first term «; in the sum o; + «;. It is dependent only on the identity of the
maternally-derived allele A;. A fraction p of the time that allele is A; and 1 — p of the time it is As.
So (IX-24) tells us that the mean value of «;, which will be paj + (1 — p)ay is zero. By an exactly
similar argument the mean value of «; will also be zero. And since the deviation of a;; from the
regression prediction is d;;, this quantity too has expectation zero over the whole population. So
we have now nearly satisfied our original three conditions by choosing the a’s by least squares. All
that remains is to show that the two terms «; and «; are not correlated. This is easily seen to be
true, as a consequence of Hardy-Weinberg proportions. The size of «; (that is, whether it is oy or
a) depends only on the allele identity of A; (which is either A; or Ag). Similarly a; depends only
on the identity of A;. But by the Hardy-Weinberg law these are independent, since the population
results from random mating. So ; and «; are independent and hence uncorrelated.

Now that we have established that the least squares procedure will fulfill our requirements, all
that remains is to carry it out. Figure 9.3 shows the regression in diagrammatic form. It is well
known in statistics that the least squares solution to the slope of the regression line is given by

b = Cov (y,z)/Var (z) (IX-27)

where y is the dependent variable. Thus to determine the slope, which will be a;; — a2 by (1X-23),
we must evaluate the covariance of ¢ and x and the variance of x. Our “sample” is the whole
population, so that we compute these quantities as expectations over the population, the various
outcomes being in their expected proportions. The variance of x is easily determined:

Var (z) = E(z?) — [E(z))?
= p?x4+2p(1—p)x1-—(2p)? (IX-28)

= 2p(1-p).
The covariance of a and x requires a bit more computation:

Cov (a,z) = E(az)—E(a) E(x)
= 2xan(p®) + 1xa2p(1—p)] + 0xan(l-p)* - u2p) (IX-29)
= 2p®an + 2p(1 — p)aiz — 2pp.
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X (dosage of ﬁ\ )

Figure 9.3: The regression of a on z. The line is determined by a least squares fit,
weighting each point by its population frequency. The dotted arrows show the fitted
additive values p + ag + ao, p + a1 + a9, and p + a1 + @1. The solid arrows show the
residuals.

Now since we are requiring that a; —as = Cov (a,x)/Var (x) it follows that (o; — ag)Var (z) =
Cov (a,x) so that our equation for the slope of a least squares fit is

2p(1 —p)(aq —az) = 2pPann + 2p(1 —plasa — 2pu, (IX-30)

or
(I1—-p)ag — (1 —plag = pair + (1 —plaia — p. (IX-31)

The slope is one of the two results of doing a least squares regression. The height of the line is the
other, and it can be found from the requirement that the line pass through the point (z,7y). We
have already seen that this gives us equation (IX-26). Adding that equation to (IX-31) we get

a1 = pap + (1 —p)as — p. (IX-32)
and using (IX-29) together with (IX-20) we find that
Q9 = paiz + (1 — p)agg — W (IX—33)
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Now we have found the slope and height of our regression of a on z, and determined «; and
as from them. The equations for the d;; follow by substituting (IX-21), (IX-32) and (IX-33) into
(IX-23). It turns out that

om = (1- p)2 (a11 — 2a12 + az9). (IX-34)

The expressions for d12 and do are the same, but with the (1 — p)? replaced, respectively, by
—p(1 = p) and p*.

One interpretation of (IX-32) and (IX-33) is worth noting. Since p of the A; alleles occur in
A1A; homozygotes, and the rest in A; Ay heterozygotes, (IX-32) represents the difference between
the average contribution at the A locus in an Aj-bearing individual, and the population mean.
So it can be thought of as the average excess of Aj-bearing individuals over the population mean.
Similarly (IX-32) shows that as is the average excess of those individuals in which a randomly-
chosen A, allele is to be found. This is strongly reminiscent of our results for natural selection in
chapter II, where the mean relative fitness w4 entered in. In fact, equation (II-35) showed that

Ap = pwa/w — p = p(wa — 0)/w (IX-35)

which shows the quantity w4 — w playing an important role. It is precisely the average excess of
allele A if the phenotype is the relative fitness w.

Now we have found the quantities y, a;, j, and d;; for each genotype. But we never made clear
why breaking the genotype contribution a;; into these four uncorrelated parts was worth doing. It
now remains for us to show that these can be used to provide definitions of the quantities V4, Vp,
and Vg and insight into their properties.

We have done the above derivation for a two-allele case, but the results for multiple alleles are
entirely analogous. The least squares fit is obtained by minimizing the weighted mean square of
the residual:

Q = Z Zpipj(aij — U — O — aj)2 (IX-36)
(]

and resulting formulas for the o,
Q= Y pjaig— i (IX-37)
J

have exactly the same interpretation as average excesses.

ADDITIVE AND DOMINANCE VARIANCES. We now know that each individual’s phe-
notype could, if we knew the precise genotype, be partitioned into a series of additive components.
Suppose that we write the genotype as A;A;B;,B;C,,C,, and the corresponding breakdown of the
phenotype as

P=p+oai+aoj+6;+pu +ap+a)+06u+p" +a, +al 4+ 6mn +e (IX-38)

where the primes distinguished between the different loci, and e is the environmental contribution
to the phenotype. We can now rearrange this into four groups of terms:

P=(u+p+u") + (ti+aj+a,+a;+al,+al) + (6ij + Okt + Omn) + € (IX-39)

The first group of terms are constants which do not depend on the genotype. These will not
contribute to the variance of the phenotype. This first group is the estimate of the phenotype
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which we would make if we did not know the genotype: it is simply the population mean. The
second group refines this estimate by incorporating the average effects. These first two groups of
terms, taken together, make an estimate of the phenotype based only on genes taken one at a time.
This estimate is called the breeding value. The variance of the breeding value will be entirely due
to the a’s, of course. This variance is called the additive variance, and written V4. The next group
of terms adds to the estimate the predicted interactions between the two gene copies at each locus.
Each of the individual terms d;; is called a dominance deviation. There is no conventional term
for the sum of the d’s. The sum of the dominance deviations has a variance called the dominance
variance, Vp. The environmental effect e has a variance known as the environmental variance, Vg.

Notice that we have set up all the terms in (IX-36) to be uncorrelated with each other. This
means that the four groups of terms must also be uncorrelated, so that in effect phenotype has
been divided into for parts which are uncorrelated:

P =u+A+D+FE (IX-40)
which means that the variance of this sum is the sum of their variances:
Var (P) = Va+Vp+ Vg (IX-41)

since the mean p does not vary from individual to individual. We have now succeeded in showing
that the variance in phenotype can be divided into three parts. If by some feat of genomics the
genotype of each individual became known, we could compute all the o; and d;; and obtain these
three variance components straightforwardly. In practice this is unlikely, but as we shall see in
the next section, the covariances (and hence the correlations) between relatives can be computed
from these three variance components. Hence we can reverse the process and estimate the variance
components from the covariances of relatives.

The dominance variance. It is nevertheless instructive to find the formulas computing the
variance components V4 and Vp from the genotype effects a;;, for then we can get a picture of how
various patterns of dominance affect these components. The additive variance Vy is the variance
of a sum of terms, two for each locus and all uncorrelated. The dominance variance Vp is also the
variance of a sum of uncorrelated terms, one per locus. Thus each of these variances is itself a sum
of individual locus additive (or dominance) variances. Let us compute from the a;; and the gene
frequency the additive and dominance variances at a single locus for the two-allele case.

Each of the terms «; has is an a7 with probability p and an as with probability 1 — p. The
variance of one term is thus

Var (;) = p a2+ (1—p) a3 (IX-42)
since the mean of «; is known to be zero by (IX-26), which was in turn a byproduct of our way of

defining the o’s. We can now substitute from equations (IX-32) and double the result (since there
are two «’s for this locus, each with variance given by (IX-41)). After some algebra we find that

Var (a; + a;) = 2p(1 —p) [(par1 + (1 = p)ara) — (para + (1 = p)aze)]?, (IX-43)
after using (IX-21) to eliminate u.
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Table 9.1: Fraction of all genetic variance at a locus due to dominance variance, where
p is the frequency of a completely dominant allele.

p  fraction

0.1  0.053
0.2 0111
0.3 0.176
0.4 0.25
0.5 0.333
0.6 0.429
0.7  0.538
0.8  0.667
0.9 0.818

The dominance deviations also have a mean of zero, so that

Var (3;;) = p?0f; + 2p(1 — p)ot, + (1 —p)?63,
= pXan —p—a1 —a1)? +2p(1 —p)(az — p— a1 — az)? (IX-44)

+(1—p)*(age — p— a2 — a2)?
which after a similar, but larger amount of algebra turns out to be
Var (0;5) = p*(1 = p)*(a11 — 2a12 + a)*. (IX-45)

This last formula has an interesting property. Suppose that the genotypic effect at this locus were
actually additive, that is, that the heterozygote effect a1 was the arithmetic mean of the two
homozygote effects. Then a1 = (a11 + ag2)/2 and it requires only a few simple steps to see that
(IX-45) is zero. So when there is additive gene action within a locus there is no dominance variance.
Since the genotypic contribution to the total phenotypic variance is V4 + Vp, we find that in this
case all of the genotypic variance will be additive variance. So dominance variance disappears when
there is no dominance, exactly as its name implies. Now suppose that instead the locus showed
complete dominance of the A; allele. Then in formula (IX-43) we have a1; = aj2, so that it reduces
to

Var (a; + ;) = 2 p(1 —p)*(ara — an)?. (IX-46)

A similar calculation is easily done with the dominance variance. Now note that (IX-46) does not
disappear when there is complete dominance. In fact, if we compute the fraction of the genotypic
variance which is due to dominance variance, we find the numbers given in Table 9.1. Interestingly,
when the dominant allele is rare there may be mostly additive variance. This corresponds to the
observation that we will be hard-pressed to tell whether a rare dominant allele is in fact dominant,
since it appears so rarely in homozygotes. So in this respect as in others the behavior of the rare
allele in heterozygotes is all that we need know.

Note also that the average dominance over loci is not meaningful here. If some loci show com-
plete dominance, others complete recessivity, such that in some average sense there is no dominance,
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there will still be dominance variance in existence. For the dominance variance Vp is the sum of
terms from individual loci, and for Vp to be zero (IX-43) shows us that there can be no dominance
at any locus.

We thus have found from these formulae that the amount of dominance variance is a poor
indicator of the type of gene action at the individual loci. There can be mostly additive variance
even when all loci show complete dominance. It would be a brave quantitative geneticist indeed
who would make strong statements about gene action based on the relative sizes of V4 and Vp.
While they may be useless for this purpose they will be of great help in analyzing covariances, to
which we now turn.

IX.5 Covariances Between Relatives

Now we are ready to compute covariances between relatives. We imagine ourselves to be dealing
with a series of pairs of individuals. In each pair the two individuals are relatives of a specific sort,
such as an individual and its grandmother. If we measure a given phenotype on all individuals,
we can compute the covariance between the phenotypes of relatives. Each phenotype is a sum
of individual locus effects and an environmental effect, so that calling the phenotypes in the two

relatives X and Y we have
X = g+¢p+...+g.te
(IX-47)
Y = ¢i+g+..+g,+¢€.

Now we have already seen that the covariance of two sums is the sum of all possible pairwise
covariances involving one term from one sum and one term from the other. Consider some of these
terms. Recall that we are assuming that the environmental effect is independent of the genotype,
so that terms like Cov (g;,€’) or Cov (g;, e) must be zero, since if e is independent of the genotypic
effect g; of a locus in the same individual, it must all the more certainly be independent of the
genotypic effect g/ of that locus in a relative. Likewise the environments were assumed independent
in the two individuals, so that Cov (e, ¢') is also zero. This assumption is not very realistic in many
cases, but we make it here for heuristic reasons.

This leaves us with terms involving one g and one g’. Now recall that we also assumed linkage
equilibrium. This means that the effects of two different loci in the same individual, g; and g;, are
independent. This implies that all terms of the form Cov (g;,g}), which involve both different loci
and different individuals, should be zero. If g; and g; are independent, then surely g; and g;- are
too. We are left only with those terms which involve the same locus in the two individuals:

Cov (X,Y) = Cov (g1,41) + Cov (g92,d5) + ... + Cov (gn,d,) (IX-48)

We are now in a position to compute the covariance locus by locus.
In any particular pair of individuals, at a given locus, we may have one of three possible
situations:

1. In the first individual, each of the two genes at the locus is identical by descent to a gene in
the relative,

2. In the first individual, exactly one of the two genes at the locus is identical by descent to a
gene in the relative, or
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3. No gene at this locus in the first individual is identical by descent to a gene at this locus in
the relative.

If we knew that situation (iii) always held, then in effect there would be no relationship between
the two individuals. The contribution at a locus in one individual would be o; 4+ o + 9;j and in
the other individual ag 4+ ay + 0ge. The indices i, j, k, and £ would be the result of independent
random sampling of four genes from the population, so that there would be no correlation between
the two individuals at this locus. On the other hand, if we knew that situation (i) always held, then
the contribution from the locus in both individuals would be a; + «j + d;;. In this case Cov (g, g;)
would involve the covariance of a quantity with itself. This is precisely the variance of the quantity,
as we have already noted. But that in turn is the contribution to the variance V4 + Vp at this
locus. (Note an assumption that we have implicitly made: by assuming that each individual is
the product of random mating, we have assumed that the two genes in the same individual are
not identical by descent. That in turn means that if each of the two genes in one individual are
identical by descent to a gene in the relative, they must be identical by descent to two different
genes in that relative. Thus if the first individual is genotype A;A;, the second must be either A;A;
or AjA;. We are not allowing both the A; and the A; to be identical by descent to the same gene.)

In situation (ii) the genotypes must be A;A; and A; Ay, or A;A; and ApA;, or some such. Then
the genotype contributions at the locus are of the form «; + o + 6;; and o + o + d;. In the
covariance these sums, the only terms which could be nonzero are Cov (o, a;) and Cov (8;5, 0 )-
The latter term is in fact zero, for it turns out that the dominance deviations of two genotypes are
uncorrelated, even if they share one allele in common (the other being chosen at random). This
can be proven using (IX-34). In fact terms of the form

d11 [po11 + (1 —p)di2 | (IX-49)
are always zero, since this equals

o [planr —p—201) + (1 —p)(arz — p— o — az)]
(IX-50)

= On [pair + (1 — p)are — p — a1y — pay — (1 — p)az]
which is easily shown to be zero using (IX-24) and (IX-30a). Continuing in this fashion one
can show that the covariance of d;; with d;, is zero. So the covariance at the locus is simply

Cov (o, ;) = Var (o). But this is half the contribution of this locus to the additive variance Vjy.
We have in effect reached the conclusions that

1. if situation (i), obtains for all loci then the covariance of the relatives is V4 + Vp,
2. if situation (ii) obtains for all loci then the covariance is 3V, and

3. if situation (iii) obtains it is zero.

In all but the simplest cases some loci will have two, some one, and some no genes in the first
individual which are identical by descent to genes in the second individual. We now make use of
the following property of covariance: if variable z has probability p; of being the random quantity
x1, and probability ps of being the random quantity xo, then its covariance with anything else is
simply Cov (p121 + pae,y) which can be shown to be equal to p1Cov (x1,y) + (1 — p1)Cov (22, y).
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In other words x has the same covariances as the weighted average pix1 + paxo. Applying this to
our situation where there are three possibilities, we can let the probabilities of the three situations
be called P», P;, and F,, and we then find that we can write the covariance as

i i L@
Cov (g:,9;) = P (Vfl)+vj§)) + Py <§Vj)>. (IX-51)

where a quantity like Vf(f) is the contribution of locus i to the additive variance. Now we need only

use (IX-48) to add these over all loci to obtain
1
Cov (X, Y) = <§P1 + PQ) Va+ P, Vp (IX—52)

This is the result we have been striving for. It tells us the covariances between relatives as a
function of V4, Vp, and two probabilities of identity by descent. We can make the formula easier
to use by a re-interpretation of the quantity ( %Pl + P,). Suppose that we choose a gene from the
first individual, picking at random one of the two genes at a given locus, and suppose that we ask
whether there is a gene at that locus in the second individual, identical by descent to the one we
have chosen. A little consideration will show that the probability of this is %Pl + P, P, and Ps
being the probability that one or two genes in the first individual are identical by descent. In fact,
%Pl + P, is precisely twice the coefficient of kinship of the two relatives. So both coefficients in
(IX-52) are straightforward quantities to compute.

CORRELATIONS. The formula for the covariance of relatives can easily be used to find the
correlation coefficient between the relatives. Recall that the correlation is simply the covariance
divided by the product of the standard deviations. In our model, each relative is drawn from the
population at random (although the two members of each pair are not drawn independently). For
example, if we are examining grandparent-offspring pairs, it does not matter whether we choose
the grandparents at random and then find a grandchild of each one, or whether we choose the
grandchildren at random and then get a grandparent of each one: in either case if we were to consider
the set of grandparents by itself, it would in effect be randomly sampled from the population. We
are assuming that there are no evolutionary forces acting to change gene frequencies or create
disequilibria, so that even though the grandparents and grandchildren are sampled from different
generations, each group considered alone might just as well have been sampled from the same
generation. Which leads us to the conclusion that the standard deviations of the trait in the two
relatives will be the same, so that their product will simply be the variance of the trait. Thus the
correlation between relatives will simply be the ratio of their covariance to the variance of the trait:

pxy = Cov(X,Y)/\/Var (X)Var (Y) = Cov(X,Y)/Var (X) (IX-53)

PARENTS AND OFFSPRING: HERITABILITY. Now we can use these formulas to
examine a specific relationship: that of parents and offspring. We have to compute the coefficients
in (IX-48) first. The coefficient of kinship between parent and offspring is 0.25 so the coefficient
of V4 is 1/2. Another way of seeing this result is to consider the probability that a gene drawn
from the offspring came from that particular parent, which is clearly 1/2. The coefficient P; is the
probability that both genes in the offspring are identical by descent to genes in the parent. This is
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Figure 9.4: Diagram of the relationship of two full sibs.

impossible, since we are in effect assuming that there are no other pedigree paths connecting these
two individuals. So the second coefficient is zero. Then

Covpp = %VA
o v, (IX-54)
pro 2V, + Vp + Vi

The quantity V4/(Va + Vp + V) will appear repeatedly in this chapter: it is simply the fraction
of the variance in the trait which is additive variance. It is usually written h? and is called the
heritability. The name may be misleading, for h? is not the fraction of all variation which is due to
genetic causes. That would be (V4 4+ Vp)/(Va + Vp + VEg) and is sometimes called heritability in
the broad sense.

FULL SIBS AND HALF-SIBS. If we have pairs of individuals which are half-sibs, sharing
(say) a common mother but different fathers, then the covariance is easy to calculate. Once again,
there is no chance that both genes in the half-sibs are identical by descent. The chance that a given
randomly-chosen gene in one half-sib is identical by descent to a gene in the other is 1/4, for that
is the probability that we have both chosen the maternally-derived gene, and that that particular
gene in the mother was passed to the other half-sib. So

Covygs = iVA

Va

1
- a4 IX-55
4 Va+Vp+Vg ( )

PHS =

hZ.

|
INE

The covariance of full sibs is a bit more complicated. Choosing a gene from one sib, we know that
it came from one of the parents. The chance that that particular parent also passed the same gene
to the other sib is 1/2. So we have computed the first coefficient. The second (P,) is the chance
that both genes in one sib will be found in the other. A moment’s consideration will show that the
two events are independent (see Figure 9.4) so that the second coefficient must be 1/4. So we can
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Table 9.2: Covariances and correlations for different degrees of relationships.

Covariance Correlation
Parent-offspring % Va % h?
Half sibs %VA ihQ
Full sibs sVa+iVp 3R+ 31Vp/(Va+ Vb + Vi)
Grandparent-offspring % Va i h?
Aunt/Uncle - Niece/Nephew Va4 +h?
Dizygotic twins Wa+ivp $h? +3Vp/(Va + Vp + Vi)
Monozygotic twins Vai+Vp h?+Vp/(Va+ Vp + VE)
Full first cousins %VA %hQ
Unrelated individuals 0 0
write
Covps = Va+1iVp
1 Vs 1 Vb (IX-56)
PES = O V4 Ve  AVa+Vp+Va

Thus we see that the correlation between full sibs is greater than between parents and offspring.
This is only true to the extent that there is dominance variance in the trait. Parents and offspring
share half their genetic material. So do full sibs, but in addition, full sibs have the possibility of
getting (with probability 1/4) precisely the same diploid genotype at a locus. Thus if there is an
effect on the phenotype due not only to the genes taken singly, but to the particular combination
of two genes at a locus, this effect will be shared by both sibs 1/4 of the time.

OTHER RELATIONSHIPS. The same logic enables us to arrive at formulas for covariances
and correlations for other degrees of relationship. Here is a table. It will be a useful exercise for
the reader to see if they can reproduce the results in the table. These covariances only hold true
under the rather limited assumptions of our model. We shall discuss the pitfalls involved when we
discuss the estimation of heritability.

IX.6 Regression of Offspring on Parents

In our discussion of the effects of artificial selection on a phenotype, we will be particularly interested
in the relationship of offspring and parents. If a parent is chosen which is above the population
mean, what distribution of phenotypes do we expect among its offspring? One way of addressing
concerns such as this is to examine the regression of offspring on parents. If we were to make a
scattergram in which we chose individual parent-offspring pairs at random from the population,
then plotted each as a point on an (X,Y’) plane where the horizontal coordinate was the parent’s
phenotype, and the vertical coordinate the offspring’s phenotype, we would see a cloud of points
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Figure 9.5: Scattergram of a simulated sample of parent-offspring pairs, and the regres-
sion line through these points. The expectations of both parents and offspring are 10,
and the expected slope is 0.5, and this is shown by the dashed lines. The empirical
regression line of the 200 points which passes through the empirical means at (9.969,
9.917) has slope 0.569, and is shown by the solid line.

looking very much like Figure 9.5. Suppose that we tried to fit a straight line through the cloud of
points by least squares, to predict the offspring phenotypes from the phenotype of the single parent
whose phenotype we know. It is a well-known statistical fact that the slope of the least-squares
regression is given by the ratio of covariance to variance:

Covpo 1 Va _ 1 (X57)

bor = i T IV Vo i Ve 2

Thus the slope should always be less than 1 (though it may not be if our assumptions are violated).
It is more instructive to look at the regression after shifting our axes so that each runs through the
corresponding population mean (of parents or of offspring). This shift should not affect the slope.
Figure 9.6 shows this plot. Since the least-squares regression line always passes through the sample
means, we expect it to pass through the origin in the shifted graph, as shown in the Figure.

The fact that the regression coefficient is less than 1/2 tells us that we predict the offspring of
an individual to be, on average, less than half as far from the population mean as it is. This would
seem to be a paradox, for it seems to indicate that the offspring generation will be closer to the
mean than the parent generation. If such a process were to continue indefinitely, there would soon
be no variability left at alll Yet this cannot be so, since we know that this population is in Hardy-
Weinberg proportions and linkage equilibrium, and its genotypic composition will not change over
time. In fact, the same phenomenon is seen if we go backwards in time: computing the regression
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Figure 9.6: Scattergram of the same simulated sample of parent-offspring pairs, plotted
on scales showing the departure from the empirical mean, and showing the least squares
regression line through these points.

coefficient of parents on offspring, we find that

Cov po 1 Va 14
S IX-58
Var o 2Va+Vp+ Vg 2 ( )

Thus looking back in time we also seem to see variance decreasing. This seems to say that the
variance of the phenotype just happens to be at a maximum at the moment we look at it. This is
such a ridiculous notion that we know that something must be wrong with our argument.

The flaw lies in the fact that we are only predicting the average phenotype of the offspring of
a given individual. Different offspring will have phenotypes which vary around their expectation.
This is an additional source of variance in the next generation. Although the means from different
parents will be more tightly clustered around the overall population mean than were the phenotypes
of the parents, the individual values will vary more than their predictions, and the variance will
be just as great in the next generation as it is at present. A small regression coefficient reflects an
inability to predict where on the scale the offspring will be, not a prediction that it will be near
the population mean. The easiest way to see this is to consider what happens if h? = 0. Then
we cannot make any prediction of offspring’s phenotype from parent’s, but since (say) Vg may be
substantial, we are surely wrong in using our measurement of h? to make a positive prediction that
all offspring will lie at the population mean.

Interesting enough, it is precisely the case of parent-offspring regression which caused Francis
Galton (1889) to coin the term “regression coefficient”. Galton noticed that when the offspring of
parents far from the mean were looked at, these offspring had (on average) “regressed” towards the
mean. The regression coefficient was intended to measure by how much.
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REGRESSION ON THE MIDPARENT. It is a natural extension of the preceding discussion
to ask what happens if we try to predict the offspring’s phenotype from the phenotypes of both
parents. Since the two parents contribute equally to the offspring (at least, in our model they do),
the natural quantity to consider is the average phenotype in the two parents. This is called the
midparent, and it seems reasonable to ask how well the offspring phenotype can be predicted from
it. The midparent is

1 1
Xy = §X1 + §X2, (IX-59)
where X7 and X5 are the phenotypes of the two parents. The covariance will be
1 1 1 1
Cov (XM,Y) = Cov 5 X1+§ X9, Y ) = 5 COV(Xl,Y)+§ Cov (XQ,Y). (IX—60)

Although we have not mentioned it previously, one can easily show from the definition of covariance
that constants like the 1/2 can be removed: Cov (¢X,Y) = ¢ Cov (X,Y). Now we know the two
covariances in (IX-56) to each be 3V, so that

1/1 1 1
COV(XM,Y) = 5 <§VA+§VA> = §VA (IX—61)

The regression of offspring on midparent is

XY iy,
Bop = Cov (Xor, Y) _ . 2’4 = B2 (IX-62)
Var (Xnr) s(Va+Vp+ Vi)

The denominator is determined by the fact that the variance of an average of two independent
phenotypes is half as great as the variance of one of them. The result (IX-62) gives us some
insight into the meaning of the term “heritability”. It measures the fraction of the variation in the
phenotype which can be predicted from the phenotypes of the two parents. As we have seen, this
is a very different thing from the fraction of variance which can be assigned to genetic causes.

IX.7 Estimating variance components and heritability.

Since the covariances between relatives can be written in terms of the three variance components,
it follows that we can estimate the variance components from the covariances. In fact we shall see
in later sections that to predict the response to artificial selection we need only two quantities: the
total variance of the phenotype and the additive variance V4. So we can make estimates of these
using only two quantities: the observed variance and one covariance. There are three widely-used
procedures:

1. Parent offspring regression. If we collect a series of parent-offspring pairs we can estimate
both the phenotypic variance and the parent-offspring covariance (the latter depending only
on V4). By doubling the regression of offspring on parent we get an estimate of hZ.

2. Half-sib covariances. Alternatively we could have data on groups of half-sibs. The members
of each group all have the same father, but different mothers. Different groups have different
fathers. From these numbers one can obtain, via an analysis of variance (ANOVA), estimates
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of the overall phenotypic variance and of the component of variance due to membership in
the half-sib groups. This latter component should be equal to the half-sib covariance which
is iVA. These numbers again allow us to make estimates of V4 + Vp + Vg and of V4, and
thereby of the heritability.

3. Maximum likelihood. The entire set of data is taken, with the assumption of multivariate
normality of the observations, and with the quantitative genetic model supplying values for
the variances and covariances in terms of the parameters (say p, Va, Vp, and Vg). The
likelihood will be the value of the multivariate normal density function above the point which
is the observations. The parameters are changed until this is maximized. This approach
(Hill and Nicholas, 1974; Shaw, 1987) has the great advantage of using all of the data in an
efficient, if computationally tiresome, manner.

PITFALLS AND LIMITATIONS. It is important not to wander into doing these analyses
without first acquiring an understanding of some of the difficulties of interpretation and a healthy
respect for them. The most serious single problem encountered concerns environmental correlations
between individuals. We have been casually assuming that the environmental contribution to the
phenotype is independent in different individuals. When one is collecting data this assumption is
frequently not met. Relatives not only share common genetic material between them, but frequently
also live in similar environments. This leads to an extra term in their covariance, due to the fraction
of their environmental variance which is due to factors both share in common. Thus the covariance
formulas should actually look something like

Cov (X,Y) = aVa+dVp+e Vg, (IX-63)

where a and d are the coefficients we have been discussing, which involve the fraction of additive
effects and dominance deviations shared between the relatives. These, as we have seen, can be
computed from our knowledge of population genetics. But e is another matter. It is the fraction of
environmental effects on the phenotype which are due to causes shared by both relatives. Knowing
e for a given relationship (say aunt-niece) requires us to have a model of how the environment
acts on the trait. We are customarily quite ignorant of this. Unless we knew e it would be quite
impossible to estimate V4, Vp, and Vg. If we allow all possible models of environmental effects to
be entertained, these could predict (at least in principle) all possible patterns of covariances purely
on the basis of Vg and an arbitrary set of e’s, without needing to invoke genetic effects at all. For
instance, a 25% correlation among half-sibs might indicate that the trait’s variation was entirely
additive, so that the 25% reflects genetic relationships, 25% of the additive genetic effects on the
character being common to two half-sibs. But it could also be expected to result if the trait had no
genetic variation, with only environmental effects, about 25% of which are due to factors common
to both half-sibs. How are we ever to untangle this confounding of genetic and environmental
factors?

Randomization of environmental effects. In animal and plant breeding we can hope to
reduce this confounding by exercising our control over the environments of the organisms. This
does not mean that we need try to eliminate environmental variation: all that is necessary is
to make environmental effects uncorrelated in relatives. Thus we may want to allocate cattle
randomly to pastures, or seeds randomly to plots, so as to prevent relatives from experiencing a
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common environment more frequently than would be expected at random. Even so, there is a
certain amount of common environmental effect which is irreducible. Mammalian offspring in the
same litter will have common prenatal environment and pre-weaning care and nutrition. Seeds
from the same mother plant will start with a nutritional package of endosperm which tends to
be similar. Even if the offspring are thereafter placed in totally unrelated environments, this
common environment will bring about some correlation, which may be mistaken for evidence of
genetic variation. It is in an attempt to avoid this that designs for estimating heritability usually
avoid computing the covariance of individuals with the same mother or covariances of mother with
offspring. For example, in the parent-offspring regression design, it is customary to compute the
covariance of father with offspring. In the half-sib design, the half-sibs are paternal half-sibs, which
have different mothers. The assumption behind this is that the father contributes only a sperm or a
pollen grain. When the father also determines part of the environment of the offspring, even these
designs will lead to overestimation of heritability. With animals or plants from natural populations,
randomization of the environment is next to impossible, unless one can bring the individuals into
the laboratory for cultivation, and do the randomization there. This is a particular problem with
humans, who are not amenable to laboratory culture.

When one cannot randomize. With a population experiencing environments in an un-
controlled manner, the best one can hope to do is to measure the environment of each individual,
in hopes of removing environmental effects which are common to relatives, leaving behind only a
residue which is genetic. The problem with this approach is that we must know which aspects of
the environment are the ones relevant to the trait, and we must be able to measure those. This
requires us to have a comprehensive understanding of the way in which the environmental factors
affect the trait. But that is usually the very thing we are most interested in, so we must know
the answer before we can obtain it! In human population genetics, particularly with behavioral
measurements such as [.Q. test scores, this problem becomes quite serious. In assuming that certain
factors (say income) are sufficient measures of a person’s environment, the researcher builds their
own social and political assumptions into the conclusion. If the result is then used to bolster these
views, there is then a logical circularity. It seems that the best that one can do with this problem is
to admit its existence and try to make one’s own social and political assumptions explicit, so that
those viewing the conclusions can evaluate the results more readily. There is much more that can
be said on this subject, but no space here to say it. There are many sources of error other than
common environment, and it is worth mentioning a few:

1. Genotype-environment interactions: we have in our additive model allowed dominance, which
is an interaction effect of two genes. But we have assumed that the environmental effect does
not depend on the genotypic effect, and vice versa. If they are interdependent, then this
interaction is a source of variation which cannot easily be attributed either to genotype
or environment. There is no guarantee that a genotype which raises the phenotype in one
environment will not lower it in another. To the extent that this is important, it means that we
cannot use a model in which the phenotype is simply the sum of genotypic and environmental
effects. Feldman and Lewontin (1975) have strongly criticized the use of heritability on these
grounds, arguing that in the presence of genotype-environment interactions it is a meaningless
and potentially misleading quantity.

2. Genotype-environment covariances. This sounds like the same thing as genotype-environment
interaction, but it is not. If there is an association between the distribution of genotypic effects
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and the environmental effects, this can cause confusion as to which is acting to cause the
phenotypes. For example, in livestock breeding it is not uncommon for the most productive
genotypes to be found more commonly in the herds of the best-financed breeders, which are
likely also to have the most favorable environments (such as the best food). Under those
circumstances the assumption of randomization of environmental effects will be violated, and
the environmental effects may be mistaken for genetic effects.

. Genetic interactions. The different loci may also interact, giving rise to extra interaction
terms. These genetic interactions affect the covariances between relatives, and may result in
misestimation of heritability.

. Age and sex effects. Sometimes the trait in individuals of different ages or sexes is influenced
by different genes or different environments. For instance, the weight of an adult may be a
somewhat different character than the weight of its offspring. If we wrongly assume in our
statistical analysis that adults and juveniles (or males and females) have the same means
and variances, we can go considerably wrong in the analysis. Thus the half-sib design has
advantages over the parent-offspring design, which may involve measuring both adults and
juveniles without knowing whether the trait measured is comparable in both. Even when
organisms are measured at the same age, environmental changes from one generation to the
next may have altered the statistical and genetic properties of the trait.

. Maternal effects. In mammals, with their large contribution of the parents to the environment
of the offspring, and even in nonmammalian species with effects of the egg on the offpsring’s
environment, maternal effects will be common and can bias the results obtained with an
oversimplified model of independent environmental effects. Falconer (1965) has given a simple
linear model of maternal effects on a single trait, which can be used to calculate the size of
these biases.

. Sample size. A common mistake is to take a small sample of relatives, and compute from it
the covariances and heritabilities without noticing that they have large statistical errors. This
can lead to exact predictions being made from a totally inadequate set of measurements. In a
sample of 20 pairs of relatives, for example, an observed correlation of 0.4 is not significantly
different from zero correlation! It would be of questionable validity to predict from a parent-
offspring correlation of 0.4 that the grandparent-offspring correlation will be 0.2, if the sample
size were this small.

. Epigenetic effects. In recent years it has been discovered that modifications of the DNA,
known as epigenetic effects, can have phenotypic effects and be transmitted to subsequent
generations. These do not change the actual DNA sequence. In general these effects are
lost within 3-4 generations and are replaced by new modifications. As far as is known the
modifications have random effects, so that they do not form a “Lamarckian” system of inher-
itance, in the sense that their phenotypic effects are uncorrelated in direction with what the
organisms needs to cope with the environment. Epigenetic effects that are correlated in near
relatives will contribute to environmental covariances between relatives, and may be mistaken
for genetic effects, leading to an overestimate of long-term selection response. They cannot be
the basis for long-term evolutionary change, as they continually revert to their original state
on the timescale of a few generations. Slatkin (2009) and Tal et al. (2010) have considered
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the effects of epigenetic modifications on genetic covariances and heritabilities, pointing out
the difficulty of accounting for covariances of all but close relatives by epigenetic effects.

8. Niche construction. Organisms affect their own environment, in ways that in turn effect their
phenotype (and their fitness). Although this might simply be considered an indirect genetic
effect, and therefore already taken into account when heritabilities are estimated, there is one
aspect of these “niche construction” effects that needs further consideration. That is that
the effects on the environment can persist across generations, so that organisms are thereby
affecting their offspring’s phenotypes as well. Laland et al. (1999) and Laland and Brown
(2006) have made pioneering models of these effects. The model of Falconer (1965) shows
some of the selection response to be accounted for by the maternal effect, and thus is in some
ways touching on the same issues.

IX.8 History and References

Before the rediscovery of Mendel’s work, the dominant theory of heredity involved “blending”
inheritance, according to which the offspring would always be phenotypically intermediate between
its parents. This was clearly an inadequate theory, since it predicted that all siblings should be
identical. Jenkin (1867) pointed out that under this scheme half of the variability (more properly,
half of the variance) should disappear each generation. In the last decade of the 1800’s Francis
Galton (1889, 1897) set forth an alternative theory. This was developed further by Karl Pearson
(1898), and this school of genetical theory has come to be called the Biometricians. In its most
sophisticated statements, their theory held that the phenotype value represented a part which was
genetic, and that this could be written as

P =G+E (IX-64)

where
1

1
16(P111 + Pria +...) + o5 (ete....) (IX-65)

1 1
G = Z(Pl+P2)+§(P11+P12+P21+P22)+ D

where P; and P; are the phenotypes of the two parents, Pi1, Pia, Po1, and Pss, the phenotypes of the
four grandparents, and so on through all more remote generations. Pearson called this the Law of
Ancestral Heredity. It has some ambiguous and troublesome aspects, but it does make predictions
of covariances among relatives. It seems not to predict that there will be a higher covariance
among sibs than between parent and offspring. In quantitative genetics, predictions like this have
coefficients that depend on heritabilities and thus differ from character to character. Galton and
Pearson searched instead for a single equation that would fit all characters, which we now know is
impossible.

When Mendel’s laws were rediscovered, a controversy ensued between Mendelians and Biome-
tricians. The reader will find good accounts of this in Schwartz (2008) and in Provine’s (1971)
book. For a careful reexamination of the what modern quantitative genetics and statistics have to
say about Galton’s work, the monograph by Bulmer (2003) is essential. The covariances between
relatives were only part of the rejection of the Biometricians’ work; it was also undermined by the
ability of the Mendelians to explain the effects of inbreeding. Pearson (1904, 1909a, 1909b) did
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compute parent-offspring correlations under Mendelian inheritance, under the supposition of com-
plete dominance and equal gene frequencies of the two alleles. Pearson argued that the Mendelian
predictions were lower than observed correlations. But the statistician G. Udny Yule (1906) argued
that this lack of fit was due to the restrictive assumptions Pearson made.

There the matter lay until it was settled at one blow by R. A. Fisher (1918) in a massive paper
which was only beginning to be completely understood half a century later. Fisher defined the
three variance components and derived the correlations and covariances of relatives. His paper also
contained a detailed treatment of the effects of assortative mating, and it is this aspect of his paper
which has only been well-understood in recent years. Sewall Wright (1921a), working independently
of Fisher, obtained correlations and covariances among relatives which ignored the dominance
variance Vp, which his path coefficient methods could not treat. Most American quantitative
genetics theory in the next two decades is based on Wright’s work, and most English work on
Fisher’s. It is an interesting fact that much of modern statistics springs from this controversy
and from the work of Galton, Pearson, and Fisher. This includes regression, correlation, chi-
square testing, and the analysis of variance. Although Wright spent more time on biology than
on statistics, his method of path coefficients has recently spread to sociology and economics. The
most popular methods for deriving the covariance among relatives today were developed from
G. Malécot’s (1939) reformulation, which made the derivation accessible to many quantitative
geneticists and thus stimulated much further work.

IX.9 Response to artificial selection

We have been able to establish a connection between various variances, covariances, and correlations
thus far. All can be expressed in terms of three variance components. This in itself is interesting,
but of limited practical use. What has made quantitative genetics useful in animal and plant
breeding is that it also provides us with a prediction of the response to artificial selection. This
in turn can be used to design selection programs. However before we can derive the response to
artificial selection, we need to establish yet one more assumption. Until now, we have not specified
how many loci were involved in our quantitative character. It is true that if there were only one
locus, with large genotypic effects and no overlap of the genotype, then we could use traditional
genetic analysis, and we would not be interested in variance components, as we would be able to
carry out a far more penetrating analysis. But even in that case, the variance components could
be obtained and the covariances among relatives calculated. For there has been nothing in our
analysis which restricted it from applying to such a case. Once the assumptions are satisfied, the
variance components, covariances and correlations exist and can be computed. The results apply
to any number of loci, any number of alleles, and any distribution of environmental effects. For an
analysis of response to selection, we must abandon this generality and restrict things somewhat.

NORMALLY DISTRIBUTED PHENOTYPES. We shall assume that each locus contributes
only a small fraction of the variance in the character. The character is assumed to be polygenic,
affected by genetic variation at many loci. We also assume that the environmental effect is drawn
from a normal distribution. These assumptions enable us to specify the distribution of the character.
Recall that the phenotype is the sum

P=gi+gp+g+..+onte (IX-66)

348



The g; are independent of each other, and we have assumed that each contributes only a small
fraction of the variance. In mathematical statistics, the Central Limit Theorem tells us that the
distribution of a sum such as g; + ... + g, will approach a normal distribution as we consider
cases with more and more loci (provided each locus contributes less and less of the variance as we
progress from case to case). We therefore make the approximation of saying that the sum of the
genotypic effects follows a normal distribution. Now our phenotype P is the sum of two parts, each
of which is drawn from a normal distribution. Furthermore, these two parts are independent of
each other. The identity of the genotype has been assumed not to affect the environmental effect.
The sum of two independent normal variables is again normally distributed, so that we conclude
that the phenotype will follow a normal distribution. Cases of actual polygenic characters which
are not normally distributed are quite frequent. Presumably they do not follow the rather special
assumptions of our model. In some cases a scale transformation will restore normality. More often,
there is no particular reason to believe that the assumptions of our model are actually true, and
the use of quantitative genetic theory amounts of an act of faith, an approximation made out of
lack of any alternative. Figure 9.7 shows the approach to normality as we consider cases with larger
and larger numbers of loci. The character is the sum of effects at n loci, with complete dominance
at each locus and at each locus a gene frequency of 0.4 for the dominant allele. The locus effects
are scaled so that all loci have equal effect, and so that the environmental effects contribute 20%
of the variance. The approach to normality can be seen to be quite rapid: it should be a good
approximation even when the character is controlled by only a modest number of loci.

Multivariate normality. There are two properties of normal distributions which we will
need. The first concerns pairs of relatives. It can be shown that if there are enough loci to have
normality of the distribution of phenotypes, then if we draw pairs of relatives from the population
and look at their phenotypes, these pairs of numbers will follow a bivariate normal distribution.
Such a distribution was used to produce the numbers used to plot Figure 9.5. Furthermore any set
of k relatives (say a mother, father, and four offspring) will, if drawn repeatedly from a population,
yield a k-tuple of phenotypes which are drawn from a k-variate normal distribution. This fact is
highly useful in constructing statistical tests of hypotheses, but we shall make use of it for only one
purpose here. That purpose is the establishment of another consequence of normality. This is the
linearity of conditional means. What we mean by this is that if we choose a female whose phenotype
is (say) 37.5 cm, and have her mate with a randomly chosen male, then the average phenotype
of the offspring she, and all other females with the same phenotype, produces will be exactly the
prediction we would make from the regression line expressing the regression of offspring on their
parents, evaluated at a parental phenotype of 37.5 cm. This may sound completely tautologous,
but it is not. Any other joint distribution other than a bivariate normal one would not give this
precise linearity of the dependence of offspring mean on parental phenotype. One set of examples
which do not show precisely this linearity is all the n-locus cases. It is only as n becomes large
that the linearity becomes precise. A similar linearity of offspring means holds when we specify
the phenotypes of both parents. From both of them we can predict the offspring phenotype, and
the regression line will turn out also to give the mean phenotype of offspring produced by all pairs
of parents having the same two parental phenotypes as these. The predictions we make from the
parents are easily written in terms of the regression of offspring on parent. For the case where
we choose one parent (say the mother) and based on its phenotype try to predict its offspring’s
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Figure 9.7: Distribution of phenotypes in phenotypes controlled by different numbers
of loci. Each locus completely dominant, with gene frequency of the dominant allele
being 0.4. All loci have equal effects. The cases are scaled to have equal variance, with
environmental effects contributing 20% of that variance.

phenotype, then the prediction is obtained from the regression line
E(Y) = pu+Bop (X —p) (IX-67)

where X and Y are the phenotypes of mother and offspring. In the case where we know the
phenotypes of both parents, it can be shown that the prediction is made by a least-squares regression
on two variables, and this turns out to be simply

E(Y) = pu+Bop (X1 —p)+ Bop (X2 — p), (IX-68)
X1 and X5 being the phenotypes of the two parents.

RESPONSE TO SELECTION. Now we are in a position to use these formulas to obtain the
selection response. Suppose that we were to select from a population a set of individuals for use as
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parents, and mate them at random, then predict the phenotypes from the offspring of each mating.
The average of the predictions will tell us how far the offspring mean will be above the original
population mean. Note that in (IX-63) Bop will be %hQ. Averaging over all the X’s and X5’s
which we choose, we find that

1 - 1 _
E(Y) = p+ §h2(X1 —p)+ §h2(X2 — ), (IX-69)

where Y is the offspring mean and X; and X, are the mean phenotypes of the female and male
parents which we have selected. We can immediately see that the response to selection depends
only on the mean phenotypes of the selected female and male parents, and thus not at all on the
way in which they are mated. However if we wish to use the formula again in the next generation of
a selection program, we must know that our assumptions hold in that generation as well. This will
scarcely ever be precisely true, but if our mating of the selected parents is random it may nearly
be true. If we select equal numbers of males and females, and let X be the average phenotype of
the selected parents, then (IX-69) can be rewritten as

E(Y —u) = h3(X — p). (IX-70)

In a sense, then, h? is the fraction of the selection applied to the parents which has an effect on their
offspring. If h? = 0.3, then by choosing parents who average 10 kg above the population mean, we
obtain offspring who are expected to average 3 kg above the original population mean. Note that
formulas (IX-69) and (IX-70) are applicable when we select only one sex and choose the members
of the other sex at random. If, say, we mate selected females with randomly-chosen males, then X5
will be equal to p, so that the last term of (IX-69) vanishes. This is exactly what we would have
found by using (IX-67) instead of (IX-68). Note also that when there are unequal numbers of the
two sexes, (IX-69) shows that we should base our predictions on the simple average of X1 and Xo,
not on the overall average parental phenotype.

RESPONSE TO TRUNCATION SELECTION. We have still not said how we selected the
parents. An animal or plant breeder trying to make as large a change as possible in one generation
will usually try to use as parents the individuals with the largest values of the phenotype which
they want to increase. Suppose that the breeder knows that they want to breed from (say) the
upper 20% of the herd. How much response can be expected? As we can see from (IX-70) and its
predecessors, this depends entirely on how far above the population mean the selected individuals
will be. When the character follows a normal distribution, this is easily computed. We can look at
a standard normal distribution (one with mean zero and variance 1) and ask what is the mean of
the individuals who make up the top 20% of the distribution. Suppose that this is designated as
i. We are actually interested in the mean phenotype of the top 20% of a normal distribution with
mean y and standard deviation o. If we express this as a deviation I from its mean, we are saying
that the mean phenotype is p + I. The fact that we are considering normal distributions makes
this easy. We know that in the standard normal distribution the top 20% is ¢ standard deviations
(i x 1) above its mean (0). Then in any other normal distribution the top 20% is also i standard
deviations above its mean. So the mean phenotype of selected individuals is

p+I = p+io (IX-71)
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or
I =io. (IX-72)

This implies that we need only a single table, which tells us for each fraction of individuals
retained what the value of ¢ will be. From this along with the standard deviation we can use
(IX-72) to find I, the expected difference between the phenotypes of the selected parents and
the population mean. Equation (IX-65) tells us that we expect a fraction h? of this selection
differential to show up in the selection response of the mean of the offspring. An example may
be useful. Suppose that we have a population of mice weighing an average of 20 g, with standard
deviation of 2g. We have taken covariances of relatives and obtained an estimate of h? = 0.3, and
wish to predict the result of breeding from the top 10% of the population. For the top 10% one
can show that ¢, the standardized selection differential, is 1.76. Then we expect the top 10% to
be 2 x 1.76 = 3.52g above the population mean, so that the mean of selected parents should
be 23.52g. The mean of the resulting offspring will be (0.3)(3.52) = 1.056 g above the original
population mean. So the offspring mean will be expected to be 21.056 g. All that is missing is the
table of ¢ as a function of the fraction selected. We need to compute, for a standardized normal
distribution, the mean of the top .S of the curve, where S is the fraction selected. A bit of algebra
gives this, as follows. The selected parents will show a distribution of phenotypes which is the tail
of a normal distribution. It will have density function

Ll epla?/2), x>
— exp|—x , x>cC
S V2T P

fla) = (IX-73)

0 z < c

where ¢ is the point at which we must truncate a normal distribution so that a fraction S of the
area is above the cutoff point. The average value of x in this distribution is what we seek. It is:

i = E(2) = /fo(x) dx

= /COO S\jﬁ exp[—22/2] dx (IX-74)

1 & 2
— —x?/2 d
S —271- \/C X e Xz

and noticing that the quantity under the integral sign is the derivative of — exp(—22/2), we get

P= L (IX-75)

so that the standardized selection differential is simply the height of a standard normal curve at
the cutoff point ¢, divided by the fraction of area (S) above the cutoff point. The cutoff point ¢
and the height of the curve at that point can be determined using standard normal tables. Table
9.2 shows values of i: Note that even when we select the top 0.001 of the parents, we get a selection
differential of only 3.4 standard deviations: there effectively aren’t any individuals available who
are more than four standard deviations above their population mean.
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Table 9.3: Standardized selection differentials, 4, corresponding to various fractions of
parents selected (5), as well as cutoff points c.
S i c

0.90 0.195 -1.2816
0.80 0.350 -0.8416
0.70  0.497 -0.5244
0.60 0.644 -0.2533
0.50 0.798 0
0.40 0.966 0.2533
0.30 1.159 0.5244
0.20 1.400 0.8416
0.10 1.755 1.2816
0.05 2.063 1.6449
0.01 2.665 2.326
0.001 3.367  3.090

SELECTION EFFECTS AT A SINGLE LOCUS. To what is the selection response due?
If the response has been the result of creating a departure from Hardy-Weinberg proportions, or
creating linkage disequilibrium, then we would not expect it to be retained in future generations:
the population will fall back to its previous mean. But if the selection response is mostly a result
of changing gene frequencies, then we may expect the gain to persist, and perhaps we may even
expect a further gain if the selection procedure is repeated each generation. We now show that the
gain is in fact due to changes of gene frequency. To do this we need the amount of change due to
selection caused at one locus during the process of truncation selection. Suppose that we have a
two-allele locus. Let us ask how likely it is that a copy of the A; allele survived selection. When
we computed the average excess «y for this allele, this was the mean phenotype of all bearers of
Aj alleles, weighted by the the number of A; alleles they carry and expressed as an excess over the
population mean. Furthermore, knowing that an individual carries Ay tells us nothing about the
rest of its genome or the environmental variance. Since the bulk of the variance comes from those
sources, and only a little of it has been eliminated by fixing one allele at Ay, we will approximate
well by saying that A;-bearing individuals have a mean of y + o and a variance of 2. When we
save all individuals whose phenotypes are beyond a value of ¢, what fraction of A; genes survive
selection? Let ¢(z; i, 02) be the density of the normal distribution with mean p and variance o2.
The fraction of surviving A;-bearing individuals is

wp = / bz 1+ o, 0%) da
. (IX-76)

o0

ctaq
= / d(z;p+ o, 0%) do + ¢(z; 4 a1,0°) d
C

ctan

The rightmost term is the area beyond c+ a1 in a normal distribution centered at p+ . This will
be the same as the area beyond ¢ in a distribution centered at p. This we have already specified
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to be S, the fraction saved. So

ct+an
wy = / ¢z p+ay,o)de + S
c (IX-77)

~ oo p,o) + S

The second line of this expression is obtained by assuming that «; is small. The integral of a curve
over a short interval of width a7 is nearly its height times a;. Now we notice that the height of
the normal curve at the cutoff point ¢ will simply be iS/o, where i is the standardized selection
differential. So

w1

Thus the A; alleles are expected to increase in frequency by a fraction ic /o of their previous value.
There is not the space for it here, but one can show using the new gene frequency p’ ~ p(l+ia; /o)
and making use of (IX-23) and (IX-32), that the contribution of this locus towards the mean of the
offspring is increased by

(i/o) [2pai +2(1 —p) a3 ]. (IX-79)

Thus, adding over loci, the changes in gene frequency bring about an increase of the mean by
AG = iVajo = ioVa/(Va+Vp+Vg) = ih’c = Ih? (IX-80)

But this is a fraction h? of the original selection differential. So the changes in gene frequency
account for all of the response to selection. The gain due to selection should thus be permanent
and enduring.

EFFECTS OF REPEATED SELECTION. The first time selection is applied, the gain
is entirely due to changes of gene frequency at the individual loci influencing the trait. If the
assumptions which were used in establishing this result continue to hold, we should expect to
see continued gain from repeated generations of selection. Chief among the assumptions is the
independence of genotypes at different loci, in other words, linkage equilibrium, and if a single
generation of truncation selection generates no linkage disequilibrium, it should remain in that state.
Unfortunately for our analysis, truncation selection does generate some linkage disequilibrium. In
fact, it tends to put alleles which increase the phenotype in repulsion, so that the net effect is to
decrease the variance of the trait. The usual method of analysis in animal and plant breeding is to
ignore this disequilibrium, and assume that the loci are loosely linked, so that little disequilibrium
will remain in the next generation. If this assumption is a reasonable one, then we should again
expect to see a selection response of Ih? in the next generation.

Bulmer (1971) has presented an approximation which corrects for the linkage disequilibrium
induced between unlinked loci. Even if we ignore disequilibrium we must still know what selection
does to h? and 0. We shall assume that the environmental effects remain the same from generation
to generation, and that the loci continue to contribute additively to the phenotype. Other than
linkage disequilibrium, the only quantities which could change from one generation to the next are
the gene frequencies. If there are many loci contributing substantially to the character, then the
average excess aq of one allele will be small compared to the standard deviation of the character.
Formula (IX-78) then provides us with some assurance that selection will make only small changes
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in gene frequency at any one locus. Thus the variance components V4 and Vp will change little in
any one generation. Therefore h? and o will also change little. The usual procedure in predicting
response to selection is to assume that h% and ¢ remain unchanged from their initial values, so that
if a constant fraction .S of the population is saved each generation, the response in each generation
will be ih%o.

COMPLICATIONS AND LIMITATIONS. The calculation of the response to artificial
selection is quite assumption-bound, so that there are a great many places where the argument could
go wrong. One of the most vulnerable assumptions is the constancy of the range of environmental
effects. In actual animal and plant breeding, the conditions of husbandry are changing continuously,
just as the genetic characteristics of the strains are. Under modern industrialized agriculture,
there is frequently a tendency for increased mechanization of rearing to lower costs but also to
result in more unfavorable conditions for the animal or plant. So the environment is continually
deteriorating, and this creates a serious problem for anyone who wants to know whether selection
is in fact bringing about the predicted improvement. Selection which is in fact counteracting the
deteriorating environment may appear to be having no effect. Alternatively, selection may receive
credit for increases of yield which are actually the result of improved agricultural techniques. Clearly
in any breeding program it is worth paying a great deal of attention to long-term environmental
changes, and attempting to measure them and correct for them.

Natural selection. A second source of difficulties is natural selection. We have assumed
that it is absent in our model of a quantitative character, but clearly this is unjustified in general.
Characters which have not been under strong artificial selection may owe their present values to
natural selection. This natural selection is far more likely to be stabilizing selection than directional
selection. In applying artificial selection we are reshaping the organism to our own requirements,
not those of natural selection. It is quite likely that among our selected parents, fertility is lowest
in those which appear best to us for our own requirements. Likewise among their off spring, those
may survive least well which most closely fit our requirements. Natural selection and artificial
selection will then be antagonists. As the phenotype departs farther from the original population
mean, the intensity of natural selection may increase. Ultimately we will reach a point in the
selection program where natural selection prevents further progress from artificial selection. If we
see the plateau of selection response, we may mistakenly conclude that it is a result of fixation
of the favorable alleles. Imagine our surprise when we cease artificial selection, and observe the
phenotype gradually receding towards its original value, owing to the unopposed operation of
natural selection! A more careful approach would involve checking at the plateau to see whether
heritability had reached zero. If it has not, then we have the paradoxical situation of being unable
to get further response to artificial selection in spite of the presence of additive genetic variance.
There is an increasing suspicion among animal and plant breeders that many of these paradoxical
plateaus in selection response are the result of natural selection.

Gene interaction. A third source of complications is gene interaction. We have assumed
that on some scale the different loci have effects that add up. Sometimes the proper choice of
a scale transformation will bring one nearer to this idealization, but in general genes interact by
a variety of complex mechanisms, so that there is no reason to expect perfect additivity. Some
considerable effort has gone into incorporating genetic interaction into quantitative genetic theory.
Cockerham (1954) and Kempthorne (1954) independently arrived at a method for breaking down
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the phenotypic variance into multiple components when interaction is present. They were able to
find reasonably simple formulas for the covariances between relatives in terms of these variance
components. Griffing (1960) made substantial progress towards predicting selection response when
interaction between loci is present. The difficulty with these papers is that the approach they use
is not very useful in practice. Even if we only allow for two locus interaction, the variance is broken
down into six components:

Vi = Va+Vp+Vaa+Vap+Vpp + VE. (IX-81)

Finding enough different covariances of relatives, and large enough sample sizes, to estimate these
six quantities is essentially impossible in practice. The variance components approach to interaction
has had little impact in practice. The best we can do in practice is to ensure that we remove
interaction effects as much as possible by scale transformation. Beyond that we can only look for
an understanding of the effects of individual loci, which is easier wished for than achieved.

Genetic drift.  Another serious complication is the presence of genetic drift. This can cause
changes in the variance components. A careful study of this problem has been made by Robertson
(1960). He found that the fixation probability formulas of Kimura could be applied, to predict the
limiting phenotype under selection. The average result of genetic drift is to reduce the heritability. If
only N adults are preserved each generation, the additive genetic variance will ultimately disappear,
and no further progress will be made thereafter. This is actually simply another way of stating that
in a finite population, there is a nonzero chance of losing advantageous alleles. Thus we may be
less interested in rates of change of phenotype than in the ultimate selection limit. A particularly
interesting result concerns the case in which n individuals are screened with only a fraction retained.
In that case if n is fixed, the more strongly we select, the fewer adults we will choose. There is then
a tradeoff between the immediate response, which is greater the more strongly we select, and the
selection limit, which is less the fewer adults we save. On the other hand, if we select weakly we will
make little progress before our additive genetic variance is lost. Robertson showed that the optimum
procedure, from the point of view of the selection limit, is to save the upper half of the population.
This can be proven using our equation (IX-75) to compute the value of 4N s, and finding the level of
selection which maximized that quantity. Hill and Robertson (1966) subsequently investigated the
effects of linkage on selection limits. They found an interesting phenomenon (the “Hill-Robertson
effect”) in that selection at neighboring loci tended to interfere with selection response at both
loci, even if the loci neither interact in their fitnesses nor are in initial linkage disequilibrium. This
phenomenon seems to be quite general. Hill (1971, 1972a, 1972b) has made a more exhaustive
study of the effects which finite population size will have on the variability of selection response.

Two lesser concerns are with the finiteness of the number of loci and with the fact that we never
quite achieve the selection intensities we expect. Latter (1965) has looked into the effects of having
a few loci with large effects on the character. He finds that this will rarely cause serious difficulties.
Hill (1976) and Rawlings (1976) have investigated the possibility that the top (say) 20% of the
group of individuals may not be near the top 20% of a normal distribution, owing to the fact that
there are groups of relatives among them. This seems to be a secondary problem compared to the
others we have mentioned.

356



IX.10 History and References

While selecting the top of a herd or crop is an ancient practice, it was only in the 1930’s that
quantitative genetics attempted to predict the response to selection. Haldane (1930c) was the
first to compute the selection intensity by reference to tails of normal curves. Using the work of
Fisher, Wright, and Haldane, Jay L. Lush fought for the introduction of quantitative genetics into
animal breeding. His book, Animal Breeding Plans (1937) was a landmark in introducing these
techniques to wider audiences. Of particular note during the early years of quantitative genetics
were the papers of Fairfield Smith (1936) and Hazel (1943) on “index selection” (selection based on
a combination of traits), of Hazel and Lush (1943) and Lush (1947a,b) on selection based on the
performance of near relatives, of Comstock, Robinson, and Harvey (1949) and Dickerson (1952)
on selection of two lines based on the performance of the cross between them, and of Robertson
and Lerner (1949) and Dempster and Lerner (1950) on all-or-none traits. We have already cited
a number of more recent papers which extend or check selection theory. The reader interested in
further enlightenment will find it in the excellent books by Falconer and MacKay (1996) and Lynch
and Walsh (1998).

Exercises

1. Suppose that we have a trait controlled by two alleles at each of two unlinked loci, and that
(i) all double homozygotes have phenotype 1, (ii) all single heterozygotes have phenotype 2,
and (iii) all double heterozygotes have phenotype 4. If we cross two strains, one AABB and
the other aabb, what are the mean phenotypes of these parent strains? of the F17 of the F27
of the two backcrosses F1 x P1 and F1 x P2? Are the rules concerning means of crosses
obeyed? Why or why not?

2. In the above case, would the rules concerning means of crosses be obeyed if instead of mea-
suring the phenotype we measured its logarithm? its square root?

3. Suppose that a trait is the sum of effects at two loci. At one locus the contributions of AA,
Aa, and aa are 1, 3, and 2. At the other locus the contributions of BB, Bb, and bb are 2,
1, and 6. If both A and B have gene frequencies of 0.6, compute the mean phenotype when
the inbreeding coefficient is f. Does this depend on the probability Fi; that both loci are
simultaneously inbred? Why or why not?

4. Compute the total phenotypic variance in a one-locus trait where there are no environmental
effects and the phenotypic means of AA, Aa, and aa are 1, 1, and 0. Obtain this variance as
a function of gene frequency, p. By direct enumeration of all possibilities and their relative
frequencies obtain the covariance of parents and offspring in this case. What do these two
expressions tell you about the way that the heritability depends on p? Does this depend on
the aij?

5. In terms of the three variance components Vy, Vp, and Vg, and/or the heritability, what are
the covariance and the correlation between your maternal half-sib and your paternal uncle?

6. Use (IX-52) and (IX-53) to compute the covariance and correlation of an individual with
itself. What is wrong with this?
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7.

10.

11.

12.

13.

14.

Suppose that we find no inbreeding depression in a trait which is the sum of effects at loci
each with two alleles. Does this mean that the trait has no dominance variance if the trait
depends on only one locus? two loci?

. Consider a trait whose numerical value is controlled by two loci, without any environmental

variance. If the values specified by the genotypes at these two two-allele loci are:

BB Bb bb

AA| 6 7 8
Aa | 7 8 9
aa 8 9 10

and both genes have 50:50 gene frequencies (so that p4 = 0.5 and pp = 0.5)
(i) What will the mean value of this phenotype be?
(ii) What will its variance be? Its standard deviation?

(iii) Are these two loci individually additive in the effects of their alleles? Do they show any
interaction (epistasis)?
(iv) In view of (iii), what will the heritability of the trait be?

(v) If we carry out artificial selection, saving all those individuals whose phenotypes are 8 or
greater, what will the response to selection be in the first offspring generation?

. Suppose that we have a trait that shows a mean of 105.2, a variance of 30.6, and a father-

offspring correlation of 0.45. What is the heritability? If we choose fathers that measure
exactly 110 on the scale, what will be the mean trait value of their offspring if they each mate
with a randomly chosen female?

Suppose that we find a parent-offspring correlation of 0.1 and a grandparent-offspring corre-
lation of 0.03. Can we determine heritability from this? Why or why not?

Suppose that we have two genotypes, one with mean phenotype 10 and the other with mean
phenotype 11. The environmental effect is normally distributed with mean zero and variance
1.2. Use a table of areas of the normal distribution to compute the fitnesses of these genotypes
under a regime of truncation selection where all individuals above 11.2 are saved.

Suppose that we have an overdominant locus with the mean phenotypes 3, 4, and 2 for
genotypes AA, Aa, and aa, a gene frequency of 2/3 for A, and an environmental contribution
which is normally distributed with variance 1. Compute the heritability of this trait. Based
on this, what will be the response to one generation of truncation selection in which all
individuals above 5 are saved?

In the preceding exercise, use tables of the normal distribution to compute the fitnesses of the
three genotypes when we carry out truncation selection saving individuals with phenotypes
above 5. Do we expect to see any response to one generation of this selection?

Is there a discrepancy between the answers to exercises 10 and 11?7 Explain why we do or do
not expect one to exist.
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Complements/Problems

1.

10.

11.

12.

If the two loci in Exercise 1 of this chapter instead had recombination fraction r between
them, how would the mean phenotype of the F2 generation depend on r?

. If two traits are each determined multiplicatively by many loci, and we are interested in their

ratio, does taking logarithms make this ratio additively determined by the loci in the sense
that the log (of the ratio) is now additively determined by the loci? Is this result altered if
some of the same loci contribute two the two traits?

. If we have a trait (say, numbers of bristles) which has for each genotype a Poisson distribution,

then it is known that its environmental variance can approximately be made constant over
all genotypes by working not with the number of bristles but with its square root. To be able
to use this transformation and our model of determination of a phenotype, what would be
have to assume about the way effects at different loci combined?

. Do the relationships among means of inbred lines and their crosses and backcrosses hold

when we have multiple alleles? When we have a sex-linked trait with two alleles and with
hemizygotes which always resemble the corresponding homozygote?

. Does the linearity of the effect of inbreeding on the population mean continue to hold in the

case of multiple alleles?

. Use (IX-36) to confirm the multiple-allele formula (IX-37) by differentiating @) with respect

to «; and equating the result to zero.

. What is the correlation between the additive effect A and the total phenotype u+ A+ D+ E?

Can you see from this why heritability is written h? ?

. If one predicted the phenotype of an individual from the mean of two of its siblings (by

regression), will this be a better or worse prediction of its phenotype than the midparent?
How does the presence of environmental correlations affect this result?

. Which is expected to be the better predictor of an individual’s phenotype, if no environmental

correlations are present, the midparent or the mean of the four grandparents? Are the two
predictions going to be the same?

In terms of h?, what is the (genetic) correlation between offspring and midparent? What is
the regression coefficient of midparent on offspring (i.e. with X being the phenotype of the
offspring and Y the midparent)?

In a one locus two-allele case with genotypic means 1, 3, and 4 of genotypes AA, Aa, and aa
and no environmental variance, is the regression of offspring on parent perfectly linear?

Suppose that one genotype has mean p1 and environmental variance 0%, and that another has
mean po and environmental variance o3. What is the rule as to which genotype has higher
fitness under truncation selection if p; # o and oy = 09?7 If u1 = w9 and o1 # 027 What
does the latter say about one of the possible unpleasant side effects of truncation selection?
What is the general rule for arbitrary w1, ps, o1, and 097
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13.

14.

15.

Can we use the ultimate limit reached under truncation selection to get an idea of how many
loci are affecting variation in a trait? What are the limitations of this approach?

(Harder) Suppose that we take n males and n females from a random-mating population, and
construct a diallel cross by making all n? possible matings and measuring one offspring from
each. If we arrange the resulting numbers in a square and do an analysis of variance, what
are the expected variance components for rows, columns, and interaction in terms of V4, Vp,
and VE?

(Harder) How are the results altered in the preceding problem by using instead males from
n inbred lines and females from n other inbred lines, each line being totally inbred starting
independently from the same population?
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Chapter X

MOLECULAR POPULATION
GENETICS

X.1 Introduction

The flood of molecular sequences in molecular evolution has reached inside populations. It is no
longer true that each species is necessarily represented by only one sequence of each gene (“the
mouse sequence”, “the human sequence”). Now it has become more common for some attempt to
be made to assess population-level variability by collecting population samples of sequences at a
single locus. We are now seeing more and more studies that sequence multiple loci in the same
individuals and populations, adding an additional dimension to the data. In addition, genomics
is no longer content with sequencing one genome of one species, but has expanded, not only to
multiple species, but to characterization of genetic variability within and between populations.

These developments of the 1980’s and 1990’s, together with the previous expansion of restriction-
sites data, has created a new field of evolutionary genetics, molecular evolutionary genetics. It is
now joined by evolutionary genomics.

X.2 Mutation models

While the genetic drift, natural selection, and migration of sequences is normal, the way they mutate
is distinct. When a sequence with many sites in it undergoes mutation, one does not merely see
a series of distinct alleles, but to some extent one can reconstruct the history of the mutations by
examining the sequences in detail. With n sites, there are in a nucleotide sequence 4™ possible
sequences.

THE JUKES-CANTOR MODEL. The simplest possible model of mutation simply assumes
that the same mutational process, with the same mutation rate, occurs at all n sites independently.
The simplest model for mutation at a single site is to assume that each nucleotide has the same
probability of mutation, and when it mutates it changes to one of the three other possible bases
with equal probability. This is the model of Jukes and Cantor (1969).

If the mutation rate is p per unit generation per site, and if F;; is the probability that base ¢
changes to base j in one generation, then the mutation matrix looks like this:
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L—p p/3  w/3 p/3
w/3 1—p p/3 w3
w/3 /3 1—p  p/3
/3 w/3 p/3 1—up

For the whole sequence, the probability that one mutates, in one generation, from one given
sequence to another that differs from it in m out of the n sites, is easily computed as the probability
of getting particular changes at those m sites and no change at the others:

(n/3)™ (1 = )™, (X-2)

We will have use for the transition probability at a site between base ¢ and base j in ¢ generations.
This is of course the ij element of the ¢-th power of the mutation matrix P. While that can be
directly computed, we can get it more easily by a slightly indirect argument, which we will also
need for some further models below.

Note that if ¢ is large and p is small, we may approximate the process by having time (measured
in units of generations) be a continuous scale, with a constant risk of mutation. Now notice also
that if we had a type of mutation that changed a base to one of the four bases chosen at random,
with equal probability of the four outcomes, this would look almost like the Jukes-Cantor model,
except that 1/4 of the time it would make no change at all. Now imagine that we have this altered
mutation model but we increase the rate to % . In that model the mutations that change the bases
occur at rate p, continuously in time.

But in that altered model (the one with increased mutation rate) it is quite easy to compute
the probability that we end up with base j after having started with base i. If there has been any
mutation at all during the time time span ¢, then the probability of ending up at base j is 1/4.
Now mutation in this continuous-time version of the model has a dynamics like waiting for the first
atomic decay of a radioactive substance. Thus the probability that there is no decay at all in ¢
units of time is the exponential exp(—%ut). Putting all of this together, we easily show that the
transition probabilities (they are called that for mathematical reasons, not having anything to do
with transitions and transversions) are

Py = f(1-eirt) (i # 5)

Py = e irt 4t (1-eint) (= j)

(X-3)

We can also compute, from (X-3), the expected fraction of sites in which two sequences will
differ, as a function of mutation rate and time. This is useful in some kinds of phylogenetic
inferences. Adding up the three values of P;; for the changes from base i to all three different
bases, the expected fraction D of sites differing becomes

D = Z(1 —e*%“t>. (X-4)

362



This equation can easily be inverted to solve for the “branch length” ut as a function of D by
solving for the exponential and then taking logarithms:

ut = —%ln(l—%D). (X-5)
KIMURA'’S 2-PARAMETER MODEL. The Jukes-Cantor model is easy to analyze, but
lacks some of the structure of more realistic models of base change. The most notable absence
is the inequality of transitions and transversions. This was corrected by Kimura (1980), whose
“2-parameter model” (sometimes called the K2P model) we now describe. This model has the
simplest form of transition-transversion inequality possible. All four bases are equally frequent.
They all mutate with equal rates . When they do, the probabilities of the transition is R times

as great as the total probabilities of both possible transversions. The result is the mutation matrix
for bases ordered A, G, C, T:

[ R
L—p zaw 2}#+2 2}#+2
R
P — ak l—n 2}#+2 2}#+2 (X-6)

I B _ i
shrz Rz L MmO M

H I R _
skrz srz RO M 1w

I have expressed this matrix, not in Kimura’s original parameterization, but in one of my own
that uses the more immediately meaningful parameters p (the total rate of potentially observable
mutations) and R (the transition/transversion ratio).

For many purposes what we need for each of these models is the transition probabilities, where
the “transitions” are all changes of state. In molecular biology changes among purines or among
pyrimidines are referred to as “transitions” and all other changes as “transversions”. I will try to
make it clear when the word transition is used in its stochastic processes sense and when it is used
in its molecular biology sense. In the latter case the word transversion is usually nearby.

The simplest method of computing the transition probabilities for Kimura’s 2-parameter model
is to use a method similar to the one used above for the Jukes-Cantor model. Let’s assume that
time is continuous, as before. We can reframe the K2P model as involving two kinds of events. One
(type II) occurs at rate § = 2u/(R + 1). When it occurs, a random one of the four bases is chosen
to replace the present base. This gives us the correct rate of transversions such as A — C and
A — T. However it does not give us enough transitions such as A — G. To get those to come out,
we must add another kind of event (type I) with rate o = (R — §)p/(R + 1) that can make either
no change or a transition, and cannot make a transversion. If this event happens, and the base was
a purine, one of the two purines is chosen at random to replace the base. If it was a pyrimidine,
one of the two pyrimidines is chosen at random to replace the base.

This keeps the model the same, but defining these imaginary events makes the calculations easy.
If a lineage has even a single event of type I, its final state is random among all 4 bases. If it has
no event of type II but at least one of type I, it is random among both purines, or among both
pyrimidines, depending on which type of base was present. Note that sometimes either event will
result in no change, so not all these events are real, but imagining them does result in the right
probabilities.
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The upshot is that the probability of a particular transversion change (say getting a T given
that one started with an A) is

1
Prob(T | A,t) = (1 - e—ﬁ“t> 7 (X-7)
and the probability of the transition change is
—But —apty 1 —gut) 1
Prob(G| A,t) = e 1t (1 — e “)§-+<1—e “>Z (X-8)

THE HKY MODEL. The Kimura K2P model allows for inequality of transitions and transver-
sions, but is still unrealistic in always leading to equal equilibrium frequencies of the four bases.
Hasegawa, Kishino, and Yano (1985) introduced a model that allows for inequality of base frequen-
cies. Its rates of change for the bases ordered A, G, C, T can be written as

—— (a+B) ura B e B pr
(a+B) pra —— B e B p x.9)
B B g —— (a+B) p7r
| Buma Bupure  (a+B)pmc —— |

The transition (and transversion) probabilities for this model can be worked out similarly to
Kimura’s model (see Felsenstein, 2004, chapter 13). The equilibrium frequencies of this model
are the quantities (74, 7, 7c, ) which are, in effect, parameters of the model. To get the overall
transition/transversion ratio to be R and the overall rate of base change to be p it is necessary to
set

R 1 1 1
_ L L X-10
“ R+1F R+11—-F (X-10)
B =1-aF (X-11)
where
F = 2npa7mg + 2n¢ np. (X-12)

Note that for some small values of R some rates in the matrix become negative — not all values of
R can be achieved.

There is a similar but slightly different model introduced by me, the F84 model, and a more
general model due to Tamura and Nei (1993) that includes both as special cases. For all of these
the net probabilities of change can be calculated (see Felsenstein, 2004, chapter 13).

THE GENERAL TIME-REVERSIBLE MODEL. A 9-parameter model can be defined that
has the often-desired property of reversibility. This ensures that the fraction of all changes that
are from state ¢ to state j is expected to be equal to the fraction that are from state j to state i.
(Note that this is not the same as assuming that the transition probability matrix is symmetric).
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We will not make use of the property of reversibility here, but it is still worth stating the model,
as the only widely-used 9-parameter model. It has rate matrix

To:| A G C T
From:
A —— 7mga mcf Ty (X-13)
G Ta —— ToO TTE
C A mgd —— 77(
T Tay wge mol ——

This has four base frequencies and six other rates; there are a total of nine parameters if we
standardize the total rate of change to 1 by insisting that

2nanmga+2nane B+ 2namry + 2ng e d + 2 e+ 2o = 1 (X-14)

The GTR model was introduced by Lanave et al. (1984). There are no simple formulas for transition
probabilities, at least not ones any simpler than using the general solution to the cubic equation.
It is best to compute transition probabilities by numerical calculation of the eigenvalues and eigen-
vectors. This can be done by expressing the rate matrix as a product of a diagonal matrix and a
symmetric matrix (see Felsenstein, 2004, chapter 13).

X.3 Approximate mutation models

While these mutation models attempt to approach realism, calculations using them may suffer from
intractability. Two models, one of which we have already seen, sacrifice some of the realism for
greater tractability.

THE INFINITE-ALLELES MODEL. We have already seen (in Chapter VII) the infinite
alleles model of Kimura and Crow (1964). It assumes that all alleles mutate at equal rates, and
when they do, all give rise only to new alleles that have never been seen before. When it is used
for nucleotide sequences, this model in effect treats all sequences as differing, without inquiring at
which sites they differ or by how many sites. Any statistical treatment based on this method will
thus necessarily discard all information about which alleles are historically close to each other.

THE INFINITE-SITES MODEL. To model this historical information an “infinite-sites”
model has been proposed (Kimura, 1969; Ewens, 1974; Watterson, 1975). In this model each
mutational event occurs at a new site, introducing an alternative allele at that site. The original
haplotype is known, and so is the presence or absence of the alternative allele at each other site.
The model has been used only in the case where there is no recombination between sites; the exact
order of sites is thus unimportant.

The infinite-sites model does retain rather powerful historical information: it is possible to
reconstruct for each haplotype which haplotype was its parent. Figure 10.1 shows an example
of haplotypes produced by mutation in the infinite-sites model. The sites that have mutated are
shown, with the new mutant always designated as 1 and the original state as 0. The historical
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Figure 10.1: An example of haplotypes produced by mutation in the infinite-sites model.
On the left are the alleles, with the arrows indicating the events and the locations of
mutation indicated by vertical marks. On the right is the same case with the states at
each site indicated by 0 and 1, and only the sites that actually mutate shown.

information is accessible. For instance, the haplotype 0100 is intermediate between haplotypes
0000 and 0110.

Although it is possible to have a version of the infinite-sites model that has recombination
between the sites, this does not lead to tractable mathematics, so work with the infinite-sites
model generally assumes that there is no recombination. Given that, the left-right order of sites is
arbitrary. Thus, the haplotypes in Figure 10.1 could just as well have been been (in the order in
which the haplotypes are shown across the Figure) 0010, 0000, 1000, 1001, and 1010.

One of the consequences of the infinite-sites model is that each mutational event gives rise to at
most one additional haplotype. “At most”, because some of the haplotypes can be lost by genetic
drift. For any given pair of sites, there can be only three combinations of states. Thus, in the
Figure, sites 1 and 4 show three different combinations: 10, 00, and 01. Combination 11 could arise
for these two sites only by recombination, as recurrent mutation is not allowed in the model. Since
recombination is assumed to not be present within a locus, no more than three combinations can
be present at two sites. It can be shown that if all pairs of sites pass the three-state test, the set
of haplotypes can have arisen by mutation in an infinite-sites model.

We can test whether a set of sequences could possibly result from an mutation in an infinite-sites
model by asking, for each pair of sites, how many states are present. If some DNA haplotypes that
have no more than two different bases present at each site have, at sites 12 and 18, states CA,
CG, AG, and GG, then they fail the test. This three-state test was introduced by Hudson (2001);
it is a version of a test introduced earlier in systematics by E. O. Wilson (1965). Strobeck and
Morgan (1978) have shown that in a model with multiple sites, intragenic recombination may have
a substantial effect in generating new sequences in addition to the effect of mutation.

Before showing how models such as these may be used in molecular population genetics, we
need to introduce the standard model for genealogies of gene copies, the coalescent.

X.4 The Coalescent

The presence of possibilities of inferring the history of mutations means that we can to some extent
see the ancestry of the sequences in a population sample. If we have a segment of DNA that does
not undergo recombination very often (and we will see how often this is), then the ancestry of the
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sequences in a sample forms a tree. It is not a phylogenetic tree, because the sequences at the tips
of its branches are not from different species. We have seen, in chapter VI, that a pair of gene copies
in an isolated random-mating population will be identical by descent an average of 2N, generations
ago. This classic result of Sewall Wright’s has more recently been extended in an important result
by J. F. C. Kingman (1982a, 1982b, 1982c). It characterizes the tree of ancestry of gene copies in
such an isolated population.

Kingman’s result is an approximation, but a very accurate one in most cases. Consider the
lineages of ancestry from n copies of a gene, in a population of size N, where n < N. Each
copy will have such a lineage, extending back to a parent, a grandparent, a greatgrandparent, and
beyond. It is important to realize that we are talking about the lineage of copies which are traced
back to previous copies, not individuals traced back to previous individuals. Figure 10.2 shows three
such lineages of gene copies in a population of 12 individuals. Each individual has two immediate
ancestors, but each gene copy has only one (for example your maternal copy of the Hemoglobin 3
locus may come from your mother’s father, and specifically from his paternal copy, which comes in
turn from his father’s maternal copy, and so on.

The figure shows a correct simulation of a population that reproduces according to the Wright-
Fisher model, and the ancestry of three copies of the gene. These lineages combine as one goes
backwards, until there is only a single lineage. This process of the merging of lineages is called a
coalescent, a term introduced by Kingman.

In the Wright-Fisher model each lineage in effect “chooses” its immediate ancestor, both in
terms of choosing the parent individual and choosing the gene copy within that individual. There
are 2NN copies of the gene to choose from. We may ask what is the probability that, in a given
generation, two copies “choose” the same parent copies. If there are n copies and the first two of
them happen to be the ones that choose the same parent copy, the probability of this happening is

) (2 () (152 1

because the first copy chooses some parent copy or other (with probability 1), the second indepen-
dently happens to choose the same copy (with probability 1/(2/N)), the third chooses a parent copy
different from that one (with probability 1 — 1/(2N)), the fourth chooses a parent copy different
from those two copies, and so on. This is only one of the n(n — 1)/2 possible pairs of copies that
could have the same parent. These events, which each have exactly two individuals with the same
parent, are mutually exclusive, so we can add their probabilities. Collecting together terms in 1/N
and 1/N? and so on, we get for the probability that exactly two lineages coalesce in this generation

-1) 1 1
% N + terms in N2 (X-16)

A similar argument yields the probability that three lineages happen to coalesce in the same
generation as

-2 1 1
n(n g(" )4N2 + terms in 1 (X-17)

This will be considerably smaller than the probability (X-16) of pairwise coalescence if (n—2)/(6N)

is considerably less than 1. Probabilities of coalescence of more than three lineages in the same
generation are even smaller. Hence when n < N we need only consider pairwise coalescences.
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Figure 10.2: The coalescence of lineages in population reproducing according to a
Wright-Fisher model. The dark lines show the genealogy at the gene level of a sample
of three copies of the gene.

A good approximation to the process is that in each generation there is a small probability
n(n — 1)/(4N) of coalescence. If there is a coalescence, it is of two lineages. Which two? The
answer should be obvious — a random pair of lineages. We have a process that goes back in time,
generation by generation, having a constant small probability of a coalescence. If we ask what the
distribution of the time (going backwards) until coalescence is, it is the distribution of the time to
the first “heads” in a series of coin tosses with a small probability of “heads”. The average number
of tosses will be the reciprocal of the heads probability, 4N/(n(n — 1)).

Technically the distribution is a geometric distribution, but it is excellently approximated by an
exponential distribution with the same mean. An exponential distribution is the distribution of the
time until a random event that can occur at any point in a continuous time, such as the time until the
next radioactive decay detected by a Geiger counter. Making that approximation, we get a process
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Figure 10.3: Kingman’s n-coalescent process, an approximation to the genealogy of gene
copies in an isolated random-mating population

which goes back an exponentially distributed number of generations, with mean 4N/(n(n — 1)),
then coalesces two random lineages. At that point there are now n — 1 lineages. It is obvious that
the process now continues, but with n — 1 replacing n throughout the mathematics. So the next
coalescent event, proceeding backwards, occurs after a time that is exponentially distributed with
mean 4N/((n — 1)(n — 2)), and involves two random lineages. This continues until there are only
two lineages left, and these coalesce after a time that is exponentially distributed with mean time
2N generations, which is precisely the time predicted in Sewall Wright’s original work.

Figure 10.3 shows such a coalescent. The time wu; is exponentially distributed with mean
AN/(k(k —1)).

How long will it take for the sample of n genes to coalesce to one copy? We can get an idea by
adding up the mean times. Noting that 1/(k(k — 1)) = 1/(k — 1) — 1/k, we find that

AN n 4N n 4N n +4N
nn—=1 (n-1)Mn-2) -2)(n-=-3) ~—~ 2
1 1 1 1 1 1 1 1
— 4N _Z _ _ o= ]
<n—1 n+n—2 n—1+n—3 n—2+ +1 2) (X-18)
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The expected time for a whole population to coalesce is thus nearly 4N generations.

A similar process applies to mitochondrial genes, which are effectively haploid and are only
descended from the females in the population. One simply replaces 4N by 2Ny, so that the time
to coalescence is about 4 times less.

THE APPROXIMATION. The coalescent approximation, which is quite accurate, becomes
more so the smaller n is compared to N. Technically it is a diffusion approximation. If we take
N — 00, the time for n lineages to coalesce to fewer than n does not approach a limit, because it
has mean 4N/(n(n — 1)), which becomes infinite. But if we make the same time scale change that
a diffusion approximation does (as we saw in Chapter VII), there is a limit: if time is measured
in units of IV generations, then the distribution approaches an exponential distribution with mean
4/(n(n — 1)) of these units. The distribution then converges. Note that this same limit also
guarantees that with probability 1, the coalescence involves two lineages and not more.

This change of time scales is often ignored. It is often good enough for practical purposes to
say that the coalescence time is exponentially distributed with mean 4N/(n(n —1)), as I have done
above. Many other complications in the breeding system can be handled by simply replacing the
actual population size N with the effective population size N,.

X.5 Coalescents with migration

If there are two or more populations, with constant rates of migration m;; from population j into
population i, the coalescent distribution of genealogies is easy to obtain. As we go back in time,
with n; lineages in population i, whose size is N;, there is a constant rate nij(n; — 1)/(4N7) of
coalescence in population 1, na(ng — 1)/(4N2) in population 2, and so on for all the populations.
There is also a constant rate m;;, for each lineage in population i, of events in which it proves to
be newly arrived from population j by a migration event at that time. Figure 10.4 shows a series
of events in three populations in which there is migration and coalescence.

We can use this figure to show how to draw a genealogy in a coalescent with three populations.
We start at the top. There are 3 lineages in population #1, 2 in population #2, and 4 in population
#3. In population #1, the 3 lineages have a rate 3 x 2/(4N) of coalescence. Each of them also has
a rate myo of migration events (we are looking backwards). Likewise, in population #2, the rate
of coalescence is 2/(4N) and the total rate of migration events is 2mso; 4+ 2mas. In population #3,
the rate of coalescence is 4 x 3/(4N) and the rate of migrations is 4mss.

We don’t draw genealogies separately for the populations. Instead we take the total rate of
occurrence of events:

6 2 12
m + m + m + 3m12 + 2m21 + 2m23 + 4m32 (X—19)

consider the time back to the next (i.e., previous) event to be drawn from an exponential distribution
with this rate of events. When that time is drawn, we then must decide which event happened. It
is like sitting waiting for a telephone call, when the rate of events is 0.02 business calls per minute
and 0.01 personal calls per minute. Their total is 0.03, so we will wait an exponentially distributed
length of time with mean 1/0.03 = 33.333 minutes. When a call occurs, it has probability 0.02/0.03
= 2/3 of being a business call, and 0.01/0.03 = 1/3 of being a personal call.

So if the total rate of events is 5/N 4 3mya + 2ma; + 2ma3 + 4 m3o, the probability that the
event is a coalescence in population #1 is 6/(4N) divided by this, and so on. We choose among
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Time

Figure 10.4: Migration and coalescence in three populations. Looking backward, the
events are, in order, coalescence in population 3, coalescence in population 2, migration
to population 1 from population 2, migration to population 3 from population 2, coa-
lescence in population 3, migration to population 2 from population 1, coalescence in
population 1, and coalescence in population 2.

the events in proportion to their rates of occurrence. Having chosen an event (in the case of the
genealogy shown in the Figure it was a coalescence in population #3), we change the genealogy
by carrying out the coalescence. If it had been a migration we would move the lineage into the
appropriate population. Now there are 3, 2, and 3 lineages in the three populations. We recalculate
the rates of events accordingly, and also recalculate their total rate. Then once again we draw the
time back to the next (previous) event, and again draw what kind of event it is. This continues
until the last remaining lineages coalesce and there is only one lineage.

Coalescents with migration are easy to sample in this way. Their properties are less easy to
derive mathematically. Takahata and Slatkin (1990) could derive the mean time to coalescence
for two lineages, one from each of two populations, but they found no simple form for the density
function of the time to coalescence. It would have to be a mixture of sums of different numbers of
exponential densities, depending on how many migration events occurred on the way back to the
coalescence.

X.6 Coalescents with population growth

If there is only a single population, but it is changing size, the coalescent is also complicated. The
rate of coalescence is no longer constant as we go back in time. Instead, if the population size is
N (t) when we have gone back ¢ units of time, the rate of coalescence at that moment, for k lineages,
is k(k —1)/(4N(t)). If we pass through a population bottleneck where N(t) is small, there will be
a higher rate of coalescence in that period.

The simplest way of drawing a genealogy is to imagine that, when population size is small, it is as
if the time clock is running faster, so that there is more opportunity for coalescence. Following that
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Figure 10.5: Three coalescent trees generated by two recombination events along a chro-
mosome during the ancestry of four haplotypes. The recombination events are the gray
disks. Note that one lineage becomes a “ghost” lineage after the first recombination,
but its bottom part and a coalescent event are restored to relevance after a new lineage
coalesces with it following the second recombination.

line of argument, the total opportunity for coalescence, back to actual time ¢, can be calculated and
equated to a fictional time 7 that would give the same opportunity for coalescence in a population

that had constant size: .
k(k—1 k(k—1
k(k—1)7 _ / kk-Du (X-20)
4N (0) o 4N (u)
where the variable of integration, u is time back (not mutation rate). What this does is to add up
the total rate of coalescence back to time ¢, and allow us to calculate 7, a number of generations
in a population of constant size that would give the same amount of coalescence. Of course the
k(k — 1) and the 4 can be eliminated.
For a population that is growing exponentially at rate g as we go forward in time,

N(t) = N(0) exp(~g1) (X-21)

in which case we can use X-20 to calculate that
1

S (x-22)
g
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To draw a coalescent genealogy, we use the constant population size N(0) and draw a genealogy.
On going back to a coalescence at time T', we consider this as the fictional time 7 and solve for what
the real time would have been, using equation X-22 and solving for ¢ in terms of 7. A somewhat
more extended version of this derivation is given in my book on phylogenies (Felsenstein, 2004, pp.
460-461).

This false-time-scale argument was developed by Kingman (1982c) and is also described by
Slatkin and Hudson (1991). They pointed out that with exponential population growth in which
4N (0)g is substantial, the shape of the coalescent tree becomes closer and closer to a “star” tree
which has all of its splitting near the base.

RECOMBINATION. In the arguments so far, there has been no recombination within a locus.
Each gene copy was descended from a single gene copy in the previous generation. Suppose that
there was a recombination between sites 221 and 222 in a locus, but no others occurred all the way
back to coalescence. The front end of the gene, the first 221 sites, have an ordinary coalescent. For
the rest, we follow the same genealogy, except for the lineage leading back to the recombination
event. When we get back to that event, the rear end of the gene, say sites 222 to 1000, come from a
different copy in the immediate parent. Following their ancestry back one has a different coalescent
lineage. It goes back and ultimately coalesces with one of the other lineages.

Thus there is an ordinary coalescent for sites 1 to 221, and another one for sites 222-1000,
which differs by having one lineage unhooked and then allowed to coalesce elsewhere. Figure 10.5
shows the result of two recombination events. As one moves along the chromosome, one has one
coalescent, then another, and then a third. Note that some coalescent events that were in the first
coalescent and not in the second show up again in the third.

As one moves long the chromosome and passes points where, in the coalescent ancestry, there was
a recombination, the genealogical tree gradually changes. Moving far enough along the chromosome,
the tree becomes very different.

TREES AND D’S. How far along the chromosome is enough for this? We can imagine two
sites far enough apart that they have recombination fraction r, in a population of size N. At each
site there is a straightforward coalescent — the question is whether these are the same. Following a
single lineage down to the root of the coalescent is about 4N generations. The expected number
of recombination events between these sites in 4N generations is 4Nr. When this number exceeds
1, we expect the two sites to become separated on most lineages before either coalesces. It turns
out that 4Nr > 1 defines the amount of recombination at which sites have substantially different
coalescent trees.

Recall from Chapter VIII that this is also the condition for two sites to have substantial linkage
disequilibrium generated by genetic drift. This is not an accident. When sites are in linkage
disequilibrium, it is because they share genetic drift events in their ancestry, because they trace back
to the same ancestors. Shared coalescent trees and noticeable D’s indicate the same associations.

But how far is this? Recall that in the example in Chapter VIII, if we have an organism with
one recombination every 100 million bases in each generation, and an effective population size of
100,000, the distance along the chromosome at which 4Nr = 1 is when r = 1/(4N), which is a
mere 250 bases. However, if recombination has “hot spots”, the regions between those hot spots
will be longer, and the recombinations will be clustered in the hot spots, where the tree will change
rapidly.
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Figure 10.6: The ancestral recombination graph for the case shown in Figure 10.5. Each
lineage lists the sites that have their ancestry along that lineage.

The upshot of all this is that no one locus shows us the tree of ancestry of the species. Instead
each region of the genome has a different tree, going back to many different coalescent events. There
may be a mitochondrial Eve, but there is a Y-chromosome Adam (who did not know Eve and lived
at a different time). There is also a Cytochrome Sam and a Hemoglobin Helen, and many others.
If trees change, say, every 10,000 bases, your ancestry involves about 320,000 different trees. If you
happen to discover the tree for one region of the genome, you ought to think twice (or perhaps
320,000 times), before claiming that it shows “the ancestry” of the species.

THE ANCESTRAL RECOMBINATION GRAPH. Taking all the trees for a set of haplo-
types, we can superimpose them and make a graph showing recombination events. Each recombi-
nation event is a fork splitting downwards. Below each event, we indicate which sites have ancestry
along each lineage. Figure 10.6 shows this for the trees from Figure 10.5. It is possible to work
back through time, drawing the ancestral recombination graph. The process is very similar to that
used for coalescents with recombination. You need to know, at each time in the past, what are the
possible events that can occur and their rates (the probability of occurrence per unit time). For
example, in the graph in Figure 10.6, as we work backward in time, down the graph, the events are

a recombination separating sites 417 and 418,
a coalescence of lineages,
a recombination separating sites 142 and 143,
a coalescence of lineages,

o=
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5. a coalescence of lineages, and
6. a coalescence of the remaining two lineages.

If we have generated this graph down as far as event number 4, at that point we have 4 lineages.
The first has all sites 1-562, the second has sites 1-142 and 418-562, the third has sites 143-417,
and the fourth has all sites 1-562. There is then a total rate 4 x 3/(4N) of coalescence of lineages.
There is also a rate of recombination. In the first lineage there are 561 intervals between bases at
which recombination can happen. The second may look as if it can have recombination in any of
(142-1)+(562-418) places. But not so: a recombination between sites 142 and 418 does have an
observable consequence, so we have to count them too. There are actually 561 places where there
could be a recombination in that lineage. The third lineage has 417-143 = 274 places, and the
fourth has 561 places. Thus the total rate of recombination is the rate r of recombination per base
multiplied by 561+56142744-561 = 1,957.

To generate the next event down the recombination graph, we need only draw an interval of
time from an exponential distribution whose mean is 1/(3/N + 1957r). Then we need further
random numbers to determine whether the event is a coalescence (as it was on the graph in the
Figure) or a recombination. For each of those we need to choose which lineages coalesce, or which
interval of the 1957 suffered the recombination.

Ancestral recombination graphs were first discussed by Hudson (1983). He also produced a
computer program that has been the basis for most subsequent programs simulating these graphs.

FURTHER READING ON COALESCENTS. My book on phylogenies (Felsenstein, 2004,
Chapters 26-28) may be consulted for a more detailed description of the coalescent. Hein, Schierup,
and Wiuf (2004) have written the first book devoted entirely to the coalescent. It contains many
clear and illuminating descriptions of the population genetic theory involved. A more recent book
by Wakeley (2008) is a strong competitor, with particularly clear explanations and examples.

X.7 Some summary statistics

In the first years after DNA sequences became available, the most widely used methods of estimating
population parameters such as 4N and the neutral mutation rate u were to compute summary
statistics. We can use what we know about the coalescent to simplify these arguments. Generally
these estimators are examples of the Method of Moments. We compute the expectation of the
statistic in terms of our parameter, equate it to the observed value, and solve for the parameters.

NUCLEOTIDE DIVERSITY. Kimura (1968b) introduced the nucleotide diversity =, defined
as the average number of differences per site between pairs of sequences drawn from a sample. The
expectation of this quantity is easy to compute under neutral models of substitution. As it is the
average of all pairs of sequences, its expectation is the expectation of any pair, say the first two
sequences. If the two sequences coalesce t generations ago, the probability density for ¢ will be the
usual coalescent density

1

f) = 5 e (x-23)
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For a Jukes-Cantor model, we can simply average the fraction of sites different in a total time of
2t generations (down ¢ and back up another t), weighting by this density function:

Ejr] = /OOOL o2 §<1 - e_g”(%)> dt (X-24)

Collecting terms this becomes

1 1 8
°°3‘t(ﬁ> °°3‘t(ﬁ+§“>

which is easily evaluated and turns out to be

1
Eirl = 7 - gy T8 (X-26)
4 8N 55 +3m
and this in turn works out to be o
E = - X-27
[W] 11 %@ ( )

where © = 4N . Thus for small values of © we can simply estimate it as 7, while for slightly larger
values we can use:

(X-28)

Note that what we can estimate is not either u or N, but instead their product N u, here used
in the more natural form of 4Nu. This can be seen by thinking about the coalescent genealogy.
If we double N, the coalescent gets twice as deep. If at the same time we halve u, we expect half
as many mutations per site per unit time, and so we expect the same total number of mutations
to be visible. Since what we see in a contemporary sample is the pattern of differences caused by
mutation, these two cases will be indistinguishable. The product Np is thus what we can actually
infer.

NUMBER OF SEGREGATING SITES. Watterson (1975) introduced this statistic, using
the infinite-sites mutation model which he introduced in that paper. One takes the sample of n
sequences and counts at how many sites there is variation. Consider the sequences to be mutating
according to the infinite-sites model, so that each mutation is a different site. What is the ex-
pectation of the quantity .S, the number of segregating sites? All mutations can be seen, as none
ever obscure each other or reverse each other. So the expected number of segregating sites is the
expected number of mutations on the coalescent tree before all lineages coalesce into one.

Suppose that the total mutation rate along the sequence is U. We can compute the expected
numbers of mutations in each of the n — 1 coalescence intervals. In the one which has k lineages
and coalesces to k — 1, the expected time is 4N/(k(k — 1)) and there are k lineages having that
length, so the expected total tree length in this interval is 4N/(k — 1). The expected number of
mutations in that interval is U times this, or 4ANU/(k — 1). Adding up over all intervals, from n
lineages down to the bottommost one that has 2 lineages:

1 1 11 1
E[S]=4NU<n—+n—+---+—+—+—>. (X-29)



To make a method-of-moments estimator, we simply divide S by the quantity in parentheses to get
a quantity that has expectation § = 4NU:

~ 1 1 1 1
0 = S/<1+§+§+Z+---+m>, (X-30)

It has become conventional in population genetics to have 6 be computed as the product of 4N and
the total mutation rate of the sequence. Note that to make it into 4Ny, where p is the mutation
rate per site, it is necessary to divide by the number of sites.

As an example, consider a set of sequences that evolved in a population where the per-site value
© = 0.003. In a simulated sample of 10 sequences of 500 sites evolving according to a Jukes-Cantor
model, I found 6 sites varying, with a mean pairwise difference of 0.008533. Using (X-28) the
estimate of O is 0.00863. Using Watterson’s estimator we would get § = 6/(1 +1/2+1/3+1/4+
1/564+1/6 +1/7+1/8+1/9) = 2.1209. However is this per-locus, so we would get an estimate
of ® = 0.004242 once we divide by 500. Both of these are higher than the true value, with the
Watterson estimator being closer. They are not identical, showing that they respond to somewhat
different aspects of the data. As Watterson’s estimator is derived from a model that does not allow
multiple “hits” at one site, we would expect it to be, on average, a bit low. However, that is unlikely
to be an important effect for values of © this small.

Interestingly, it is possible to argue in a similar fashion that the estimator of © should be the
same, even if the sequences are known to undergo recombination. At each base, the probability
that the site is segregating is as given above, and since S is the sum over sites, its expectation is
not affected if the sequence has recombination causing different sites to have different coalescent
genealogies.

TAJIMA’S TEST. Tajima (1989) uses these two estimates of © to test the neutral mutation
theory. Taking the difference between the nucleotide diversity and Watterson’s estimator, he uses
formulas for variances of these estimators, and derives one for their covariance. He is then able to
compute a standard deviation for their difference, and divide by this. If we have deleterious mutants
at low frequencies in the locus, these would be expected to increase the number of segregating sites
without having much impact on the mean number of differences between sequences. This will
cause his statistic to become negative. He argues that balancing selection on some sites at this
locus would make the statistic tend to be positive.

Tajima’s test is fairly widely used. It is fairly robust and simple, though it does require that
we have only a single population.

X.8 Likelihood calculations

Summary statistics are simple and robust, but are not necessarily efficient. To make an efficient
estimation of ©® we need to ask whether it is possible to compute the likelihood for a sample of
sequences. For most of the 1980s no one seems to have even posed this question (but see Strobeck,
1984). It is perhaps not surprising that little progress was made, that summary statistics methods
were in use, but is astonishing that no one even pointed out that likelihood-based estimators were
of potential interest.

As we shall see, likelihood (and Bayesian) methods are difficult, but since the work of Griffiths
(1989), Griffiths and Tavaré (1994), and Kuhner, Yamato, and Felsenstein (1995) they have become
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practical. They involve sampling a large number of possible genealogies from the huge set of all
possible genealogies that could connect the sequences in the sample. Although they have been slow
to be adopted, these methods are the future of data analysis for sequences sampled within species.

THE LIKELITHOOD. Computing the likelihood under the neutral mutation model is almost
impossible to consider unless we can think of the genealogy underlying the sample. If we knew the
genealogy G* that connects the members of the sample, we could use it to estimate the effective
population size N, (Felsenstein, 1992a). However, this genealogy is not available to us: it is only
hinted at by the sequences, especially if the number of segregating sites is small, as it often is.
For the case of an infinite-sites model, Griffiths (1989) proposed to compute the likelihood by a
recursion which sums over all possible genealogies. This is possible because, in the infinite-sites
model, each site defines a partitioning of the sequences which reflects a feature of the true coalescent
tree. Griffiths’ recursion method, while an intellectual breakthrough, was not practical for more
samples of more than a few sequences.

In more realistic models of sequence evolution, parallel and reverse mutations allow any possible
sequence sample to have some nonzero probability of occurrence, no matter what the true coalescent.
This rules out use of exact recursions. As we will see, the number of possible genealogies is so great
that, unless there is a remarkable breakthrough yielding a formula that sums over genealogies, only
sampling methods have any chance to yield usable likelihood or Bayesian methods.

SUMMING OVER TREES. To give a simple idea of the logic involved, let’s consider first
the simple case of two sequences. As above, we are interested in the case of estimation of N and
1 in a single random-mating population which has maintained its current size for a long time.
With nonrecombining sequences, the coalescent tree is simply two sequences coalescing, with the
coalescence time drawn from an exponential distribution with mean 2/N.

The likelihood is the probability of the two sequences, summed (integrated, in this case) over
all possible coalescence times, with each term weighted by the probability of that coalescence time:

o¢]
L = Prob(D|N,u) = / Prob(t| N) Prob(D |t, pu) dt (X-31)
0

The term Prob(¢| N) is the density function of the exponential distribution with mean 2N. The
other term, Prob(D |t,u) is familiar in phylogenetic inference — it is known there as the likelihood
for this tree. Details of its calculation may be found in my recent book (Felsenstein, 2004). On
larger trees, it can be efficiently calculated by a “pruning” algorithm that calculates conditional
likelihoods recursively down the tree.

For our purposes, we only need to note that since branch lengths in transition probability
formulas for DNA models occur only as products like pt with the mutation rates,

Prob(D|t,u) = Prob(D |put,1), (X-32)

which simply means that, if the mutation rate is p, the probability of the outcome in ¢ units of
time is the same as it would be if the mutation rate were 1, but only ut units of time had elapsed.
So if the mutation rate is 1077 per site, the probability when 10% generations has elapsed is the
same as if the mutation rate were 1 per site and 0.1 generations had elapsed.
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Figure 10.7: Inference from two sequences of 1000 bases that are 0.5% different. Left,
the Kingman distributions of time of divergence for three different values of ©, and also
the probability of the sequences for different times of divergence (dark curve). Right,
likelihoods computed by integrating different priors against that curve. The values for
the three values of © are shown as points.

Putting this into equation X-31 together with the density function of the two-sequence coales-
cent, the likelihood becomes

o ]
L = Prob(D|N,p) = / We—% Prob(D | ut,1) dt. (X-33)
0

Changing variables to a new time scale v which is measured in expected numbers of changes per
site, so that ut = u we replace t by u/p and dt by (1/u) du. This leaves us with

o0
L = Prob(D|N,u) = / e 2Nu Prob(D |u,1) du. (X-34)
0

2N
The essential point about this is that the likelihood turns out to be a function, not of the quantities
N and p separately, but only of their product N pu.

Figure 10.7 shows the Kingman distributions of divergence time ut for three different values
of ©® and the probability of getting the two sequences under a Jukes-Cantor model, when they
are 1000 bases long and differ at 5 sites. This is one of the few cases simple enough to integrate
the product of the Kingman densities and the probability of the sequences. Integrating these for
Kingman densities for different values of ©, we get the likelihood curve shown on the right-hand
side of the figure, with the three values 0.005, 0.01, and 0.02 indicated by circular points. Note
that ® = 0.005 has a lower likelihood, because the smaller values of ¢ have too low a probability of
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giving rise to the observed data. ©® = (0.01 is the maximum likelihood value; © = 0.02 leads us to
expect too many values of ¢ that would lead to too large a divergence of the sequences, so it has
lower likelihood.

In a case this simple, a single numerical integration can allow us to average over our uncertainty
about the coalescent tree. In cases with more sequences, the space of trees grows much larger. The
relevant entities are trees which have their interior nodes in a particular time order. These are
called “labeled histories”, and Edwards (1970) has shown how to count them. A labeled history
is essentially a sequence of coalescences. When there are n sequences, the number of different
possible pairwise coalescences is simply (g), which is n(n — 1)/2. Taking the product of these for
n,n—1,n—2,...,2 we find that there are n!(n — 1)!/2"~! possible labeled histories. This can be a
very large number: for n = 10 there are fully 2.571 x 10° of them. Each such tree has n — 1 interior
nodes, each of which can slide up and down between the next highest and lowest of them. As with
the two-sequence case, the times of the nodes matter. Thus the summation over all trees for 10
sequences is actually a set of 2.571 x 107 integrals, each of them 9-dimensional!

Formally, we can write the likelihood in all these cases as

L = ) Prob(G*|N) Prob(D|G*, ) (X-35)
G*

provided that we understand that the summation is over all labeled histories and is also an integra-
tion over all node times within each of these. In general, we can change the time scale, as we could
in the two-species case, scaling time in units of expected mutations per site. As it did in that case,
it removes p as a separate parameter and causes it to enter only as the product with N, so that
the parameter is again © = 4Npu. Letting G be the tree with branch lengths in units of expected
mutations per site rather than generations, the equation can then be written

L = ) Prob(G|®) Prob(D|G) (X-36)
G

These equations were first given by me (Felsenstein, 1988; see also 1992b).
If the summation could be done analytically, and result in a closed-form formula, we could go
forward with this approach straightforwardly. So far, no one has discovered a way to do this.

MONTE CARLO INTEGRATION. Given that a numerical approach is then needed, we are
faced with a vast number of high-dimensional integrals. Doing even one of them is extraordinarily
difficult by conventional numerical integration. The normal method is to lay a grid over the space
and evaluate heights of the curve at each grid point. For a one-dimensional numerical integration,
one can usually achieve good coverage of the relevant areas with, say, 1000 points. For a 9-
dimensional integration, a lattice with that many points would allow us only 2 points in each
dimension. And we have not one, but billions of integrations to do.

To deal with such apparently hopeless cases, applied mathematicians have developed Monte
Carlo integration. The general idea is that instead of defining a grid, we sample points at random
from the domain, and evaluate the height of the function above each. If enough points are taken,
this gives us a good estimate of the average height of the function, and thus of the value of the
integral. You can see that if a relatively smooth function is evaluated over a two-dimensional space
such as the floor of a room, a sample of, say, 1000 points at random from the floor would give a
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good result. The name “Monte Carlo” refers to the famous gambling casino, as the method relies
heavily on the randomness.

However, it is less easy to see what happens with higher dimensionality. One is tempted, in
the present case, to draw trees at random from the Kingman prior, and evaluate Prob(D |G) for
each. Equation X-36 is of this form: the probability of the data is averaged over the Kingman
prior. With a large enough sample this will work, in theory. In practice, it does not. Results are
wildly variable from one run to another, and are clearly not getting a consistent answer.

The reason appears to be that most of the trees drawn conflict with the data strongly enough
that they make little contribution to the integral. Only a tiny fraction of all trees group similar
sequences together, and these account for most of the area under the integral. If we evaluated a
function over the floor of a room, and the function consisted of a high peak over one floor tile, but
was nearly zero everywhere else, you can see that a Monte Carlo approach would be likely to fail.
Most of the points would be drawn from places where the function was nearly zero. The estimate
of the integral would depend heavily on exactly how many points were drawn over the one floor
tile, and this would vary greatly from one run to another.

IMPORTANCE SAMPLING. To cope with this problem, importance sampling was developed.
If there were some way of concentrating the sampling in the relevant region, the integral could be
reliably evaluated. You might wonder if this was so. After all, if many of the points are then
concentrated in the part of the domain where the function if highest, won’t we get a misleadingly
large estimate of the integral? This can be avoided by correcting these samples for their greater
concentration in that region. If a certain area has twice as many points as another, we need to take
each of those points as representative of only half as much area.

Doing this importance sampling correction, the noisiness of the integral is greatly reduced. We
define an appropriate density function g(x) and sample from it. We weight each of the samples
inversely by how dense the samples will be in that region. This is seen in a simple manipulation of
an integral. If the function we integrate is f(x), the integral of this function can be rewritten as

/f(x) dr = /%g(m) do = E, [%} (X-37)

The integral is then simply the expectation of f(x)/g(z) evaluated at points drawn from the density
function g(z). The expectation is approximated by averaging the values of f/g for a large sample
of points. If the function g(z) is chosen carefully enough, it can greatly reduce the uncertainty in
the integral. In the most optimistic case, if g(z) is proportional to f(x), each sample computes the
constant of proportionality, which happens also to be the value of the integral! Only a single point
would be needed. Of course, we are never in a situation this good.

Figure 10.8 shows importance sampling in a two-dimensional domain. The leftmost of the three
contour plots shows a function and a rectangular grid of points. The center plot shows the same
function with randomly sampled points. The rightmost plot shows points concentrated in the region
in which the function is high. It should be apparent that it makes a much more relevant sample
than the other two.

COMPUTING LIKELIHOODS. A number of different importance sampling methods have
been developed for likelihoods with coalescents. For many of them, one draws from an importance
density g(G|©) a series of coalescent trees Gi,Go,...,Gy,. for some particular value © = ©¢. To
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Figure 10.8: Three contour plots of the same function (in a nonbiological case) show-
ing (left) a conventional grid for numerical integration, (center) a random sampling of
points over the rectangle, and (right) points randomly sampled from a distribution that
concentrates in the region where the function is large. The right-hand random sampling
makes a much better estimate of the integral than the other two, if the samples are each
weighted inversely according to how densely points are sampled in that region

estimate the likelihood for other values of © one wants to use this sample to estimate the integral
in equation X-36. This is done by computing an average:

By

Prob(D | G) Prob(G | ©) ] Z Prob(D | G;) Prob(G; | ©) (X-38)

9(G | ©0) 9(Gi|©0)

Usually a sample of hundreds of thousands of trees GG is needed to attain any accuracy.

There are two major variants of this approximation of the likelihood curve. In some cases we
know the function g(G'|©). In others we know it only up to a constant. This is possible because
the Metropolis-Hastings sampling uses only the ratios of different ¢’s for different trees G’ and G.

A major issue in the likelihood approach is that the sampling is much more accurate when the
“driving value” ©q is close to the values of © for which we need the likelihoods.

BAYESIAN SAMPLERS. An alternative method that is coming into wide use is to take a
Bayesian approach, where one has a prior distribution Prob (©) on ©. We want to know what the
posterior distribution of © is. The easiest way to do this is to consider the joint distribution of ©
and G, and sample from it. The posterior distribution of © is then approximated by simply taking
the pairs (0;,G;) and ignoring the G’s. By Bayes’ Theorem,

Prob(©) Prob(D,G|0)
Prob(D)

Prob(©,G|D) =

(X-39)
Prob(©) Prob(G|©) Prob(D |G)
Prob(D)
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The denominator need not be computed, as we shall note below that one can sample from the
posterior by using Hastings-Metropolis sampling and using the ratio of numerators to do the ac-
ceptance and rejection. For the Bayesian approach, there are no arbitrarily-chosen driving values:
the sampling involves trying both new G’s and new O’s.

GRIFFITHS-TAVARE INDEPENDENT SAMPLING. The pioneering importance sam-
pling method for coalescents was Griffiths and Tavaré’s (1994) independent sampling method. It
was developed from the exact recursion calculation of Griffiths (1989). They thought of their
method as approximating it by sampling paths through the recursion. It is not immediately obvi-
ous that this can also be seen as importance sampling of genealogies. The sequence of events in
their recursion correspond to mutations to particular bases at particular sites and coalescences of
particular lineages in the past. The history of a set of sequences is described by these events. In
choosing a sample path through the recursion, they are specifying the past history of events.

Their sampler chooses particular sites to have had a mutation, or particular pairs of identical
sequences to coalesce. The original method assumed an infinite sites model. The use of a DNA
sequence model instead was difficult, because they had no bias in their sampling toward having two
different sequences become more similar as they were followed back into the past. Their sampler
did have the proper correction for the probabilities of events, but when used on sequence models
it would sometimes have a very low chance of coming up with a sequence of events that accounted
for a reasonable fraction of the total probability.

Nevertheless, their sampling method was not only pioneering, it had some advantages. The
importance sampling function g is known, and there is no undetermined constant of proportionality.
Each step in the sampling is quite rapid. Most significantly, each sample path, each reconstruction
of the past history of events, is independent of the others. Thus their method cannot get stuck in
one region of tree (or history) space. This category of methods are sometimes called IS (Independent
Sampling) methods.

These advantages are counterbalanced by the frequency with which an improbable sequence of
events is reconstructed, which can make a very large number of samples necessary. Griffiths and
Tavaré’s paper allowed not only for a constant population size, but also could estimate population
growth rate in an exponentially growing population. Griffiths and Marjoram (1997) extended the
method to deal with recombining coalescents, using ancestral recombination graphs. Bahlo and
Griffiths (2000) extended the method to multiple populations with migration.

Stephens and Donnelly (2000) developed a biased reconstruction of mutations which went far
towards making reasonable reconstructions. It tended to reconstruct more often mutations that
carried a DNA sequence toward the others. The bias of their sampling was correctly compensated
for in the importance sampling weighting. The result was a tenfold speedup of the method.

MARKOV CHAIN MONTE CARLO SAMPLING. Another approach was proposed by
Kuhner, Yamato, and Felsenstein (1995). We used Metropolis-Hastings sampling to draw points
from the distribution of genealogies. The Metropolis algorithm involves proposing changes from a
current genealogy G to a new one G’. If we are trying to sample from an importance sampling
density g(z), we evaluate the density at the new point and at the old one. If g(G’)/g(G) is greater
than 1, we accept the new point (and thus move to the new genealogy G). If g(G')/g(G) is less than
or equal to 1, we draw a random fraction R, accepting the new point when R < g(G’)/g(G). This
has the effect of accepting a fraction g(G’)/g(G) of the time. In effect, it is a Markov process which
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achieves the desired equilibrium distribution. It is of the increasingly popular class of Markov chain
Monte Carlo (MCMC) methods.

It can be shown that if the proposal distribution is able, in principle, to move anywhere in the
space, the resulting distribution of points will be the desired distribution defined by the function
9(@). The samples are autocorrelated, so that a large number of samples may be needed to explore
the space. The twin dangers are moving too far and altering the tree so much that the new tree
is highly likely to be rejected, and moving too little so that one gets stuck in the initial area and
does not adequately explore the space.

The importance sampling density used is simply proportional to the product Prob(G|©g)x
Prob (D|G@G) for a driving value. The unknown constant of proportionality turns out to be the
likelihood at the driving value, L(Og). This in turn means that, although the method does not
infer the likelihood L(©), it infers the likelihood ratio L(©)/L(©y).

The proposed moves in this case were erasures of a portion of the tree and its reformation
with possible local rearrangements of branches and changes of times of coalescence. Later papers
extended the method, altering the rearrangement scheme somewhat, to deal with exponentially
growing populations (Kuhner, Yamato, and Felsenstein, 1998), with migration among two or more
populations (Beerli and Felsenstein, 1999, 2001), and recombining sequences (Kuhner, Yamato, and
Felsenstein, 2000).

Each move in these methods is more work than with the Griffiths-Tavaré independent sampling,
as the probabilities of the data sum over all possible past histories of mutation, using the standard
“pruning” algorithms for recursive computation of likelihoods on a tree. The trees are also necessary
autocorrelated, and the possibility exists of failing to explore the space well enough. On the other
hand, the importance sampling density is closer to the desired form, and most samples will not be
wasted.

For further developments (including work on ascertainment correction with SNPs, haplotype
inference, and some remarkable progress on coalescents with natural selection), the reader may want
to consult the review in my book (Felsenstein, 2004, Chapters 26-28). The paper by Felsenstein et
al. (1999) goes into some detail on why the Griffiths-Tavaré sampler is best regarded as carrying
out importance sampling. Some of the material on this particular subject in my book (on page 481
of the book) is incorrect.

AN OBJECTIVE. Sampling methods (both IS and MCMC) are currently the state of the art
in statistical inference from population samples of molecular sequences. The hope is that a “black
box” can be constructed which will accommodate many of the possible complications of evolutionary
models (multiple loci, diploid genotypes, recombination, population size changes, migration, even
simple kinds of natural selection). The user will specify what evolutionary scenarios to allow and
what kinds of data have been supplied. The user will need to understand the evolutionary models
employed, but may be relatively insulated from having to master the details of the sampling.
The program will then run the sampler and provide a likelihood surface, or a Bayesian posterior
distribution, for the genetic or population parameters. We are not there yet, though many of the
pieces have been tested. The great unknown is how much sampling will be necessary in complicated
models.
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Exercises

1.

If two sequences differ at 65% of their positions and have evolved by a Jukes-Cantor model,
what is the best estimate of the branch length between them?

. Use the Jukes-Cantor model for the following computation: if two sequences differ at 10%

of their sites, what is the branch length between them? If the second sequence then evolves
into a third one by changing a completely different 10% of its sequence, what was the branch
length between these two (that should be easy)? Compare the total branch length to the
branch length you get when taking the first and third sequence and considering that they
differ at 20% of their sites. Why the discrepancy?

. A sample of 5 DNA sequences of 100 sites length has five segregating sites, each having a

single copy of its variant nucleotide. Compute the estimate of 8 from Watterson’s number-of-
segregating sites estimator. Compute 4N u from the nucleotide diversity. Taking the number
of total sites into account, compare these [careful! you have to alter one of these numbers].
Are they supposed to be the same?

Problems/Complements

1.

Calculate the expectation of the nucleotide diversity between a pair of sequences under the
Kimura 2-parameter model. How does it depend on the transition/transversion ratio R?

. Suppose that a fraction f of the time a mitochondrion comes from the male parent instead

of the female parent.

(a) What is the probability that two gene copies in different individuals come from the same
copy in the previous generation?

(b) Does this depend on whether the two individuals are both females, both males, or one
of each? Why or why not?

(c) What is the distribution of the number of generations back to coalescence?

(d) If we have a population of 100,000 individuals with a 1% chance that each one has
mitochondria derived from the male parent, what is the mean time to coalescence of a
mitochondrial gene? How much larger is this than it would be if all mitochondria were
derived from the female parent?

. Consider a Moran model (described in Chapter VI) in which, at each instant in continuous

time, one individual in a haploid population is killed and replaced by a copy of one of the
others. What is the exact distribution of time to coalescence of two copies? What is the exact
process that corresponds to the coalescent? How does it compare to the coalescent that has
the same effective population size?

. What is the exact distribution of trees from a sample of three gene copies from a diploid

Wright-Fisher model with N = 47

. Draw an ancestral recombination graph with one recombination event, in which different loci

have different times of their Most Recent Common Ancestor (MRCA).
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[These following questions relate to sections of the chapter that are not yet writ-
ten]

. If there is a high (even moderately high) level of gene conversion, unequal crossing over, or
replicational slippage, the members of a family of tandem repeats in which there are n copies
per individual evolve, in effect, like a 2n-ploid single copy locus. This is very much like a
diploid population that has a population size of 2Nn individuals.

(a) In such a case, what is the probability of fixation of a single newly arisen mutant which
is initially present in one copy? Is this higher or lower than in a single locus that is not
tandemly repeated?

(b) What is the overall rate, per generation, of neutral substitutions in the tandemly repeated
family? Why? Is this higher or lower or the same as in a single locus that has the same rate
of neutral mutation per copy and is not tandemly repeated? Why?

. What is the probability of fixation of a single newly arisen mutant in the tandem repeat family
when the new mutant has selective advantage s* when it is represented in one copy (out of a
possible 2n copies)? [You should use the Haldane approximation formula, as adapted to this
case].

If s* = s/n, is the probability of fixation higher or lower than when n = 17 If instead s* = s,
is it higher or lower? Is the rate of substitution of advantageous mutants higher or lower
or the same in a tandem repeat family as it is in a single locus which has the same rate of
advantageous mutation in the first case (s* = s/n)? In the second case (s* = s)? Why?

. Gabriel Dover (1982) has claimed that evolution will proceed much faster in tandem repeated
families than in single loci. What do the above results say about this? Why?
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Chapter XI

POLYGENIC CHARACTERS IN
NATURAL POPULATIONS

XI.1 Phenotypic Evolution Models

The theory of quantitative genetics is a short-term theory, projecting response to selection for a
few generations starting with a population in linkage equilibrium. It is far harder to predict long
term distributions of quantitative characters or to take linkage disequilibrium into account. We
have already seen in Chapter IX that optimizing selection will generate linkage disequilibrium. It
is in part the realization of that fact, along with the short-term nature of the theory, which has
prevented the application of quantitative genetics theory to natural selection. In the last decade this
has begun to change. A class of models known as phenotypic evolution models has been developed,
starting with the work of Kimura (1965), Slatkin (1970) and Bulmer (1971). These models attempt
to take linkage disequilibrium effects into account, while remaining within a quantitative genetics
framework so that gene and gamete frequencies need not be followed explicitly. These models
approximate the genetics of the trait, some so severely that the genetics disappears from view,
and the model then speaks only of the evolution of phenotypes. While the proponents of these
approaches sometimes regard them as more general than explicitly genetic models, they seem to
involve rather restrictive genetic assumptions in the ways in which the phenotypes of parents are
allowed to affect those of their offspring.

EFFECT OF OPTIMIZING SELECTION. We will have space here only to sketch a simple
case: the balance between optimizing selection and mutation. Optimizing selection will continually
reduce the variance of the selected phenotype. Mutation will increase it. A balance will be reached
between these two forces, and we are trying to find what it will be. Let us start by assuming that
the phenotype in which we are interested follows a normal distribution with mean zero and variance
02, so that its distribution has density function:

flz) =

1 2 /6 2
exp|—x“/207|. XI-1
gz expla?/20) (XL-1)
The kind of natural selection to which we expose these individuals is called optimizing selection.
The fitness function is shaped like a normal distribution:

w(z) = exp[—z?/289]. (X1-2)
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Thus the highest fitness is at the phenotype which also happens to be the population mean, namely
zero. We make that simplification purely to avoid having to worry about the mean. In general,
terms for the mean do appear in phenotypic evolution models. If we now look at the distribution
of phenotypes among survivors of selection (assuming the fitness to be expressed through viability,
or else weighting individuals by their fertilities), this is easily shown to have a density function
proportional to f(z)w(x). This turns out to be a normal distribution with mean zero and variance

o, = 1/(1/o* +1/8S). (XI-3)
Thus, the effect of selection has been to reduce the variance of the phenotype by an amount
depending on the parameter S, which reflects the strength of selection. A small S indicates strong
selection, for then, by (XI-2), fitness will fall off rapidly as the phenotype departs from zero. This
part of the argument is easy: the difficulties, as well as the differences between the various models,
arise when we ask what this reduction in phenotypic variance implies for the offspring distribution.

XI.2 Kimura’s model

Kimura (1965) made the pioneering model of the mutation-selection balance in quantitative char-
acters. He assumed that the gametes would have a normal distribution of genetic effects. If we take
the reduction of the phenotypic variance that is implied by equation (XI-3), half of it will come by
creating a negative correlation between the effects in the two gametes, and half by reducing the
variances of the gamete effects, by eliminating more extreme haplotypes. So the change in genetic
variance from selection is (if there is no environmental variance)

1 GS 1 G2
1a_ _ 1 XI-4
2<G G+S> 2G+ S (XI-4)

If we then assume that mutation adds U to the genetic variance, the net change in the genetic

variance of an individual is

+U. (XI-5)

At equilibrium we can equate this to zero, and obtain as the equilibrium genetic variance Kimura’s

result:
G =U+VU2+2US (XI-6)

Note that this derivation assumes that the gametes remain normally distributed. As we will see,
this is not uncontroversial.

XI.3 Lande’s model

The most sophisticated development of the normally-distributed phenotypic evolution models was
by Lande (1976b), who made them model changes due to linkage disequilibrium. If the reduction of
phenotypic variance is accomplished mostly by changing the gene frequencies, then we should expect
the variance to continue at its new value in the next generation. On the other hand, if it reflects
primarily the creation of linkage disequilibria, then we expect that as part of that disequilibrium
breaks down the variance should return part of the way towards its previous value. It is here that
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the genetic assumptions become critical. We will describe Lande’s scheme briefly, then present the
equations for a restricted version of it.

Lande starts by assuming that the phenotype is the sum of individual allele effects at n loci.
There are no dominance effects allowed in his model. The allele effects are then assumed to follow
a 2n-variate normal distribution. This is a strong simplifying assumption. It can be regarded
as an approximation to the situation we would have if there were two alleles per locus. It could
not then be exact because, among other things, the effects at one locus are then not normally
distributed. Alternatively, one could imagine that there were an infinite number of possible alleles
at each locus, and that the allele effects follow a normal distribution. A multivariate normal
distribution is completely characterized by its means, variances and covariances. Thus, as long as
we can approximate the joint distribution of allele effects as being 2n-variate normal, we can obtain
a complete description of the distribution if we know the mean and variances at each of the 2n
sites, and the pairwise covariances between them.

In this model it is usual to assume that there is random mating. This ensures that the co-
variances between sites on different gametes are zero at the beginning of each generation. The
means and variances reflect the gene frequencies at each locus, and the covariances between sites
on the same gamete are the equivalent of linkage disequilibria. In Lande’s model we expect link-
age disequilibrium to arise when optimizing selection acts. Suppose that capital letters represent
alleles which increase the phenotype. An individual copy of A is more likely to survive if it is in an
individual which has a b than a B at the next locus, so that after selection there will be a lack of
independence between loci. This extends to genes on different gametes as well: a A is more likely to
survive if the gamete opposite it (the one which came from the other parent) has a b than if it has
a B. This is true as well for two genes at the same locus: an Aa is more likely to survive selection
than an AA, so that the two genes at one locus are not independent after selection. Lande is able
to compute the means, variances, and covariances after selection in terms of the means, variances,
and covariances before selection. This involves matrix algebra, and is too complex a derivation to
give here.

A SYMMETRIZED VERSION. Instead, let us impose some further restrictions. Let us
assume that the loci are completely exchangeable: all have the same means, all the same variances,
and all pairwise covariances are equal. This state of complete symmetry can only be maintained if
all pairs of loci have the same recombination fraction. That in turn will only be true if all pairs of
loci are completely linked or all completely unlinked. Suppose that the n loci are all unlinked. We
now have a model in which the variance at each of the 2n genes is v, and the covariance (before
selection) between pairs of genes from the same parent is ¢, and the mean effect at each gene is
m. Under this symmetry all of Lande’s matrix expressions become much simpler, though we shall
still not give them here. A simple result emerges (readers interested in its derivation can consult
the paper by Felsenstein, 1979b). Let us focus on the changes in the variances and covariances.
The optimizing selection will reduce the variances v, make the covariances ¢ more negative, and
create a negative covariance between genes which are on opposite gametes. The generalization
which emerges for the case of exchangeable loci is that there is an equal reduction = in each of
these terms. Thus, after selection v/ = v — z and ¢ = ¢ — z. Also, a negative covariance of —x
is created between each pair of genes on opposite gametes (these covariances being zero before
selection, due to random mating). Recombination will not affect the variances v, but it will have
an easily calculable effect on the covariance. Two genes at different loci in the gametes produced
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by a survivor of selection are equally likely to have come from the same or from opposite gametes.

© 1 1 1
/ -
¢ = 2(0 x) + 2( x) 5¢ 7T (XI-7)

At the beginning of the next generation, after these gametes have combined at random, the phe-
notypic variance will consist of two parts. One part is due to the variance terms. There are 2n of
these, each being v’. The other part of the phenotypic variance is due to the covariances ¢’. There
are 2n(n — 1) of these. Let us call these two parts of the variance respectively V' and C. It should
be clear from all of this that V' will be changed by —2nx by selection, and C' by —2n(n — 1)z.
It remains to determine x. Recall that the total change of phenotypic variance is divided equally
among the 4n? possible terms. The total change of variance can be computed from (XI-3) to be
—0%/(0? + 9). Since 02 = V + C, we have

dn*s = (V+O)P?/(S+V +C) (XI-8)

so that we finally obtain for the changes in V' and C' under selection and recombination:

R B U A S
2nS+V+C
(XI-9)
1 n—1 (V+0C)?
/ — - J—
¢ = fj 2n S4+V+C

EFFECT OF MUTATION. Now we can easily add the change caused by mutation. Suppose
that we regard mutation as adding a random amount to the effect of each gene. If e and ¢’ are two
such random increments, then since Cov (x + e,z +¢’) = Cov (z,2’), the mutation effects do not
alter the covariances. Since Var (x 4+ e) = Var (x) + Var (e), they do increase the variances. Thus
we model mutation by saying that it adds a quantity with mean zero and variance u to each gene
effect. The net effect is to add U = 2nu to the total of the variances, so that if mutation follows
selection and recombination in the life cycle we can write simply

V" = V' +U. (XI-10)

When the whole system reaches equilibrium (which we assume it will), we must have V" =V and
C’ = C. Using (XI-9) and (XI-10) this gives

2
t”—V:O::U—%é%%%E (XI-11)
and | n—1 (V+C)?
20T T srvac (X1-12)
These can easily be solved for V and C in terms of U, S, and n. The result is
C = 2(n-1)U (XI-13)

and

V = (3n—2)U + Vn?U? +2nUS, (XI-14)
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predicting a total genetic variance at equilibrium of

V+C = nU+ Vn2U? +2nUS. (XI-15)

Thus we are able to make an approximate calculation under this simplified version of Lande’s
model of the amount of variance and covariance maintained at an equilibrium between mutation
and optimizing selection. An interesting feature of this equilibrium is that the amount of variance
maintained depends on the number of loci n. It is not altogether obvious that this would be so,
for we have already taken U to be the total mutational increment of the genetic variance, summed
over all loci. But the model maintains a substantial amount of genetic variation at equilibrium. In
effect, the term in n comes from the interference caused by variation at each locus in the selection
at the others.

ENVIRONMENTAL VARIANCE. far the model has assumed that the character has no
environmental variance. If we add to the model an environmental variance F, then we must
distinguish between the breeding value and the phenotype. If A is the breeding value and A + e
the phenotype, then we can calculate the fitness as a function of the breeding value in the following
fashion:

w(A) = ) Prob(e) exp[—(A+e— P)?/25]. (XI-16)

When Prob(e) is taken to be a normal distribution with mean zero and variance E, the summation
is an integration. We finally find that

w(A) = Kexp|—(A— P)?/2(S + E)], (XI-17)

where K is a constant which need not concern us. Thus the effect of the environmental variance
is to weaken the selection by replacing S by S + E throughout the derivation of this section. The
equilibrium genetic variances and covariances V', C, and V 4 C' can be obtained in this fashion.
Of course, it must be kept in mind that the equilibrium phenotypic variance will be V + C + F,
not just V + C. In effect, the environmental variance weakens the selection by causing some of
it to be expended uselessly in eliminating extreme individuals who owe their phenotypes to the
environment. The presence of environmental variance means that the phenotype is no longer a
reliable guide to the breeding value, and this lessens the effect of selection on the phenotype.

THE MEAN. As an aside, we may add that under this model, the population mean follows the

equation:

M(S+E)+P(V+C)
S+E+V +C

If the mean were to start at a different value than the optimum phenotype P, this equation simply

predicts that at equilibrium M’ = M = P. This can hardly be a great surprise.

M =

(XI-18)

STRENGTHS AND LIMITATIONS. Lande’s model allows us to obtain an equilibrium
solution for the amount of variance maintained by mutation, and also to describe the effect of linkage
disequilibrium (via the covariance terms) without having to follow 2n different quantities. This is
not achieved without cost. Although the population is assumed to have all gene effects multivariate
normally distributed, this cannot be strictly true. Even within the confines of Lande’s model,
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multivariate normality is violated. The problem is with the recombination process. Although the
optimizing selection leaves the survivors in a multivariate normal distribution, the recombination
process will give a gamete pool which is a mixture of gametes which have undergone different kinds
of recombination. This mixture cannot be multivariate normal. The conditions for maintenance of
exact multivariate normality under Lande’s model have been investigated (Felsenstein, 1977), and
it is found to be essentially impossible as long as recombination exists. Thus Lande’s model is an
approximation. There has as yet been no detailed investigation of the validity of the approximation,
but it seems likely that it is a good one if selection is weak and recombination moderate to strong.
The advantage to using Lande’s model or one of the other phenotypic evolution models is that they
allow us to explicitly allow for the changes in genetic variance as a result of selection, mutation,
and recombination.

XI.4 Bulmer’s model

A different prediction of the equilibrium between mutation and selection was made by Bulmer
(1974) and it is instructive to compare it with Lande’s. His derivation is a bit complex; we will
simplify it by crude but painless approximations. Bulmer worked out approximations for a character
controlled by n two-allele loci, and in effect showed that selection at the loci does not interact. We
simply take this non-interaction as an assumption.

Imagine a single locus in which there is a mutation-selection balance. At equilibrium the mean
fitness at the locus is reduced by 2u. The mean fitness at that locus is essentially 1—2u ~ exp(—2u).
With n loci the mean fitness is then approximately exp(—2nu). What level of genetic variability will
lead to such a reduction in fitness? If the quantitative character has no environmental variation, so
that its variance 0> = G is entirely genetic, then we can compute the mean fitness by integrating
the product of (XI-1) and (XI-2):

w o= /ﬁexp[—ﬁ/QG] exp[—x?/28) dx (XI-19)

which can be evaluated by noting that it is

\/E;\/ﬁ/exp[—xz/QG] exp[—a2/28] do = \/GTM m\l/f/exp [—%2 (é+%>] da

T

(XI-20)

We recognize the integral of a normal distribution in the expression in large parentheses; it is 1,
leaving us with

- —2nu
= 4/ = = ) XI-21
v aG+s ~ °© (XI-21)
Solving for G, we get
G = S(e*™ 1) (X1-22)
or, to good approximation if 4nwu is small,
G ~ 4nuS (XI-23)
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It will also help to recall that (from the previous section), the effect of environmental variance F
is to increase S to S + E. That immediately gives us the result for genetic variance in that more
general case:

G = 4nu(S+E) (X1-24)

Note that in expression (XI-24) the size of the mutational effects is completely absent! This is
the analogue of the effect in ordinary mutational load arguments, where the selection coefficient
s does not appear in the expression for the mutational load. Doubling the size of the mutational
effects would lead to a lower frequency of the mutants, for the same net genetic variance maintained
by the mutation-selection balance.

In Lande’s model, the size of mutational effects affects U and the result. It is thus immediately
apparent that Lande’s and Bulmer’s approximations must differ. A numerical example will help.
Suppose that a quantitative character has its variation due to 30 loci, each with mutation rates
107°. The mutants change the character by 0.1 phenotypic units each, on average. Thus the
variance due to mutation from each locus in each generation is 2 x 107° x 1072 = 2 x 1077. So
Lande’s U is 0.000006. Now suppose that S = 10, so that in the 0.1 units on the phenotypic scale
that a typical mutation moves the phenotype, the fitness drops by exp(—0.01/20) ~ 0.0005.

Substituting into Lande’s formula (XI-12) we get

G = V+C = 0.00018 + /3.6 x 10~ + 60 x 6 x 106 x 10 = 0.06018. (XI-25)
while in Bulmer’s formula we get instead
G = 4x30x0.00001 x 10 = 0.0120. (XI-26)

so that Lande’s predicts five times as much variance as Bulmer’s. The difference is not quite as
great when measured in standard deviations, Lande’s predicting 0.24532 while Bulmer predicts
0.109545.

The difference between the two predictions is greater when mutation rates are smaller, when
number of loci is larger, when mutation effects are larger, or when selection is stronger (S is smaller).

Why the difference between the two predictions? Lande’s argument assumes that the distri-
bution of genotypes is normal, which is most nearly achieved when selection is weak. Bulmer’s
argument ignores (as given here) or approximates away (in its original form) the linkage disequi-
libria that arise between loci. It may be doubted that, for many cases of interest, the Lande result
is more accurate. In the above numerical example, the equilibrium genetic standard deviation is
predicted to be no more than the size of two mutation effects. This suggests that in few cases will a
mutant re-mutate before selection eliminates it. So the linkage disequilibria may have little effect,
and normality may be hard to assume.

For a more detailed examination of these questions, see the comprehensive study by of these
models by Turelli (1984).

XI.5 Other models

The other phenotypic evolution models can mostly be obtained as special cases of our symmetrized
version of Lande’s model. Kimura’s model (1965) is essentially the case in which n = 1, so that C'is
always zero. Bulmer’s earlier model of 1971 is the case where n = oo, which implies that V' remains
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unchanged at its initial value if there is no mutation. Cavalli-Sforza and Feldman (1976) give a
system of equations reminiscent of the one-locus case, but they do not take into account the negative
covariance between the effects of the two copies of a gene after selection, and consequently their
results differ from Lande’s. Slatkin’s (1970) system imposes an external constraint in the form of
an assumed constancy of within-sibship variance: this constancy does not obtain in Lande’s model
and amounts to an arbitrary assumption.

A PHILOSOPHICAL DIFFERENCE. From a genetic point of view, the other phenotypic
models are justified to the extent that they can be derived from a model such as Lande’s, which
attempts to take genetic factors into account. Many authors prefer the position that their models are
arbitrary assumptions about the evolution of phenotypes, without specifically genetic assumptions.
The difficulty with this position is that if it is then asserted that these phenotypic models are more
general than the genetic models, one has to account for the fact that all of the other models either
arise as special cases of Lande’s model or are incompatible with it.

SOME FURTHER REFERENCES. The phenotypic evolution models have found application
in a number of contexts, particularly in ecology. Of particular interest are the papers of Rough-
garden (1972, 1974a, 1974b) Slatkin and Lande (1976), and Slatkin (1979) on the evolution of
niche overlap, the papers of Lande (1976a, 1977) on long-term evolutionary effects, and the work of
Feldman and Cavalli-Sforza (Cavalli-Sforza and Feldman, 1976, 1978; Feldman and Cavalli-Sforza
1977) on models incorporating cultural transmission.

Complements/Problems

1. In the phenotypic evolution models of Lande and Bulmer given above, how is the equilibrium
variance of a trait under optimizing selection vs. mutation affected by doubling the number
of loci and halving the contribution to the mutational variance U in each locus?
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